Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (6) : 69    https://doi.org/10.1007/s11705-024-2428-y
Zinc(II) metal-organic framework eluting titanium implant as propulsive agent to boost the endothelium regeneration
Wen Liu1, Xiaoyu Wang1,2, Ying Li1, Shihai Xia3, Wencheng Zhang4, Yakai Feng1,5,6()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
3. Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, Tianjin 300162, China
4. Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300309, China
5. Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin 300072, China
6. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
 Download: PDF(1049 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The advent of antiproliferative drug-eluting vascular stents can dramatically reduce in-stent restenosis via inhibiting the hyperproliferation of vascular smooth muscle cells. However, the antiproliferative drugs also restrain the repair of the injured endothelial layer, which in turn leads to the very later in-stent restenosis. Evidence points that competent endothelium plays a critical role in guaranteeing the long-term patency via maintaining vascular homeostasis. Boosting the regeneration of endothelium on the implanted vascular stents could be rendered as a promising strategy to reduce stent implantation complications. In this regard, bioactive zinc(II) metal-organic framework modified with endothelial cell-targeting Arg-Glu-Asp-Val peptide was embedded in poly(lactide-co-caprolactone) to serve as a functional coating on the surface of titanium substrate, which can promote the proliferation and migration of endothelial cells. The in vitro cell experiments revealed that the zinc(II) metal-organic framework embedded in the polymer coating was able to modulate the behaviors of endothelial cells owing to the bioactive effects of zinc ion and peptide. Our results confirmed that zinc(II) metal-organic framework eluting coating represented a new possibility for promoting the repair of the damaged endothelium with potential clinical implications in vascular-related biomaterials and tissue engineering applications.

Keywords Zinc(II) metal-organic framework      vascular stent      REDV peptide      endothelium regeneration      coating     
Corresponding Author(s): Yakai Feng   
Just Accepted Date: 27 February 2024   Issue Date: 27 May 2024
 Cite this article:   
Wen Liu,Xiaoyu Wang,Ying Li, et al. Zinc(II) metal-organic framework eluting titanium implant as propulsive agent to boost the endothelium regeneration[J]. Front. Chem. Sci. Eng., 2024, 18(6): 69.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2428-y
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I6/69
  Scheme1 (a) Preparation process of the Ti/PLCL/Z90 and Ti/PLCL/E-Z90 substrates; (b) both Ti/PLCL/Z90 and Ti/PLCL/E-Z90 nanoparticles promoted the proliferation and migration of ECs. Specially, the amount of E-Z90 required in Ti/PLCL/E-Z90 substrate was less than Ti/PLCL/Z90 substrate due to the E-Z90 targeting ability toward ECs.
Fig.1  Surface morphology of the different Ti substrates. (a) Ti foil (magnification: 5000); (b) Ti/PLCL (magnification: 5000); (c) Ti/PLCL/Z90 (magnification: 5000); (d) Ti/PLCL/E-Z90 (magnification: 5000); (e) Ti/PLCL/Z90 (magnification: 20000); (f) Ti/PLCL/E-Z90 (magnification: 20000).
Fig.2  FTIR of the different Ti substrates.
Fig.3  Zn element distribution on the different Ti substrates. (a) Ti/PLCL; (b) Ti/PLCL/Z90; (c) Ti/PLCL/E-Z90.
Fig.4  Cell proliferation on the different Ti substrates. (a) The effect of various proportions of Z90 nanoparticles on EC proliferation; (b) the effect of various proportions of E-Z90 nanoparticles on EC proliferation. **p < 0.01, and ***p < 0.001.
Fig.5  Cell adhesion on the different Ti substrates after 2 h culture. (a) The optical density of ECs on the different Ti substrates; (b) the optical density of SMCs on the different Ti substrates. *p < 0.05, and **p < 0.01.
Fig.6  Cell uptake on the different Ti substrates. The red circle indicated the EC stained with FITC-encapsulated Z90 and FITC-encapsulated E-Z90.
Fig.7  Cell migration on the different Ti substrates. (a) Fluorescence photograph; (b) relative recovered area. ***p < 0.001.
1 W Frąk , A Wojtasińska , W Lisińska , E Młynarska , B Franczyk , J Rysz . Pathophysiology of cardiovascular diseases: new insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines, 2022, 10(8): 1938
https://doi.org/10.3390/biomedicines10081938
2 I Cockerill , C W See , M L Young , Y Wang , D Zhu . Designing better cardiovascular stent materials: a learning curve. Advanced Functional Materials, 2021, 31(1): 2005361
https://doi.org/10.1002/adfm.202005361
3 I Andreou , P H Stone , I Ikonomidis , D Alexopoulos , M Sabaté . Recurrent atherosclerosis complications as a mechanism for stent failure. Hellenic Journal of Cardiology, 2020, 61(1): 9–14
https://doi.org/10.1016/j.hjc.2019.04.007
4 Y Zhu , K Liu , M L Chen , Y Liu , A Gao , C Hu , H Li , H G Zhu , H Y Han , J W Zhang . et al.. Triglyceride-glucose index is associated with in-stent restenosis in patients with acute coronary syndrome after percutaneous coronary intervention with drug-eluting stents. Cardiovascular Diabetology, 2021, 20(1): 137
https://doi.org/10.1186/s12933-021-01332-4
5 J Clare , J Ganly , C A Bursill , H Sumer , P Kingshott , J B de Haan . The mechanisms of restenosis and relevance to next generation stent design. Biomolecules, 2022, 12(3): 430
https://doi.org/10.3390/biom12030430
6 W Liu , X Y Wang , Y K Feng . Restoring endothelial function: shedding light on cardiovascular stent development. Biomaterials Science, 2023, 11(12): 4132–4150
https://doi.org/10.1039/D3BM00390F
7 J Y Zhou , M Y Wang , T T Wei , L C Bai , J Zhao , K Wang , Y K Feng . Endothelial cell-mediated gene delivery for in situ accelerated endothelialization of a vascular graft. ACS Applied Materials & Interfaces, 2021, 13(14): 16097–16105
https://doi.org/10.1021/acsami.1c01869
8 Y F Wu , L L Song , M Shafiq , H Ijima , S H Kim , R Wei , D L Kong , X M Mo , K Wang . Peptides-tethered vascular grafts enable blood vessel regeneration via endogenous cell recruitment and neovascularization. Composites. Part B, Engineering, 2023, 252: 110504
https://doi.org/10.1016/j.compositesb.2023.110504
9 S Q Hu , Z H Li , D L Shen , D S Zhu , K Huang , T Su , P U Dinh , J Cores , K Cheng . Exosome-eluting stents for vascular healing after ischaemic injury. Nature Biomedical Engineering, 2021, 5(10): 1174–1188
https://doi.org/10.1038/s41551-021-00705-0
10 P Shah , S Chandra . Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. Journal of Drug Delivery Science and Technology, 2022, 70: 103224
https://doi.org/10.1016/j.jddst.2022.103224
11 K S Park , S N Kang , D H Kim , H B Kim , K S Im , W Park , Y J Hong , D K Han , Y K Joung . Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomaterialia, 2020, 111: 91–101
https://doi.org/10.1016/j.actbio.2020.05.011
12 B Zhang , Y M Qin , Y B Wang . A nitric oxide-eluting and REDV peptide-conjugated coating promotes vascular healing. Biomaterials, 2022, 284: 121478
https://doi.org/10.1016/j.biomaterials.2022.121478
13 B Gao , X Y Wang , M Y Wang , K X You , G S Ahmed Suleiman , X K Ren , J T Guo , S H Xia , W C Zhang , Y K Feng . Superlow dosage of intrinsically bioactive zinc metal-organic frameworks to modulate endothelial cell morphogenesis and significantly rescue ischemic disease. ACS Nano, 2022, 16(1): 1395–1408
https://doi.org/10.1021/acsnano.1c09427
14 M Mohanta , A Thirugnanam . Commercial pure titanium—a potential candidate for cardiovascular stent. Materialwissenschaft und Werkstofftechnik, 2022, 53(12): 1518–1543 (in German)
https://doi.org/10.1002/mawe.202100306
15 X Y Zhang , Y B Wang , J Liu , J Shi , D Mao , A C Midgley , X G Leng , D L Kong , Z H Wang , B Liu . et al.. A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency. Chemical Engineering Journal, 2021, 421: 129577
https://doi.org/10.1016/j.cej.2021.129577
16 X Y Wang , B Gao , S H Xia , W C Zhang , X M Chen , Z Q Li , X Y Meng , Y K Feng . Surface-functionalized zinc MOFs delivering zinc ion and hydrogen sulfide as tailored anti-hindlimb ischemic nanomedicine. Applied Materials Today, 2023, 32: 101843
https://doi.org/10.1016/j.apmt.2023.101843
17 X Ding , W Chin , C N Lee , J L Hedrick , Y Y Yang . Peptide‐functionalized polyurethane coatings prepared via grafting-to strategy to selectively promote endothelialization. Advanced Healthcare Materials, 2018, 7(5): 1700944
https://doi.org/10.1002/adhm.201700944
18 S H Liu , J C Zhi , Y Chen , Z Y Song , L Wang , C Z Tang , S J Li , X P Lai , N G Xu , T Liu . Biomimetic modification on the microporous surface of cardiovascular materials to accelerate endothelialization and regulate intimal regeneration. Biomaterials Advances, 2022, 135: 112666
https://doi.org/10.1016/j.msec.2022.112666
19 M Y Wang , Y Wan , W Liu , B Gao , X Y Wang , W Z Li , S H Xia , W C Zhang , K Wang , Y K Feng . Covalent grafting of zwitterion polymer and REDV peptide onto NiTi alloy surface for anticoagulation and proendothelialization. Polymers for Advanced Technologies, 2023, 34(8): 2663–2673
https://doi.org/10.1002/pat.6080
20 S H Im , D H Im , S J Park , Y Jung , D H Kim , S H Kim . Current status and future direction of metallic and polymeric materials for advanced vascular stents. Progress in Materials Science, 2022, 126: 100922
https://doi.org/10.1016/j.pmatsci.2022.100922
21 G Godwin , S J Jaisingh , M S Priyan , S C E Singh . Wear and corrosion behaviour of Ti-based coating on biomedical implants. Surface Engineering, 2021, 37(1): 32–41
https://doi.org/10.1080/02670844.2020.1730058
22 W J He , L Ye , P Coates , F Caton-Rose , X W Zhao . Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: viscoelasticity, processability and flexibility. International Journal of Biological Macromolecules, 2023, 236: 123980
https://doi.org/10.1016/j.ijbiomac.2023.123980
23 Y H Du , L Y Xing , P J Hou , J Qi , X L Liu , Y Y Zhang , D L Chen , Q Li , C D Xiong , T F Huang . et al.. Dual stimulus response mechanical properties tunable biodegradable and biocompatible PLCL/PPDO based shape memory composites. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2022, 648: 129244
https://doi.org/10.1016/j.colsurfa.2022.129244
24 X Y Wang , B Gao , M Y Wang , Q L Wang , S H Xia , W C Zhang , X Y Meng , Y K Feng . CO delivery nanosystem based on regenerative bioactive zinc MOFs highlights intercellular crosstalk for enhanced vascular remodeling in CLI therapy. Chemical Engineering Journal, 2023, 452: 139670
https://doi.org/10.1016/j.cej.2022.139670
25 S Jana . Endothelialization of cardiovascular devices. Acta Biomaterialia, 2019, 99: 53–71
https://doi.org/10.1016/j.actbio.2019.08.042
26 Y G Bi , Z T Lin , S T Deng . Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Materials Science and Engineering C, 2019, 100: 576–583
https://doi.org/10.1016/j.msec.2019.03.040
27 R Y Zhou , Y M Wu , K Chen , D T Zhang , Q Chen , D H Zhang , Y R She , W J Zhang , L Q Liu , Y Q Zhu . et al.. A polymeric strategy empowering vascular cell selectivity and potential application superior to extracellular matrix peptides. Advanced Materials, 2022, 34(42): 2200464
https://doi.org/10.1002/adma.202200464
28 Q Li , X F Hao , H X Wang , J T Guo , X K Ren , S H Xia , W C Zhang , Y K Feng . Multifunctional REDV-G-TAT-G-NLS-Cys peptide sequence conjugated gene carriers to enhance gene transfection efficiency in endothelial cells. Colloids and Surfaces. B, Biointerfaces, 2019, 184: 110510
https://doi.org/10.1016/j.colsurfb.2019.110510
29 C E Evans , M L Iruela-Arispe , Y Y Zhao . Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. American Journal of Pathology, 2021, 191(1): 52–65
https://doi.org/10.1016/j.ajpath.2020.10.001
30 S Yu , Y Gao , X Mei , T C Ren , S Liang , Z W Mao , C Y Gao . Preparation of an Arg-Glu-Asp-Val peptide density gradient on hyaluronic acid-coated poly(ε-caprolactone) film and its influence on the selective adhesion and directional migration of endothelial cells. ACS Applied Materials & Interfaces, 2016, 8(43): 29280–29288
https://doi.org/10.1021/acsami.6b09375
31 A J Ridley , M A Schwartz , K Burridge , R A Firtel , M H Ginsberg , G Borisy , J T Parsons , A R Horwitz . Cell migration: integrating signals from front to back. Science, 2003, 302(5651): 1704–1709
https://doi.org/10.1126/science.1092053
[1] Lin Zhang, Xinghua Qin, Lang Wang, Zifang Zhao, Liwei Mi, Qiongqiong Lu. Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion batteries[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1244-1253.
[2] Jiahui Ren, Yongping He, Haidong Sun, Rongzi Zhang, Juan Li, Wenbiao Ma, Zhong Liu, Jun Li, Xiao Du, Xiaogang Hao. Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2050-2060.
[3] Joseph Raj Xavier. Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix[J]. Front. Chem. Sci. Eng., 2023, 17(1): 1-14.
[4] Zhentao Hao, Si Chen, Zhifeng Lin, Weihua Li. Anticorrosive composite self-healing coating enabled by solar irradiation[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1355-1366.
[5] Yaqin Wang, Lin Yang, Chunxiang Dall’Agnese, Gang Chen, Ai-Jun Li, Xiao-Feng Wang. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells[J]. Front. Chem. Sci. Eng., 2021, 15(1): 180-186.
[6] Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding. Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts[J]. Front. Chem. Sci. Eng., 2021, 15(1): 138-147.
[7] Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang. Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1065-1071.
[8] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[9] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[10] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
[11] Fatima Mameri, Ouahiba Koutchoukali, Mohamed Bouhelassa, Anne Hartwig, Leila Nemdili, Joachim Ulrich. The feasibility of coating by cooling crystallization on ibuprofen naked tablets[J]. Front. Chem. Sci. Eng., 2017, 11(2): 211-219.
[12] Futao QIN, Zhijia YU, Xinhui FANG, Xinghua LIU, Xiangyu SUN. A novel composite coating mesh film for oil-water separation[J]. Front Chem Eng Chin, 2009, 3(1): 112-118.
[13] LI Jia, ZOU Jijun, ZHANG Xiangwen, GUO Wei, MI Zhentao. Catalytic cracking of endothermic fuels in coated tube reactor[J]. Front. Chem. Sci. Eng., 2008, 2(2): 181-185.
[14] HUANG Qunwu, WANG Yiping, LI Jinhua. Preparation of solar selective absorbing CuO coating for medium temperature application[J]. Front. Chem. Sci. Eng., 2007, 1(3): 256-260.
[15] ZHANG Xiongfu, WANG Jinqu, LIU Hai′ou, WANG Anjie. Factors affecting the formation of zeolite seed layers and the effects of seed layers on the growth of zeolite silicalite-1 membranes[J]. Front. Chem. Sci. Eng., 2007, 1(2): 172-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed