Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 137    https://doi.org/10.1007/s11705-024-2488-z
Comprehensive mechanism and microkinetic model-driven rational screening of 4N-modulated single-atom catalysts for selective oxidation of benzene to phenol
Rong Fan1, Jiarong Lu1, Hao Yan1(), Yibin Liu1, Xin Zhou2, Hui Zhao1, Xiang Feng1, Xiaobo Chen1(), Chaohe Yang1
1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
2. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
 Download: PDF(1211 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Exploring effective transition metal single-atom catalysts for selective oxidation of benzene to phenol is still a great challenge due to the lack of a comprehensive mechanism and mechanism-driven approach. Here, robust 4N-coordinated transition metal single atom catalysts embedded within graphene (TM1-N4/C) are systematically screened by density functional theory and microkinetic modeling approach to assess their selectivity and activity in benzene oxidation reaction. Our findings indicate that the single metal atom triggers the dissociation of H2O2 to form an active oxygen species (O*). The lone-electronic pair character of O* activates the benzene C–H bond by constructing C–O bond with C atom of benzene, promoting the formation of phenol products. In addition, after benzene captures O* to form phenol, the positively charged bare single metal atom activates the phenol O–H bond by electron interaction with the O atom in the phenol, inducing the generation of benzoquinone by-products. The activation process of O–H bond is accompanied by H atom falling onto the carrier. On this basis, it can be inferred that adsorption energy of the C atom on the O* atom (EC) and the H atom on the TM1-N4/C (EH), which respectively represent activation ability of benzene C–H bond and phenol O–H bond, could be labeled as descriptors describing catalytic activity and selectivity. Moreover, based on the as-obtained volcano map, appropriate EC (–8 to –7 eV) and weakened EH (–1.5 to 0 eV) contribute to the optimization of catalytic performance for benzene oxidation to phenol. This study offers profound opinions on the rational design of metal single-atom catalysts that exhibit favorable catalytic behaviors in hydrocarbon oxidation.

Keywords phenol      oxidation      mechanism      density functional theory      microkinetic analysis     
Corresponding Author(s): Hao Yan,Xiaobo Chen   
Just Accepted Date: 19 June 2024   Issue Date: 02 September 2024
 Cite this article:   
Rong Fan,Jiarong Lu,Hao Yan, et al. Comprehensive mechanism and microkinetic model-driven rational screening of 4N-modulated single-atom catalysts for selective oxidation of benzene to phenol[J]. Front. Chem. Sci. Eng., 2024, 18(11): 137.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2488-z
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/137
Fig.1  (a) Reaction pathway and intermediate configuration of H2O2 oxidation of benzene to phenol over Co1-N4/C catalyst (The red value indicates the energy barrier that the elementary reaction process needs to cross); (b) DOSs projected onto the d orbital of the metal atom and p orbital of oxygen and nitrogen on the Co1-N4O2 configuration; (c) the configuration, charge density distribution, and atomic Hirshfeld charge number of reactant and product in the C–O bond formation elementary reaction (Blue indicates the loss of electrons, and red indicates the acquisition of electrons. R and P denote the reactant and product).
Fig.2  (a) Gibbs free energy change of H2O2 oxidation benzene to phenol on TM1-N4O1 support (TM = Mn, Co, Pt, Ni, Pd, Fe). Among them, E and F represent the activation process of H2O2 on Zn1-N4O1 and Cu1-N4O1 carriers, respectively. R, TS, and P denote the reactant, transition state, and product. (b) DOSs projected onto the d orbital of the metal atom and p orbital of inert oxygen and nitrogen on Cu1N4O2 configuration. (c) As an RDS, the product configuration of the elementary reaction of C–O bond formation on TM1-N4O1 support.
Fig.3  (a) Scaling relationship between EH and Ea1 (energy barrier of H2O2 activation), EC, and Ea2 (energy barrier of C–O bond formation), EC and Ea3 (energy barrier of H transfer); (b) activity map for benzene oxidation to phenol based on the EC and EH as the active descriptors.
Fig.4  (a) Structures of intermediates in the oxidation of phenol to benzoquinone over Co1-N4/C (The red value indicates the energy barrier that the elementary reaction process needs to cross); (b) the configuration of reactant, transition state and products and the corresponding Hirshfeld charge distribution of O–H bond activation in the oxidation of hydroquinone to benzoquinone over Co1-N4/C.
Fig.5  (a) Relative energy change of hydroquinone to benzoquinone over TM1-N4 support (TM = Mn, Co, Pt, Ni, Pd, Fe); (b) As an RDS of the side reaction, the product configuration of the first O–H bond activation reaction over TM1-N4 support.
Fig.6  (a) Scaling relationship between EC and Ea1 (energy barrier of C–O bond formation), EHEC and Ea2 (energy barrier of H transfer), EH + EC and Ea3 (energy barrier of O–H bond cleavage), EHEC and Ea4 (energy barrier of H2 formation); (b) selectivity map for benzene oxidation based on the EC and EH as the active descriptors.
1 Z Wang , E Hisahiro . Recent trends in phenol synthesis by photocatalytic oxidation of benzene. Dalton Transactions, 2023, 52(28): 9525–9540
https://doi.org/10.1039/D3DT01360J
2 Y C Luo , J H Xiong , C L Pang , G Y Li , C W Hu . Direct hydroxylation of benzene to phenol over TS-1 catalysts. Catalysts, 2018, 8(2): 49
https://doi.org/10.3390/catal8020049
3 X Jia , F Y Wang , H Wen , L X Zhang , S Y Jiao , X L Wang , X Y Pei , S Z Xing . An efficient photocatalyst based on H5PMo10V2O40/UiO-66-NH2 for direct hydroxylation of benzene to phenol by H2O2. RSC Advances, 2022, 12(45): 29433–29439
https://doi.org/10.1039/D2RA06197J
4 M T Gonfa , S Shen , L Chen , B Hu , W Zhou , Z J Bai , C T Au , S F Yin . Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol. Chinese Journal of Catalysis, 2023, 49: 16–41
https://doi.org/10.1016/S1872-2067(23)64430-4
5 H D Yu , L Hui , Y Fang , Y R Xue , F He , Y L Li . A metal-free graphdiyne material for highly efficient oxidation of benzene to phenol. 2D Materials, 2021, 8(4): 044004
6 X Q Shi , S E Liu , C S Duanmu , M J Shang , M Qiu , C Shen , Y Yang , Y H Su . Visible-light photooxidation of benzene to phenol in continuous-flow microreactors. Chemical Engineering Journal, 2021, 420: 129976
https://doi.org/10.1016/j.cej.2021.129976
7 C Ouyang , J W Li , Y Q Qu , S Hong , S B He . Oxidation of benzene to phenol with N2O over a hierarchical Fe/ZSM-5 catalyst. Green Energy & Environment, 2023, 8(4): 1161–1173
https://doi.org/10.1016/j.gee.2022.01.007
8 A Mancuso , V Vaiano , P Antico , O Sacco , V Venditto . Photoreactive polymer composite for selective oxidation of benzene to phenol. Catalysis Today, 2023, 413: 113914
https://doi.org/10.1016/j.cattod.2022.09.020
9 A E ElMetwally , G Eshaq , F Z Yehia , A M Al-Sabagh , S Kegnæs . Iron oxychloride as an efficient catalyst for selective hydroxylation of benzene to phenol. ACS Catalysis, 2018, 8(11): 10668–10675
https://doi.org/10.1021/acscatal.8b03590
10 T Zhang , Z Sun , S Y Li , B J Wang , Y F Liu , R G Zhang , Z K Zhao . Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene. Nature Communications, 2022, 13(1): 6996
https://doi.org/10.1038/s41467-022-34852-y
11 J Yu , C Y Cao , H Q Jin , W M Chen , Q K Shen , P P Li , L R Zheng , F He , W G Song , Y L Li . Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9(9): nwac018
https://doi.org/10.1093/nsr/nwac018
12 W M Chen , H Q Jin , F He , P X Cui , C Y Cao , W G Song . Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol. Nano Research, 2022, 15(4): 3017–3025
https://doi.org/10.1007/s12274-021-3936-4
13 Y Q Zhu , W M Sun , J Luo , W X Chen , T Cao , L R Zheng , J C Dong , J Zhang , M L Zhang , Y H Han . et al.. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9(1): 3861
https://doi.org/10.1038/s41467-018-06296-w
14 Y T Zhao , H R Xing , Q Wang , Y J Chen , J W Xia , H Xu , G Y He , F X Yin , Q Chen , H Q Chen . Engineering atomically dispersed single Cu–N3 catalytic sites for highly selective oxidation of benzene to phenol. Inorganic Chemistry Frontiers, 2022, 9(11): 2637–2643
https://doi.org/10.1039/D2QI00343K
15 Y Liu , Y M Zheng , P P Dong , W Z Zhang , W J Wu , J J Mao . Atomically dispersed Cu anchored on nitrogen and boron codoped carbon nanosheets for enhancing catalytic performance. ACS Applied Materials & Interfaces, 2021, 13(51): 61047–61054
https://doi.org/10.1021/acsami.1c17205
16 S Bhandari , R Khatun , T S Khan , D Khurana , M K Poddar , A Shukla , V Prasad , R Bal . Preparation of a nanostructured iron chromite spinel in the pure form and its catalytic activity for the selective oxidation of benzene to phenol: experimental and DFT studies. Green Chemistry, 2022, 24(23): 9303–9314
https://doi.org/10.1039/D2GC02335K
17 H Zhou , Y F Zhao , J Gan , J Xu , Y Wang , H W Lv , S Fang , Z Y Wang , Z L Deng , X Q Wang . et al.. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. Journal of the American Chemical Society, 2020, 142(29): 12643–12650
https://doi.org/10.1021/jacs.0c03415
18 T Zhang , X W Nie , W W Yu , X W Guo , C S Song , R Si , Y F Liu , Z K Zhao . Single atomic Cu-N2 catalytic sites for highly active and selective hydroxylation of benzene to phenol. iScience, 2019, 22: 97–108
https://doi.org/10.1016/j.isci.2019.11.010
19 M L Zhang , Y G Wang , W X Chen , J C Dong , L R Zheng , J Luo , J W Wan , S B Tian , W C Cheong , D S Wang . et al.. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials. Journal of the American Chemical Society, 2017, 139(32): 10976–10979
https://doi.org/10.1021/jacs.7b05372
20 Y Pan , Y J Chen , K L Wu , Z Chen , S J Liu , X Cao , W C Cheong , T Meng , J Luo , L R C Zheng . et al.. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10(1): 4290
https://doi.org/10.1038/s41467-019-12362-8
21 H Q Jin , P X Cui , C Y Cao , X H Yu , R Q Zhao , D Ma , W G Song . Understanding the density-dependent activity of Cu single-atom catalyst in the benzene hydroxylation reaction. ACS Catalysis, 2023, 13(2): 1316–1325
https://doi.org/10.1021/acscatal.2c05363
22 W Che , P Li , G F Han , H J Noh , J M Seo , J P Jeon , C Q Li , W Liu , F Li , Q H Liu . et al.. Out-of-plane single-copper-site catalysts for room-temperature benzene oxidation. Angewandte Chemie International Edition, 2024, 63(20): e202403017
https://doi.org/10.1002/anie.202403017
23 W J Yang , Y J Feng , X L Chen , C C Wu , F Wang , Z Y Gao , Y F Liu , X L Ding , H Li . Understanding trends in the NO oxidation activity of single-atom catalysts. Journal of Environmental Chemical Engineering, 2022, 10(6): 108744
https://doi.org/10.1016/j.jece.2022.108744
24 J Zhang , L Yan , K Xue , J Wu , R Q Ku , Y M Ding , H L Dong , L J Zhou . Understanding trends in electrochemical methanol oxidation reaction activity on a single transition-metal atom embedded in N-coordinated graphene catalysts. Journal of Physical Chemistry Letters, 2023, 14(14): 3384–3390
https://doi.org/10.1021/acs.jpclett.2c03874
25 J P Perdew , K Burke , M Ernzerhof . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
26 J P Perdew , J A Chevary , S H Vosko , K A Jackson , M R Pederson , D J Singh , C Fiolhais . Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Physical Review B: Condensed Matter, 1992, 46(11): 6671–6687
https://doi.org/10.1103/PhysRevB.46.6671
27 L M Zhao , S P Wang , Q Y Ding , W B Xu , P P Sang , Y H Chi , X Q Lu , W Y Guo . The oxidation of methanol on PtRu (111): a periodic density functional theory investigation. Journal of Physical Chemistry C, 2015, 119(35): 20389–20400
https://doi.org/10.1021/acs.jpcc.5b03951
28 H Yan , S F Li , X Feng , J R Lu , X H Zheng , R Y Li , X Zhou , X B Chen , Y B Liu , D Chen . et al.. Rational screening of metal catalysts for selective oxidation of glycerol to glyceric acid from microkinetic analysis. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(2): e17868
https://doi.org/10.1002/aic.17868
29 R Fan , R Y Li , X P Wang , X H Kuang , J B Li , Y B Liu , H Yan , X Zhou , H Zhao , X Feng . et al.. Theoretical study of the local environment of Co-NxCy structure for selective oxidation of benzene to phenol. Molecular Catalysis, 2024, 553: 113795
https://doi.org/10.1016/j.mcat.2023.113795
30 J Zhang , Y Wang , Y Y Wang , M G Zhang . Catalytic activity for oxygen reduction reaction on CoN2 embedded graphene: a density functional theory study. Journal of the Electrochemical Society, 2017, 164(12): F1122–F1129
https://doi.org/10.1149/2.1031712jes
31 J T Niu , H Y Liu , Y Jin , B G Fan , W J Qi , J Y Ran . A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C–H activation. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1485–1492
https://doi.org/10.1007/s11705-022-2169-8
32 H L Xu , X F Peng , J Y Zheng , Z Wang . Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity. Frontiers of Chemical Science and Engineering, 2023, 17(1): 93–101
https://doi.org/10.1007/s11705-022-2175-x
33 Y M Lin , Y Y Zhang , R F Nie , K Zhou , Y Ma , M J Liu , D Lu , Z B Bao , Q W Yang , Y W Yang . et al.. Room-temperature hydrogenation of halogenated nitrobenzenes over metal-organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1782–1792
https://doi.org/10.1007/s11705-022-2220-9
34 C H Li , L L Zhang , H Li , S Yang . Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source. Frontiers of Chemical Science and Engineering, 2023, 17(1): 68–81
https://doi.org/10.1007/s11705-022-2174-y
35 J X Bo , M Li , X L Zhu , Q F Ge , J Y Han , H Wang . Bamboo-like N-doped carbon nanotubes encapsulating M(Co,Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498–510
https://doi.org/10.1007/s11705-021-2082-6
36 P Błoński , J Tuček , Z Sofer , V Mazánek , M Petr , M Pumera , M Otyepka , R Zbořil . Doping with graphitic nitrogen triggers ferromagnetism in graphene. Journal of the American Chemical Society, 2017, 139(8): 3171–3180
https://doi.org/10.1021/jacs.6b12934
37 J Wang , M Y Zheng , X Zhao , W L Fan . Structure-performance descriptors and the role of the axial oxygen atom on M–N4–C single-atom catalysts for electrochemical CO2 reduction. ACS Catalysis, 2022, 12(9): 5441–5454
https://doi.org/10.1021/acscatal.2c00429
38 W J Yang , S P Xu , K Ma , C C Wu , I D Gates , X L Ding , W H Meng , Z Y Gao . Geometric structures, electronic characteristics, stabilities, catalytic activities, and descriptors of graphene-based single-atom catalysts. Nano Materials Science, 2020, 2(2): 120–131
https://doi.org/10.1016/j.nanoms.2019.10.008
39 P Janthon , S M Kozlov , F Viñes , J Limtrakul , F Illas . Establishing the accuracy of broadly used density functionals in describing bulk properties of transition metals. Journal of Chemical Theory and Computation, 2013, 9(3): 1631–1640
https://doi.org/10.1021/ct3010326
40 Y L Wang , P Hu , J Yang , Y A Zhu , D Chen . Chen D. C–H bond activation in light alkanes: a theoretical perspective. Chemical Society Reviews, 2021, 50(7): 4299–4358
https://doi.org/10.1039/D0CS01262A
41 F Studt , F Abild-Pedersen , Q X Wu , A D Jensen , B Temel , J D Grunwaldt , J K Nørskov . CO hydrogenation to methanol on Cu–Ni catalysts: theory and experiment. Journal of Catalysis, 2012, 293: 51–60
https://doi.org/10.1016/j.jcat.2012.06.004
42 W Z Xu , Y Sun , N Li , W Liu , Z C Zhang . Copper and cobalt Co-catalyzed selective electrooxidation of phenol to p-benzoquinone under mild conditions. ChemElectroChem, 2023, 10(18): e202300187
https://doi.org/10.1002/celc.202300187
43 C L Han , Y L Ye , G W Wang , W Hong , C H Feng . Selective electro-oxidation of phenol to benzoquinone/hydroquinone on polyaniline enhances capacitance and cycling stability of polyaniline electrodes. Chemical Engineering Journal, 2018, 347: 648–659
https://doi.org/10.1016/j.cej.2018.04.109
44 T Zhang , D Zhang , X H Han , T Dong , X W Guo , C S Song , R Si , W Liu , Y F Liu , Z K Zhao . Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu–N3 sites for selective oxidation of benzene to phenol. Journal of the American Chemical Society, 2018, 140(49): 16936–16940
https://doi.org/10.1021/jacs.8b10703
[1] FCE-24042-OF-FR_suppl_1 Download
[1] Ziqin Gong, Zengyong Li, Xu Zeng, Fengxia Yue, Wu Lan, Chuanfu Liu. Efficient oxidation of monosaccharides to sugar acids under neutral condition in flow reactors with gold-supported activated carbon catalysts[J]. Front. Chem. Sci. Eng., 2024, 18(9): 106-.
[2] Xintong Li, Xianchen Gong, Jilong Wang, Shengbo Jin, Hao Xu, Peng Wu. Post-treatment of Ti-MWW zeolite with potassium fluoride for propylene epoxidation[J]. Front. Chem. Sci. Eng., 2024, 18(8): 88-.
[3] Xiaobo Yang, Xuning Li, Yanqiang Huang. Single-atom catalysis: a promising avenue for precisely controlling reaction pathways[J]. Front. Chem. Sci. Eng., 2024, 18(7): 79-.
[4] Mubarak Al-Kwradi, Mohammednoor Altarawneh. Degradation pathways of amino acids during thermal utilization of biomass: a review[J]. Front. Chem. Sci. Eng., 2024, 18(7): 78-.
[5] Shanxin Xiong, Fengyan Lv, Chenxu Wang, Nana Yang, Yukun Zhang, Qingyong Duan, Shuaishuai Bai, Xiaoqin Wang, Zhen Li, Jianwei Xu. Coal-based activated carbon prepared by H2O activation process for supercapacitors using response surface optimization method[J]. Front. Chem. Sci. Eng., 2024, 18(6): 63-.
[6] Maojun Zou, Jie Wei, Yuanyuan Qian, Yanjing Xu, Zhihuang Fang, Xuejing Yang, Zhiyuan Wang. Life cycle assessment of homogeneous Fenton process as pretreatment for refractory pharmaceutical wastewater[J]. Front. Chem. Sci. Eng., 2024, 18(5): 49-.
[7] Stoyan P. Gramatikov, Petko St. Petkov, Zhendong Wang, Weimin Yang, Georgi N. Vayssilov. The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate[J]. Front. Chem. Sci. Eng., 2024, 18(5): 58-.
[8] Jibin Zhou, Xue Li, Duiping Liu, Feng Wang, Tao Zhang, Mao Ye, Zhongmin Liu. A hybrid spatial-temporal deep learning prediction model of industrial methanol-to-olefins process[J]. Front. Chem. Sci. Eng., 2024, 18(4): 42-.
[9] Guopei Zhang, Xiaoyang Zhang, Xiangwen Xing, Xiangru Kong, Lin Cui, Dong Yong. Impact of H2S on Hg0 capture performance over nitrogen-doped carbon microsphere sorbent: experimental and theoretical insights[J]. Front. Chem. Sci. Eng., 2024, 18(3): 32-.
[10] Lei Chen, Yuan Sun, Jinshan Chi, Wei Xiong, Pingle Liu, Fang Hao. Cobalt-nitrogen co-doped porous carbon sphere as highly efficient catalyst for liquid-phase cyclohexane oxidation with molecular oxygen and the active sites investigation[J]. Front. Chem. Sci. Eng., 2024, 18(3): 33-.
[11] Murugesan Panneerselvam, Marcelo Albuquerque, Iuri Soter Viana Segtovich, Frederico W. Tavares, Luciano T. Costa. Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations[J]. Front. Chem. Sci. Eng., 2024, 18(12): 150-.
[12] Mingyi Chen, Zeshan Wang, Yuelun Li, Yuxin Wang, Lei Jiang, Huicong Zuo, Linan Huang, Yuhao Wang, Dong Tian, Hua Wang, Kongzhai Li. DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface[J]. Front. Chem. Sci. Eng., 2024, 18(12): 162-.
[13] Chao Wang, Xiaogang Shi, Aijun Duan, Xingying Lan, Jinsen Gao, Qingang Xiong. Kinetic study of the effect of thermal hysteresis on pyrolysis of vacuum residue[J]. Front. Chem. Sci. Eng., 2024, 18(12): 145-.
[14] Shuangshuang Cao, Houjun Zhang, Haoyang Liu, Zhiyuan Lyu, Xiangyuan Li, Bin Zhang, You Han. Optimization of kinetic mechanism for hydrogen combustion based on machine learning[J]. Front. Chem. Sci. Eng., 2024, 18(11): 136-.
[15] Yanzhao Sun, Zhitao Lv, Siyu Zhang, Guodong Wen, Yilai Jiao. Kinetics of hydroxylation of phenol with SiC foam supported TS-1 structured catalyst[J]. Front. Chem. Sci. Eng., 2024, 18(11): 129-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed