Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (4) : 395-403    https://doi.org/10.1007/s11705-022-2218-3
RESEARCH ARTICLE
Optimizing iodine capture performance by metal–organic framework containing with bipyridine units
Xinyi Yang1,2, Xiaolu Liu2, Yanfang Liu2, Xiao-Feng Wang1(), Zhongshan Chen2, Xiangke Wang2()
1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
2. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
 Download: PDF(11214 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Radioactive iodine exhibits medical values in radiology, but its excessive emissions can cause environmental pollution. Thus, the capture of radioiodine poses significant engineering for the environment and medical radiology. The adsorptive capture of radioactive iodine by metal–organic frameworks (MOFs) has risen to prominence. In this work, a Th-based MOF (denoted as Th-BPYDC) was structurally designed and synthesized, consisting of [Th63-O)43-OH)4(H2O)6]12+ clusters, abundant bipyridine units, and large cavities that allowed guest molecules diffusion and transmission. Th-BPYDC exhibited the uptake capacities of 2.23 g·g−1 and 312.18 mg·g−1 towards I2 vapor and I2 dissolved in cyclohexane, respectively, surpassing its corresponding analogue Th-UiO-67. The bipyridine units boosted the adsorption performance, and Th-BPYDC showed good reusability with high stability. Our work thus opened a new way for the synthesis of MOFs to capture radioactive iodine.

Keywords metal–organic framework      iodine      adsorption      nuclear waste      environmental remediation     
Corresponding Author(s): Xiao-Feng Wang,Xiangke Wang   
Online First Date: 15 December 2022    Issue Date: 24 March 2023
 Cite this article:   
Xinyi Yang,Xiaolu Liu,Yanfang Liu, et al. Optimizing iodine capture performance by metal–organic framework containing with bipyridine units[J]. Front. Chem. Sci. Eng., 2023, 17(4): 395-403.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2218-3
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I4/395
Fig.1  (a) View of the [Th63-O)43-OH)4(H2O)6]12+ SBU, and the BPYDC ligand; (b) the tetrahedral cavity substructure in Th-BPYDC; (c) the octahedral cavity substructure in Th-BPYDC; (d) the 3D framework of Th-BPYDC; (e) displaying the 12-connected fcu topology of Th-BPYDC.
Fig.2  (a) XRD patterns of Th-BPYDC before and desolvated sample, together with calculated result; (b) XRD patterns of Th-UiO-67 and desolvated sample, together with calculated result; (c) TGA diagrams of Th-BPYDC and Th-UiO-67 after activation; (d) N2 adsorption (filled symbols) and desorption (open symbols) isotherms measured at 77 K for Th-BPYDC and Th-UiO-67; SEM image of (e) Th-BPYDC and (f) Th-UiO-67.
Fig.3  (a) XRD patterns of Th-BPYDC after treatment in aqueous solution with pH from 1–10; (b) XRD patterns of Th-BPYDC after treatment in various organic solvents; (c) XRD patterns of Th-UiO-67 after treatment in aqueous solution with pH from 1–10; (d) XRD patterns of Th-UiO-67 after treatment in various organic solvents.
Fig.4  (a) Equilibrium adsorption isotherms for iodine adsorption on different MOF materials in cyclohexane solutions (iodine concentrations ranging from 50 to ~1200 ppm; fit lines for the Langmuir model are shown); (b) iodine adsorption kinetics on different MOF materials at an initial iodine concentration of ~200 ppm in cyclohexane solutions; (c) iodine vapor adsorption kinetics on different MOF materials at 75 °C; (d) recyclability of Th-BPYDC for iodine adsorption from cyclohexane solution.
MaterialConditionsCapacity for I2 (mg·g?1)Temp.Adsorption strategyRef.
MIL-53 (Al)0.01 mol·L?1 solution I2 in cyclohexane9.7RTPhysisorption[45]
MIL-100 (Al)0.01 mol·L?1 solution I2 in cyclohexane63RTPhysisorption[45]
CAU-10.01 mol·L?1 solution I2 in cyclohexane290RTPore surface functionalization[45]
MIL-101-NH20.01 mol·L?1 solution I2 in cyclohexane311RTPore surface functionalization[45]
MIL-120 (Al)0.01 mol·L?1 solution I2 in cyclohexane155RTPore surface functionalization[45]
Tb(Cu4I4)(ina*)3 (DMF)0.69 mmol·L?1 solution I2 in cyclohexane226RTHalide-halide interaction[36]
Th-SINAP-7200 mg·L?1 solution I2 in cyclohexane107RTCharge transfer[29]
Th-SINAP-8200 mg·L?1 solution I2 in cyclohexane258RTCharge transfer[29]
Th-SINAP-10200 mg·L?1 solution I2 in cyclohexane292.4RTCharge transfer[28]
Th-SINAP-12200 mg·L?1 solution I2 in cyclohexane298.5RTCharge transfer[28]
Th-BPYDC200 mg·L?1 solution I2 in cyclohexane312.18RTCharge transferThis Work
Th-UiO-67200 mg·L?1 solution I2 in cyclohexane196.7RTCharge transferThis Work
Tab.1  Comparison of the performance of different adsorbents for iodine adsorption in cyclohexane
Fig.5  (a) XRD patterns of Th-BPYDC after iodine adsorption studies; (b) XRD patterns of Th-UiO-67 after iodine adsorption studies; FTIR spectra of (c) Th-BPYDC and (d) Th-UiO-67 before and after iodine adsorption studies; I3d XPS spectra for (e) Th-BPYDC and (f) Th-UiO-67 after iodine adsorption studies.
1 A Adamantiades, I Kessides. Nuclear power for sustainable development: current status and future prospects. Energy Policy, 2009, 37(12): 5149–5166
https://doi.org/10.1016/j.enpol.2009.07.052
2 K Mayer, M Wallenius, K Lutzenkirchen, J Horta, A Nicholl, G Rasmussen, Belle P van, Z Varga, R Buda, N Erdmann, J V Kratz, N Trautmann, L K Fifield, S G Tims, M B Fröhlich, P Steier. Uranium from German nuclear power projects of the 1940s—a nuclear forensic investigation. Angewandte Chemie International Edition, 2015, 54(45): 13452–13456
https://doi.org/10.1002/anie.201504874
3 H Yang, X Liu, M Hao, Y Xie, X Wang, H Tian, G I N Waterhouse, P E Kruger, S G Telfer, S Ma. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 2021, 33(51): 2106621
https://doi.org/10.1002/adma.202106621
4 G Cheng, A Zhang, Z Zhao, Z Chai, B Hu, B Han, Y Ai, X Wang. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Science Bulletin, 2021, 66(19): 1994–2001
https://doi.org/10.1016/j.scib.2021.05.012
5 N Shen, Z Yang, S Liu, X Dai, C Xiao, K Taylor-Pashow, D Li, C Yang, J Li, Y Zhang, M Zhang, R Zhou, Z Chai, S Wang. 99TcO4− removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11(1): 1–12
https://doi.org/10.1038/s41467-020-19374-9
6 J Li, L Chen, N Shen, R Xie, M Sheridan, X Chen, D Sheng, D Zhang, Z Chai, S Wang. Rational design of a cationic polymer network towards record high uptake of 99TcO4− in nuclear waste. Science China. Chemistry, 2021, 64(7): 1251–1260
https://doi.org/10.1007/s11426-020-9962-9
7 J Li, B Li, N Shen, L Chen, Q Guo, L Chen, L He, X Dai, Z Chai, S Wang. Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4– cleanup from alkaline nuclear waste. ACS Central Science, 2021, 7(8): 1441–1450
https://doi.org/10.1021/acscentsci.1c00847
8 J Zhang, L Chen, X Dai, L Chen, F Zhai, W Yu, S Guo, L Yang, L Chen, Y Zhang, L He, C Chen, Z Chai, S Wang. Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57(68): 8452–8455
https://doi.org/10.1039/D1CC02446A
9 M Hao, Z Chen, H Yang, G I N Waterhouse, S Ma, S Wang. Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4–. Science Bulletin, 2022, 67(9): 924–932
https://doi.org/10.1016/j.scib.2022.02.012
10 L He, L Chen, X Dong, S Zhang, M Zhang, X Dai, X Liu, P Lin, K Li, C Chen, T Pan, F Ma, J Chen, M Yuan, Y Zhang, L Chen, R Zhou, Y Han, Z Chai, S Wang. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 2021, 7(3): 699–714
https://doi.org/10.1016/j.chempr.2020.11.024
11 N R Soelberg, T G Garn, M R Greenhalgh, J D Law, R Jubin, D M Strachan, P K Thallapally. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Science and Technology of Nuclear Installations, 2013, 2013: 1–12
https://doi.org/10.1155/2013/702496
12 D A Pryma, S J Mandel. Radioiodine therapy for thyroid cancer in the era of risk stratification and alternative targeted therapies. Journal of Nuclear Medicine, 2014, 55(9): 1485–1491
https://doi.org/10.2967/jnumed.113.131508
13 X Liu, A Zhang, R Ma, B Wu, T Wen, Y Ai, M Sun, J Jin, S Wang, X Wang. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chemical Letters, 2022, 33(7): 3549–3555
https://doi.org/10.1016/j.cclet.2022.03.001
14 X Liu, H Pang, X Liu, Q Li, N Zhang, L Mao, M Qiu, B Hu, H Yang, X Wang. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation, 2021, 2(1): 100076
15 W Xie, D Cui, S R Zhang, Y H Xu, D L Jiang. Iodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6(8): 1571–1595
https://doi.org/10.1039/C8MH01656A
16 J R Li, R J Kuppler, H C Zhou. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
https://doi.org/10.1039/b802426j
17 L J Murray, M Dincă, J R Long. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314
https://doi.org/10.1039/b802256a
18 D X Xue, Q Wang, J Bai. Amide-functionalized metal–organic frameworks: syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378: 2–16
https://doi.org/10.1016/j.ccr.2017.10.026
19 E A Dolgopolova, A M Rice, C R Martin, N B Shustova. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47(13): 4710–4728
https://doi.org/10.1039/C7CS00861A
20 C He, D Liu, W Lin. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chemical Reviews, 2015, 115(19): 11079–11108
https://doi.org/10.1021/acs.chemrev.5b00125
21 T Drake, P Ji, W Lin. Site isolation in metal–organic frameworks enable novel transition metal catalysis. Accounts of Chemical Research, 2018, 51(9): 2129–2138
https://doi.org/10.1021/acs.accounts.8b00297
22 M Hao, M Qiu, H Yang, B Hu, X Wang. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333
https://doi.org/10.1016/j.scitotenv.2020.143333
23 T Chen, K Yu, C Dong, X Yuan, X Gong, J Lian, X Cao, M Li, L Zhou, B Hu, R He, W Zhu, X Wang. Advanced photocatalysts for uranium extraction: elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467: 214615
https://doi.org/10.1016/j.ccr.2022.214615
24 Y Cui, Y Yue, G Qian, B Chen. Luminescent functional metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1126–1162
https://doi.org/10.1021/cr200101d
25 S Yu, H Pang, S Huang, H Tang, S Wang, M Qiu, Z Chen, H Yang, G Song, D Fu, B Hu, X Wang. Recent advances in metal–organic frameworks membranes for water treatment: a review. Science of the Total Environment, 2021, 800: 149662
https://doi.org/10.1016/j.scitotenv.2021.149662
26 S Zhang, J Wang, Y Zhang, J Ma, L Huang, S Yu, L Chen, G Song, M Qiu, X Wang. Applications of water-stable metal–organic frameworks in the removal of water pollutants: a review. Environmental Pollution, 2021, 291: 118076
https://doi.org/10.1016/j.envpol.2021.118076
27 X Liu, Y Xie, M Hao, Z Chen, H Yang, G I N Waterhouse, S Ma, X K Wang. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst. Advanced Science, 2022, 9(23): 2201735
https://doi.org/10.1002/advs.202201735
28 Z J Li, Y Ju, B Yu, X Wu, H Lu, Y Li, J Zhou, X Guo, Z H Zhang, J Lin, J Q Wang, S Wang. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56(49): 6715–6718
https://doi.org/10.1039/D0CC02841J
29 Z J Li, Z Yue, Y Ju, X Wu, Y Ren, S Wang, Y Li, Z H Zhang, X Guo, J Lin, J Q Wang. Ultrastable thorium metal–organic frameworks for efficient iodine adsorption. Inorganic Chemistry, 2020, 59(7): 4435–4442
https://doi.org/10.1021/acs.inorgchem.9b03602
30 D F Sava, K W Chapman, M A Rodriguez, J A Greathouse, P S Crozier, H Zhao, P J Chupas, T M Nenoff. Competitive I2 sorption by Cu-BTC from humid gas streams. Chemistry of Materials, 2013, 25(13): 2591–2596
https://doi.org/10.1021/cm401762g
31 B Li, X Dong, H Wang, D Ma, K Tan, S Jensen, B J Deibert, J Butler, J Cure, Z Shi, T Thonhauser, Y J Chabal, Y Han, J Li. Capture of organic iodides from nuclear waste by metal–organic framework-based molecular traps. Nature Communications, 2017, 8(1): 1–9
https://doi.org/10.1038/s41467-017-00526-3
32 X Zhang, Silva I da, H G W Godfrey, S K Callear, S A Sapchenko, Y Cheng, I Vitorica-Yrezabal, M D Frogley, G Cinque, C C Tang, C Giacobbe, C Dejoie, S Rudić, A J Ramirez-Cuesta, M A Denecke, S Yang, M Schröder. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. Journal of the American Chemical Society, 2017, 139(45): 16289–16296
https://doi.org/10.1021/jacs.7b08748
33 B Valizadeh, T N Nguyen, B Smit, K C Stylianou. Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 2018, 28(30): 1801596
https://doi.org/10.1002/adfm.201801596
34 D Banerjee, X Chen, S S Lobanov, A M Plonka, X Chan, J A Daly, T Kim, P K Thallapally, J B Parise. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Applied Materials & Interfaces, 2018, 10(13): 10622–10626
https://doi.org/10.1021/acsami.8b02651
35 M Leloire, C Walshe, P Devaux, R Giovine, S Duval, T Bousquet, S Chibani, J F Paul, A Moissette, H Vezin, P Nerisson, L Cantrel, C Volkringer, T Loiseau. Capture of gaseous iodine in isoreticular zirconium-based UiO-n metal–organic frameworks: influence of amino functionalization, DFT calculations, Raman and EPR spectroscopic investigation. Chemistry, 2022, 28(14): e202104437
https://doi.org/10.1002/chem.202104437
36 Y Q Hu, M Q Li, Y Wang, T Zhang, P Q Liao, Z Zheng, X M Chen, Y Z Zheng. Direct observation of confined I−···I2···I− interactions in a metal-organic framework: iodine capture and sensing. Chemistry, 2017, 23(35): 8409–8413
https://doi.org/10.1002/chem.201702087
37 L Wang, T Li, X Dong, M Pang, S Xiao, W Zhang. Thiophene-based MOFs for iodine capture: effect of pore structures and interaction mechanism. Chemical Engineering Journal, 2021, 425: 130578
https://doi.org/10.1016/j.cej.2021.130578
38 Y Ju, Z J Li, H Lu, Z Zhou, Y Li, X L Wu, X Guo, Y Qian, Z H Zhang, J Lin, J Q Wang, M Y He. Interpenetration control in thorium metal–organic frameworks: structural complexity toward iodine adsorption. Inorganic Chemistry, 2021, 60(8): 5617–5626
https://doi.org/10.1021/acs.inorgchem.0c03586
39 A S Munn, F Millange, M Frigoli, N Guillou, C Falaise, V Stevenson, C Volkringer, T Loiseau, G Cibin, R I Walton. Iodine sequestration by thiol-modified MIL-53 (Al). CrystEngComm, 2016, 18(41): 8108–8114
https://doi.org/10.1039/C6CE01842D
40 G Mehlana, G Ramon, S A Bourne. A 4-fold interpenetrated diamondoid metal–organic framework with large channels exhibiting solvent sorption properties and high iodine capture. Microporous and Mesoporous Materials, 2016, 231: 21–30
https://doi.org/10.1016/j.micromeso.2016.05.016
41 M W Jia, J T Li, S T Che, L Kan, G H Li, Y L Liu. Two CuxIy-based copper-organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I2 sorption and release. Inorganic Chemistry Frontiers, 2019, 6(5): 1261–1266
https://doi.org/10.1039/C9QI00233B
42 T Xu, J T Li, M W Jia, G H Li, Y L Liu. Contiguous layer-based metal–organic framework with conjugated π-electron ligand for high iodine capture. Dalton Transactions, 2021, 50(37): 13096–13102
https://doi.org/10.1039/D1DT00947H
43 D Luo, Y He, J Tian, J L Sessler, X D Chi. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. Journal of the American Chemical Society, 2022, 144(1): 113–117
https://doi.org/10.1021/jacs.1c11731
44 M HaoX LiuX LiuJ ZhangH YangG I N WaterhouseX WangS Ma. Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry, 2022, 4: 2294–2307
45 C Falaise, C Volkringer, J Facqueur, T Bousquet, L Gasnot, T Loiseau. Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chemical Communications, 2013, 49(87): 10320–10322
https://doi.org/10.1039/c3cc43728k
[1] FCE-22046-OF-YX_suppl_1 Download
[1] Yitong Wang, Yue Zhang, Li Wang. Simultaneous removal of total oxidizable carbon, phosphate and various metallic ions from H2O2 solution with amino-functionalized zirconia as adsorbents[J]. Front. Chem. Sci. Eng., 2023, 17(4): 470-482.
[2] Xizi Xu, He Lv, Mingxin Zhang, Menglong Wang, Yangjian Zhou, Yanan Liu, Deng-Guang Yu. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment[J]. Front. Chem. Sci. Eng., 2023, 17(3): 249-275.
[3] Xinyuan Wang, Heriberto Pfeiffer, Jiangjiang Wei, Jinyu Wang, Jinli Zhang. Fluoride ions adsorption from water by CaCO3 enhanced Mn–Fe mixed metal oxides[J]. Front. Chem. Sci. Eng., 2023, 17(2): 236-248.
[4] Fadina Amran, Muhammad Abbas Ahmad Zaini. Beta-cyclodextrin adsorbents to remove water pollutants—a commentary[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1407-1423.
[5] Yuyao Han, Lei Xia, Xupin Zhuang, Yuxia Liang. Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1387-1398.
[6] Zhipeng Qie, Lijie Wang, Fei Sun, Huan Xiang, Hua Wang, Jihui Gao, Guangbo Zhao, Xiaolei Fan. Tuning porosity of coal-derived activated carbons for CO2 adsorption[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1345-1354.
[7] Jinjian Hou, Jinze Du, Hong Sui, Lingyu Sun. A review on the application of nanofluids in enhanced oil recovery[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1165-1197.
[8] Lingtao Kong, Zhouxun Li, Hui Zhang, Mengmeng Zhang, Jiaxing Zhu, Mingli Deng, Zhenxia Chen, Yun Ling, Yaming Zhou. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1114-1124.
[9] Xuesong Lu, Xiaojiao Luo, Warren A. Thompson, Jeannie Z.Y. Tan, M. Mercedes Maroto-Valer. Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1149-1163.
[10] Ajendra Kumar Vats, Pritha Roy, Linjun Tang, Shuzi Hayase, Shyam S. Pandey. Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1060-1078.
[11] Juan Shen, Fang Cao, Siqi Liu, Congjun Wang, Rigui Chen, Ke Chen. Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite[J]. Front. Chem. Sci. Eng., 2022, 16(3): 408-419.
[12] Xiyuan Bu, Ming Tian, Hongqing Wang, Lin Wang, Liyong Yuan, Weiqun Shi. A ternary mechanism for the facilitated transfer of metal ions onto metal–organic frameworks: implications for the ‘‘versatility’’ of these materials as solid sorbents[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1632-1642.
[13] Yijian Li, Jianbo Hu, Jiyu Cui, Qingju Wang, Huabin Xing, Xili Cui. Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1616-1622.
[14] Wenlong Zhang, Xuyang Zhao, Lin Zhang, Jinwei Zhu, Shanshan Li, Ping Hu, Jiangtao Feng, Wei Yan. Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1147-1157.
[15] Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1158-1168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed