| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Comprehensive mechanism and microkinetic model-driven rational screening of 4N-modulated single-atom catalysts for selective oxidation of benzene to phenol  | 
  					 
  					  										
						Rong Fan1, Jiarong Lu1, Hao Yan1( ), Yibin Liu1, Xin Zhou2, Hui Zhao1, Xiang Feng1, Xiaobo Chen1( ), Chaohe Yang1 | 
					 
															
						1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China 2. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  Exploring effective transition metal single-atom catalysts for selective oxidation of benzene to phenol is still a great challenge due to the lack of a comprehensive mechanism and mechanism-driven approach. Here, robust 4N-coordinated transition metal single atom catalysts embedded within graphene (TM1-N4/C) are systematically screened by density functional theory and microkinetic modeling approach to assess their selectivity and activity in benzene oxidation reaction. Our findings indicate that the single metal atom triggers the dissociation of H2O2 to form an active oxygen species (O*). The lone-electronic pair character of O* activates the benzene C–H bond by constructing C–O bond with C atom of benzene, promoting the formation of phenol products. In addition, after benzene captures O* to form phenol, the positively charged bare single metal atom activates the phenol O–H bond by electron interaction with the O atom in the phenol, inducing the generation of benzoquinone by-products. The activation process of O–H bond is accompanied by H atom falling onto the carrier. On this basis, it can be inferred that adsorption energy of the C atom on the O* atom (EC) and the H atom on the TM1-N4/C (EH), which respectively represent activation ability of benzene C–H bond and phenol O–H bond, could be labeled as descriptors describing catalytic activity and selectivity. Moreover, based on the as-obtained volcano map, appropriate EC (–8 to –7 eV) and weakened EH (–1.5 to 0 eV) contribute to the optimization of catalytic performance for benzene oxidation to phenol. This study offers profound opinions on the rational design of metal single-atom catalysts that exhibit favorable catalytic behaviors in hydrocarbon oxidation. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				phenol  
																		  																																				oxidation  
																		  																																				mechanism  
																		  																																				density functional theory  
																		  																																				microkinetic analysis  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Hao Yan,Xiaobo Chen   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 19 June 2024  
																																																													Issue Date: 02 September 2024
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      Z Wang , E Hisahiro . Recent trends in phenol synthesis by photocatalytic oxidation of benzene. Dalton Transactions, 2023, 52(28): 9525–9540 
														     														     	 
														     															     		https://doi.org/10.1039/D3DT01360J
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      Y C Luo , J H Xiong , C L Pang , G Y Li , C W Hu . Direct hydroxylation of benzene to phenol over TS-1 catalysts. Catalysts, 2018, 8(2): 49 
														     														     	 
														     															     		https://doi.org/10.3390/catal8020049
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      X Jia , F Y Wang , H Wen , L X Zhang , S Y Jiao , X L Wang , X Y Pei , S Z Xing . An efficient photocatalyst based on H5PMo10V2O40/UiO-66-NH2 for direct hydroxylation of benzene to phenol by H2O2. RSC Advances, 2022, 12(45): 29433–29439 
														     														     	 
														     															     		https://doi.org/10.1039/D2RA06197J
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      M T Gonfa , S Shen , L Chen , B Hu , W Zhou , Z J Bai , C T Au , S F Yin . Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol. Chinese Journal of Catalysis, 2023, 49: 16–41 
														     														     	 
														     															     		https://doi.org/10.1016/S1872-2067(23)64430-4
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      H D Yu , L Hui , Y Fang , Y R Xue , F He , Y L Li . A metal-free graphdiyne material for highly efficient oxidation of benzene to phenol. 2D Materials, 2021, 8(4): 044004
														     															 | 
																  
																														
															| 6 | 
															 
														      X Q Shi , S E Liu , C S Duanmu , M J Shang , M Qiu , C Shen , Y Yang , Y H Su . Visible-light photooxidation of benzene to phenol in continuous-flow microreactors. Chemical Engineering Journal, 2021, 420: 129976 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2021.129976
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      C Ouyang , J W Li , Y Q Qu , S Hong , S B He . Oxidation of benzene to phenol with N2O over a hierarchical Fe/ZSM-5 catalyst. Green Energy & Environment, 2023, 8(4): 1161–1173 
														     														     	 
														     															     		https://doi.org/10.1016/j.gee.2022.01.007
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      A Mancuso , V Vaiano , P Antico , O Sacco , V Venditto . Photoreactive polymer composite for selective oxidation of benzene to phenol. Catalysis Today, 2023, 413: 113914 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2022.09.020
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      A E ElMetwally , G Eshaq , F Z Yehia , A M Al-Sabagh , S Kegnæs . Iron oxychloride as an efficient catalyst for selective hydroxylation of benzene to phenol. ACS Catalysis, 2018, 8(11): 10668–10675 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.8b03590
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      T Zhang , Z Sun , S Y Li , B J Wang , Y F Liu , R G Zhang , Z K Zhao . Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene. Nature Communications, 2022, 13(1): 6996 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-022-34852-y
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      J Yu , C Y Cao , H Q Jin , W M Chen , Q K Shen , P P Li , L R Zheng , F He , W G Song , Y L Li . Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9(9): nwac018 
														     														     	 
														     															     		https://doi.org/10.1093/nsr/nwac018
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      W M Chen , H Q Jin , F He , P X Cui , C Y Cao , W G Song . Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol. Nano Research, 2022, 15(4): 3017–3025 
														     														     	 
														     															     		https://doi.org/10.1007/s12274-021-3936-4
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      Y Q Zhu , W M Sun , J Luo , W X Chen , T Cao , L R Zheng , J C Dong , J Zhang , M L Zhang , Y H Han . et al.. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9(1): 3861 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-018-06296-w
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      Y T Zhao , H R Xing , Q Wang , Y J Chen , J W Xia , H Xu , G Y He , F X Yin , Q Chen , H Q Chen . Engineering atomically dispersed single Cu–N3 catalytic sites for highly selective oxidation of benzene to phenol. Inorganic Chemistry Frontiers, 2022, 9(11): 2637–2643 
														     														     	 
														     															     		https://doi.org/10.1039/D2QI00343K
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      Y Liu , Y M Zheng , P P Dong , W Z Zhang , W J Wu , J J Mao . Atomically dispersed Cu anchored on nitrogen and boron codoped carbon nanosheets for enhancing catalytic performance. ACS Applied Materials & Interfaces, 2021, 13(51): 61047–61054 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.1c17205
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      S Bhandari , R Khatun , T S Khan , D Khurana , M K Poddar , A Shukla , V Prasad , R Bal . Preparation of a nanostructured iron chromite spinel in the pure form and its catalytic activity for the selective oxidation of benzene to phenol: experimental and DFT studies. Green Chemistry, 2022, 24(23): 9303–9314 
														     														     	 
														     															     		https://doi.org/10.1039/D2GC02335K
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      H Zhou , Y F Zhao , J Gan , J Xu , Y Wang , H W Lv , S Fang , Z Y Wang , Z L Deng , X Q Wang . et al.. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. Journal of the American Chemical Society, 2020, 142(29): 12643–12650 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.0c03415
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      T Zhang , X W Nie , W W Yu , X W Guo , C S Song , R Si , Y F Liu , Z K Zhao . Single atomic Cu-N2 catalytic sites for highly active and selective hydroxylation of benzene to phenol. iScience, 2019, 22: 97–108 
														     														     	 
														     															     		https://doi.org/10.1016/j.isci.2019.11.010
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      M L Zhang , Y G Wang , W X Chen , J C Dong , L R Zheng , J Luo , J W Wan , S B Tian , W C Cheong , D S Wang . et al.. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. Journal of the American Chemical Society, 2017, 139(32): 10976–10979 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.7b05372
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      Y Pan , Y J Chen , K L Wu , Z Chen , S J Liu , X Cao , W C Cheong , T Meng , J Luo , L R C Zheng . et al.. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10(1): 4290 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-019-12362-8
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      H Q Jin , P X Cui , C Y Cao , X H Yu , R Q Zhao , D Ma , W G Song . Understanding the density-dependent activity of Cu single-atom catalyst in the benzene hydroxylation reaction. ACS Catalysis, 2023, 13(2): 1316–1325 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.2c05363
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      W Che , P Li , G F Han , H J Noh , J M Seo , J P Jeon , C Q Li , W Liu , F Li , Q H Liu . et al.. Out-of-plane single-copper-site catalysts for room-temperature benzene oxidation. Angewandte Chemie International Edition, 2024, 63(20): e202403017 
														     														     	 
														     															     		https://doi.org/10.1002/anie.202403017
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      W J Yang , Y J Feng , X L Chen , C C Wu , F Wang , Z Y Gao , Y F Liu , X L Ding , H Li . Understanding trends in the NO oxidation activity of single-atom catalysts. Journal of Environmental Chemical Engineering, 2022, 10(6): 108744 
														     														     	 
														     															     		https://doi.org/10.1016/j.jece.2022.108744
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      J Zhang , L Yan , K Xue , J Wu , R Q Ku , Y M Ding , H L Dong , L J Zhou . Understanding trends in electrochemical methanol oxidation reaction activity on a single transition-metal atom embedded in N-coordinated graphene catalysts. Journal of Physical Chemistry Letters, 2023, 14(14): 3384–3390 
														     														     	 
														     															     		https://doi.org/10.1021/acs.jpclett.2c03874
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      J P Perdew , K Burke , M Ernzerhof . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868 
														     														     	 
														     															     		https://doi.org/10.1103/PhysRevLett.77.3865
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      J P Perdew , J A Chevary , S H Vosko , K A Jackson , M R Pederson , D J Singh , C Fiolhais . Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Physical Review B: Condensed Matter, 1992, 46(11): 6671–6687 
														     														     	 
														     															     		https://doi.org/10.1103/PhysRevB.46.6671
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      L M Zhao , S P Wang , Q Y Ding , W B Xu , P P Sang , Y H Chi , X Q Lu , W Y Guo . The oxidation of methanol on PtRu (111): a periodic density functional theory investigation. Journal of Physical Chemistry C, 2015, 119(35): 20389–20400 
														     														     	 
														     															     		https://doi.org/10.1021/acs.jpcc.5b03951
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      H Yan , S F Li , X Feng , J R Lu , X H Zheng , R Y Li , X Zhou , X B Chen , Y B Liu , D Chen . et al.. Rational screening of metal catalysts for selective oxidation of glycerol to glyceric acid from microkinetic analysis. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(2): e17868 
														     														     	 
														     															     		https://doi.org/10.1002/aic.17868
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      R Fan , R Y Li , X P Wang , X H Kuang , J B Li , Y B Liu , H Yan , X Zhou , H Zhao , X Feng . et al.. Theoretical study of the local environment of Co-NxCy structure for selective oxidation of benzene to phenol. Molecular Catalysis, 2024, 553: 113795 
														     														     	 
														     															     		https://doi.org/10.1016/j.mcat.2023.113795
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      J Zhang , Y Wang , Y Y Wang , M G Zhang . Catalytic activity for oxygen reduction reaction on CoN2 embedded graphene: a density functional theory study. Journal of the Electrochemical Society, 2017, 164(12): F1122–F1129 
														     														     	 
														     															     		https://doi.org/10.1149/2.1031712jes
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      J T Niu , H Y Liu , Y Jin , B G Fan , W J Qi , J Y Ran . A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C–H activation. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1485–1492 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-022-2169-8
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      H L Xu , X F Peng , J Y Zheng , Z Wang . Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity. Frontiers of Chemical Science and Engineering, 2023, 17(1): 93–101 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-022-2175-x
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      Y M Lin , Y Y Zhang , R F Nie , K Zhou , Y Ma , M J Liu , D Lu , Z B Bao , Q W Yang , Y W Yang . et al.. Room-temperature hydrogenation of halogenated nitrobenzenes over metal-organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1782–1792 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-022-2220-9
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      C H Li , L L Zhang , H Li , S Yang . Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source. Frontiers of Chemical Science and Engineering, 2023, 17(1): 68–81 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-022-2174-y
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      J X Bo , M Li , X L Zhu , Q F Ge , J Y Han , H Wang . Bamboo-like N-doped carbon nanotubes encapsulating M(Co,Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498–510 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-021-2082-6
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      P Błoński , J Tuček , Z Sofer , V Mazánek , M Petr , M Pumera , M Otyepka , R Zbořil . Doping with graphitic nitrogen triggers ferromagnetism in graphene. Journal of the American Chemical Society, 2017, 139(8): 3171–3180 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.6b12934
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      J Wang , M Y Zheng , X Zhao , W L Fan . Structure-performance descriptors and the role of the axial oxygen atom on M–N4–C single-atom catalysts for electrochemical CO2 reduction. ACS Catalysis, 2022, 12(9): 5441–5454 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.2c00429
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      W J Yang , S P Xu , K Ma , C C Wu , I D Gates , X L Ding , W H Meng , Z Y Gao . Geometric structures, electronic characteristics, stabilities, catalytic activities, and descriptors of graphene-based single-atom catalysts. Nano Materials Science, 2020, 2(2): 120–131 
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoms.2019.10.008
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      P Janthon , S M Kozlov , F Viñes , J Limtrakul , F Illas . Establishing the accuracy of broadly used density functionals in describing bulk properties of transition metals. Journal of Chemical Theory and Computation, 2013, 9(3): 1631–1640 
														     														     	 
														     															     		https://doi.org/10.1021/ct3010326
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      Y L Wang , P Hu , J Yang , Y A Zhu , D Chen . Chen D. C–H bond activation in light alkanes: a theoretical perspective. Chemical Society Reviews, 2021, 50(7): 4299–4358 
														     														     	 
														     															     		https://doi.org/10.1039/D0CS01262A
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														      F Studt , F Abild-Pedersen , Q X Wu , A D Jensen , B Temel , J D Grunwaldt , J K Nørskov . CO hydrogenation to methanol on Cu–Ni catalysts: theory and experiment. Journal of Catalysis, 2012, 293: 51–60 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcat.2012.06.004
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      W Z Xu , Y Sun , N Li , W Liu , Z C Zhang . Copper and cobalt Co-catalyzed selective electrooxidation of phenol to p-benzoquinone under mild conditions. ChemElectroChem, 2023, 10(18): e202300187 
														     														     	 
														     															     		https://doi.org/10.1002/celc.202300187
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      C L Han , Y L Ye , G W Wang , W Hong , C H Feng . Selective electro-oxidation of phenol to benzoquinone/hydroquinone on polyaniline enhances capacitance and cycling stability of polyaniline electrodes. Chemical Engineering Journal, 2018, 347: 648–659 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2018.04.109
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      T Zhang , D Zhang , X H Han , T Dong , X W Guo , C S Song , R Si , W Liu , Y F Liu , Z K Zhao . Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu–N3 sites for selective oxidation of benzene to phenol. Journal of the American Chemical Society, 2018, 140(49): 16936–16940 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.8b10703
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |