|
|
Zinc(II) metal-organic framework eluting titanium implant as propulsive agent to boost the endothelium regeneration |
Wen Liu1, Xiaoyu Wang1,2, Ying Li1, Shihai Xia3, Wencheng Zhang4, Yakai Feng1,5,6( ) |
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China 2. College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China 3. Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, Tianjin 300162, China 4. Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300309, China 5. Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin 300072, China 6. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China |
|
|
Abstract The advent of antiproliferative drug-eluting vascular stents can dramatically reduce in-stent restenosis via inhibiting the hyperproliferation of vascular smooth muscle cells. However, the antiproliferative drugs also restrain the repair of the injured endothelial layer, which in turn leads to the very later in-stent restenosis. Evidence points that competent endothelium plays a critical role in guaranteeing the long-term patency via maintaining vascular homeostasis. Boosting the regeneration of endothelium on the implanted vascular stents could be rendered as a promising strategy to reduce stent implantation complications. In this regard, bioactive zinc(II) metal-organic framework modified with endothelial cell-targeting Arg-Glu-Asp-Val peptide was embedded in poly(lactide-co-caprolactone) to serve as a functional coating on the surface of titanium substrate, which can promote the proliferation and migration of endothelial cells. The in vitro cell experiments revealed that the zinc(II) metal-organic framework embedded in the polymer coating was able to modulate the behaviors of endothelial cells owing to the bioactive effects of zinc ion and peptide. Our results confirmed that zinc(II) metal-organic framework eluting coating represented a new possibility for promoting the repair of the damaged endothelium with potential clinical implications in vascular-related biomaterials and tissue engineering applications.
|
Keywords
Zinc(II) metal-organic framework
vascular stent
REDV peptide
endothelium regeneration
coating
|
Corresponding Author(s):
Yakai Feng
|
Just Accepted Date: 27 February 2024
Issue Date: 27 May 2024
|
|
1 |
W Frąk , A Wojtasińska , W Lisińska , E Młynarska , B Franczyk , J Rysz . Pathophysiology of cardiovascular diseases: new insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines, 2022, 10(8): 1938
https://doi.org/10.3390/biomedicines10081938
|
2 |
I Cockerill , C W See , M L Young , Y Wang , D Zhu . Designing better cardiovascular stent materials: a learning curve. Advanced Functional Materials, 2021, 31(1): 2005361
https://doi.org/10.1002/adfm.202005361
|
3 |
I Andreou , P H Stone , I Ikonomidis , D Alexopoulos , M Sabaté . Recurrent atherosclerosis complications as a mechanism for stent failure. Hellenic Journal of Cardiology, 2020, 61(1): 9–14
https://doi.org/10.1016/j.hjc.2019.04.007
|
4 |
Y Zhu , K Liu , M L Chen , Y Liu , A Gao , C Hu , H Li , H G Zhu , H Y Han , J W Zhang . et al.. Triglyceride-glucose index is associated with in-stent restenosis in patients with acute coronary syndrome after percutaneous coronary intervention with drug-eluting stents. Cardiovascular Diabetology, 2021, 20(1): 137
https://doi.org/10.1186/s12933-021-01332-4
|
5 |
J Clare , J Ganly , C A Bursill , H Sumer , P Kingshott , J B de Haan . The mechanisms of restenosis and relevance to next generation stent design. Biomolecules, 2022, 12(3): 430
https://doi.org/10.3390/biom12030430
|
6 |
W Liu , X Y Wang , Y K Feng . Restoring endothelial function: shedding light on cardiovascular stent development. Biomaterials Science, 2023, 11(12): 4132–4150
https://doi.org/10.1039/D3BM00390F
|
7 |
J Y Zhou , M Y Wang , T T Wei , L C Bai , J Zhao , K Wang , Y K Feng . Endothelial cell-mediated gene delivery for in situ accelerated endothelialization of a vascular graft. ACS Applied Materials & Interfaces, 2021, 13(14): 16097–16105
https://doi.org/10.1021/acsami.1c01869
|
8 |
Y F Wu , L L Song , M Shafiq , H Ijima , S H Kim , R Wei , D L Kong , X M Mo , K Wang . Peptides-tethered vascular grafts enable blood vessel regeneration via endogenous cell recruitment and neovascularization. Composites. Part B, Engineering, 2023, 252: 110504
https://doi.org/10.1016/j.compositesb.2023.110504
|
9 |
S Q Hu , Z H Li , D L Shen , D S Zhu , K Huang , T Su , P U Dinh , J Cores , K Cheng . Exosome-eluting stents for vascular healing after ischaemic injury. Nature Biomedical Engineering, 2021, 5(10): 1174–1188
https://doi.org/10.1038/s41551-021-00705-0
|
10 |
P Shah , S Chandra . Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. Journal of Drug Delivery Science and Technology, 2022, 70: 103224
https://doi.org/10.1016/j.jddst.2022.103224
|
11 |
K S Park , S N Kang , D H Kim , H B Kim , K S Im , W Park , Y J Hong , D K Han , Y K Joung . Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomaterialia, 2020, 111: 91–101
https://doi.org/10.1016/j.actbio.2020.05.011
|
12 |
B Zhang , Y M Qin , Y B Wang . A nitric oxide-eluting and REDV peptide-conjugated coating promotes vascular healing. Biomaterials, 2022, 284: 121478
https://doi.org/10.1016/j.biomaterials.2022.121478
|
13 |
B Gao , X Y Wang , M Y Wang , K X You , G S Ahmed Suleiman , X K Ren , J T Guo , S H Xia , W C Zhang , Y K Feng . Superlow dosage of intrinsically bioactive zinc metal-organic frameworks to modulate endothelial cell morphogenesis and significantly rescue ischemic disease. ACS Nano, 2022, 16(1): 1395–1408
https://doi.org/10.1021/acsnano.1c09427
|
14 |
M Mohanta , A Thirugnanam . Commercial pure titanium—a potential candidate for cardiovascular stent. Materialwissenschaft und Werkstofftechnik, 2022, 53(12): 1518–1543 (in German)
https://doi.org/10.1002/mawe.202100306
|
15 |
X Y Zhang , Y B Wang , J Liu , J Shi , D Mao , A C Midgley , X G Leng , D L Kong , Z H Wang , B Liu . et al.. A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency. Chemical Engineering Journal, 2021, 421: 129577
https://doi.org/10.1016/j.cej.2021.129577
|
16 |
X Y Wang , B Gao , S H Xia , W C Zhang , X M Chen , Z Q Li , X Y Meng , Y K Feng . Surface-functionalized zinc MOFs delivering zinc ion and hydrogen sulfide as tailored anti-hindlimb ischemic nanomedicine. Applied Materials Today, 2023, 32: 101843
https://doi.org/10.1016/j.apmt.2023.101843
|
17 |
X Ding , W Chin , C N Lee , J L Hedrick , Y Y Yang . Peptide‐functionalized polyurethane coatings prepared via grafting-to strategy to selectively promote endothelialization. Advanced Healthcare Materials, 2018, 7(5): 1700944
https://doi.org/10.1002/adhm.201700944
|
18 |
S H Liu , J C Zhi , Y Chen , Z Y Song , L Wang , C Z Tang , S J Li , X P Lai , N G Xu , T Liu . Biomimetic modification on the microporous surface of cardiovascular materials to accelerate endothelialization and regulate intimal regeneration. Biomaterials Advances, 2022, 135: 112666
https://doi.org/10.1016/j.msec.2022.112666
|
19 |
M Y Wang , Y Wan , W Liu , B Gao , X Y Wang , W Z Li , S H Xia , W C Zhang , K Wang , Y K Feng . Covalent grafting of zwitterion polymer and REDV peptide onto NiTi alloy surface for anticoagulation and proendothelialization. Polymers for Advanced Technologies, 2023, 34(8): 2663–2673
https://doi.org/10.1002/pat.6080
|
20 |
S H Im , D H Im , S J Park , Y Jung , D H Kim , S H Kim . Current status and future direction of metallic and polymeric materials for advanced vascular stents. Progress in Materials Science, 2022, 126: 100922
https://doi.org/10.1016/j.pmatsci.2022.100922
|
21 |
G Godwin , S J Jaisingh , M S Priyan , S C E Singh . Wear and corrosion behaviour of Ti-based coating on biomedical implants. Surface Engineering, 2021, 37(1): 32–41
https://doi.org/10.1080/02670844.2020.1730058
|
22 |
W J He , L Ye , P Coates , F Caton-Rose , X W Zhao . Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: viscoelasticity, processability and flexibility. International Journal of Biological Macromolecules, 2023, 236: 123980
https://doi.org/10.1016/j.ijbiomac.2023.123980
|
23 |
Y H Du , L Y Xing , P J Hou , J Qi , X L Liu , Y Y Zhang , D L Chen , Q Li , C D Xiong , T F Huang . et al.. Dual stimulus response mechanical properties tunable biodegradable and biocompatible PLCL/PPDO based shape memory composites. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2022, 648: 129244
https://doi.org/10.1016/j.colsurfa.2022.129244
|
24 |
X Y Wang , B Gao , M Y Wang , Q L Wang , S H Xia , W C Zhang , X Y Meng , Y K Feng . CO delivery nanosystem based on regenerative bioactive zinc MOFs highlights intercellular crosstalk for enhanced vascular remodeling in CLI therapy. Chemical Engineering Journal, 2023, 452: 139670
https://doi.org/10.1016/j.cej.2022.139670
|
25 |
S Jana . Endothelialization of cardiovascular devices. Acta Biomaterialia, 2019, 99: 53–71
https://doi.org/10.1016/j.actbio.2019.08.042
|
26 |
Y G Bi , Z T Lin , S T Deng . Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Materials Science and Engineering C, 2019, 100: 576–583
https://doi.org/10.1016/j.msec.2019.03.040
|
27 |
R Y Zhou , Y M Wu , K Chen , D T Zhang , Q Chen , D H Zhang , Y R She , W J Zhang , L Q Liu , Y Q Zhu . et al.. A polymeric strategy empowering vascular cell selectivity and potential application superior to extracellular matrix peptides. Advanced Materials, 2022, 34(42): 2200464
https://doi.org/10.1002/adma.202200464
|
28 |
Q Li , X F Hao , H X Wang , J T Guo , X K Ren , S H Xia , W C Zhang , Y K Feng . Multifunctional REDV-G-TAT-G-NLS-Cys peptide sequence conjugated gene carriers to enhance gene transfection efficiency in endothelial cells. Colloids and Surfaces. B, Biointerfaces, 2019, 184: 110510
https://doi.org/10.1016/j.colsurfb.2019.110510
|
29 |
C E Evans , M L Iruela-Arispe , Y Y Zhao . Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. American Journal of Pathology, 2021, 191(1): 52–65
https://doi.org/10.1016/j.ajpath.2020.10.001
|
30 |
S Yu , Y Gao , X Mei , T C Ren , S Liang , Z W Mao , C Y Gao . Preparation of an Arg-Glu-Asp-Val peptide density gradient on hyaluronic acid-coated poly(ε-caprolactone) film and its influence on the selective adhesion and directional migration of endothelial cells. ACS Applied Materials & Interfaces, 2016, 8(43): 29280–29288
https://doi.org/10.1021/acsami.6b09375
|
31 |
A J Ridley , M A Schwartz , K Burridge , R A Firtel , M H Ginsberg , G Borisy , J T Parsons , A R Horwitz . Cell migration: integrating signals from front to back. Science, 2003, 302(5651): 1704–1709
https://doi.org/10.1126/science.1092053
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|