Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (12) : 150    https://doi.org/10.1007/s11705-024-2502-5
Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations
Murugesan Panneerselvam1,2(), Marcelo Albuquerque1,3, Iuri Soter Viana Segtovich2, Frederico W. Tavares2,4, Luciano T. Costa1()
1. MolMod-CS-Institute of Chemistry, Fluminense Federal University, Valonginho Campus, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
2. Chemical Engineering Program (PEQ/COPPE), Federal University of Rio de Janeiro (UFRJ), Moniz Aragão, Rio de Janeiro, 21941-594, RJ, Brazil
3. Institute of Physics, Fluminense Federal University, Praia Vermelha Campus, Gragoatá, Niterói, Rio de Janeiro, Brazil
4. Chemical and Biochemical Process Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil
 Download: PDF(1453 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study investigates the detailed mechanism of CO2 conversion to CO using the manganese(I) diimine electrocatalyst [Mn(pyrox)(CO)3Br], synthesized by Christoph Steinlechner and coworkers. Employing density functional theory calculations, we thoroughly explore the electrocatalytic pathway of CO2 reduction alongside the competing hydrogen evolution reaction. Our analysis reveals the significant role of diimine nitrogen coordination in enhancing the electron density of the Mn center, thereby favoring both CO2 reduction and hydrogen evolution reaction thermodynamically. Furthermore, we observe that triethanolamine (TEOA) stabilizes transition states, aiding in CO2 fixation and reduction. The critical steps influencing the reaction rate involve breaking the MnC(O)–OH bond during CO2 reduction and cleaving the MnH–H–TEOA bond in the hydrogen evolution reaction. We explain the preference for CO2 conversion to CO over H2 evolution due to the higher energy barrier in forming the Mn-H2 species during H2 production. Our findings suggest the potential for tuning the electron density of the Mn center to enhance reactivity and selectivity in CO2 reduction. Additionally, we analyze potential competing reactions, focusing on electrocatalytic processes for CO2 reduction and evaluating “protonation-first” and “reduction-first” pathways through density functional theory calculations of redox potentials and Gibbs free energies. This analysis indicates the predominance of the “reduction-first” pathway in CO production, especially under high applied potential conditions. Moreover, our research highlights the selectivity of [Mn(pyrox)(CO)3Br] toward CO production over HCOO and H2 formation, proposing avenues for future research to expand upon these findings by using larger basis sets and exploring additional functionalized ligands.

Keywords manganese carbonyl complex      CO2 reduction reaction      hydrogen evolution reaction      selectivity      density functional theory studies     
Corresponding Author(s): Murugesan Panneerselvam,Luciano T. Costa   
Just Accepted Date: 05 July 2024   Issue Date: 23 September 2024
 Cite this article:   
Murugesan Panneerselvam,Marcelo Albuquerque,Iuri Soter Viana Segtovich, et al. Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations[J]. Front. Chem. Sci. Eng., 2024, 18(12): 150.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2502-5
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I12/150
Species B3LYP M06 PBE1PBE Experiment
2Mn → 3Mn ?0.927 ?1.093 ?1.017 ?1.29
3Mn → 5Mn ?2.075 ?1.976 ?1.980 ?1.20
9Mn → 11Mn ?1.962 ?1.911 ?1.913
10Mn → 12Mn ?1.528 ?1.411 ?1.448
12Mn → 5Mn ?1.723 ?1.903 ?1.876 ?1.20–1.35
Tab.1  Comparison of computed reduction potentials (in V) with experimentally available data vs. NHE (–4.6 V) at three different functionals with LANL2DZ(6-31G(d)//TZVP in CH3CN medium
  Scheme1 The proposed reaction mechanism for the CO2RR and HER by 1Mn species is illustrated. The protonation-first pathway (PFP) is depicted in red, while the reduction-first pathway (RFP) is indicated in blue.
Fig.1  The optimized geometries, including the bond lengths (in ?), of all the specified species delineated in Scheme 1, are provided.
Fig.2  The frontier molecular orbital scheme for charge transfer mechanism from HOMO to the LUMO orbitals in 1Mn species.
Fig.3  The reaction free energy (ΔG) profile for CO2 fixation and protonation steps.
Fig.4  The reaction free energy (ΔG) profile for the CO2RR originating from the active 7Mn species. The PFP is illustrated in red, whereas the RFP is depicted in blue.
Fig.5  The reaction free energy (ΔG) profile for the formation of HCOO by CO2RR originating from the active 5Mn species through CO2 addition and protonation steps.
Fig.6  The reaction free energy (ΔG) profile for the formation of Mn-hydride toward hydrogen (H2) evolution originating from the active 5Mn species through the protonation steps involved and also the selected bond lengths and possible hydrogen bond interactions.
1 R S Nerem , B D Beckley , J T Fasullo , B D Hamlington , D Masters , G T Mitchum . Climate-change-driven accelerated sea level rise detected in the altimeter era. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2022–2025
https://doi.org/10.1073/pnas.1717312115
2 R K PachauriL A Meyer. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland, 2014
3 J Houghton . Global warming. Reports on Progress in Physics, 2005, 68(6): 1343–1403
https://doi.org/10.1088/0034-4885/68/6/R02
4 J He , C Janaky . Recent advances in solar-driven carbon dioxide conversion: expectations versus reality. ACS Energy Letters, 2020, 5(6): 1996–2014
https://doi.org/10.1021/acsenergylett.0c00645
5 R J Detz , J N H Reek , B C C van der Zwaan . The future of solar fuels: when could they become competitive?. Energy & Environmental Science, 2018, 11(7): 1653–1669
https://doi.org/10.1039/C8EE00111A
6 P De Luna , C Hahn , D Higgins , S A Jaffer , T F Jaramillo , E H Sargent . What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science, 2019, 364(6438): eaav3506
https://doi.org/10.1126/science.aav3506
7 M D Burkart , N Hazari , C L Tway , E L Zeitler . Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catalysis, 2019, 9(9): 7937–7956
https://doi.org/10.1021/acscatal.9b02113
8 R Francke , B Schille , M Roemelt . Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chemical Reviews, 2018, 118(9): 4631–4701
https://doi.org/10.1021/acs.chemrev.7b00459
9 N D Loewen , L A Berben . Secondary coordination sphere design to modify transport of protons and CO2. Inorganic Chemistry, 2019, 58(24): 16849–16857
https://doi.org/10.1021/acs.inorgchem.9b03102
10 A W Nichols , C W Machan . Secondary-sphere effects in molecular electrocatalytic CO2 reduction. Frontiers in Chemistry, 2019, 7: 397
https://doi.org/10.3389/fchem.2019.00397
11 K D Vogiatzis , M V Polynski , J K Kirkland , J Townsend , A Hashemi , C Liu , E A Pidko . Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chemical Reviews, 2019, 119(4): 2453–2523
https://doi.org/10.1021/acs.chemrev.8b00361
12 Y Xiao , F Xie , H T Zhang , M T Zhang . Bioinspired binickel catalyst for carbon dioxide reduction: the importance of metal–ligand cooperation. JACS Au, 2024, 4(3): 1207–1218
https://doi.org/10.1021/jacsau.4c00047
13 A M Roth-Zawadzki , A J Nielsen , R E Tankard , J Kibsgaard . Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): synthesis, characterization, and activity evaluation. ACS Catalysis, 2024, 14(2): 1121–1145
https://doi.org/10.1021/acscatal.3c05000
14 G Wang , J Chen , Y Ding , P Cai , L Yi , Y Li , C Tu , Y Hou , Z Wen , L Dai . Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50(8): 4993–5061
https://doi.org/10.1039/D0CS00071J
15 Y Zhang , J Yang , R Ge , J Zhang , J M Cairney , Y Li , M Zhu , S Li , W Li . The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coordination Chemistry Reviews, 2022, 461: 214493
https://doi.org/10.1016/j.ccr.2022.214493
16 C Steinlechner , A F Roesel , E Oberem , A Päpcke , N Rockstroh , F Gloaguen , S Lochbrunner , R Ludwig , A Spannenberg , H Junge . et al.. Selective earth-abundant system for CO2 reduction: comparing photo-and electrocatalytic processes. ACS Catalysis, 2019, 9(3): 2091–2100
https://doi.org/10.1021/acscatal.8b03548
17 M Bourrez , F Molton , S Chardon-Noblat , A Deronzier . [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angewandte Chemie International Edition, 2011, 50(42): 9903–9906
https://doi.org/10.1002/anie.201103616
18 X H Li , J A Panetier . Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO)3Br]+ (R = Me, Me2 and Me4) for CO2-to-CO conversion over H2 formation. Physical Chemistry Chemical Physics, 2021, 23(27): 14940–14951
https://doi.org/10.1039/D1CP01576A
19 K S Rawat , S C Mandal , B Pathak . A computational study of electrocatalytic CO2 reduction by Mn(I) complexes: role of bipyridine substituents. Electrochimica Acta, 2019, 297: 606–612
https://doi.org/10.1016/j.electacta.2018.11.210
20 C Ci , J Zang , L Chao , K Xiao , X Peng . Mechanistic insights into the electroreduction of CO2 by a phosphine-nitrogen-coordinated manganese carbonyl complex for CO2-to-CO conversion over H2 formation. Inorganica Chimica Acta, 2023, 549: 121419
https://doi.org/10.1016/j.ica.2023.121419
21 M R Madsen , M H Rønne , M Heuschen , D Golo , M S Ahlquist , T Skrydstrup , S U Pedersen , K Daasbjerg . Promoting selective generation of formic acid from CO2 using Mn(bpy)(CO)3Br as electrocatalyst and triethylamine/isopropanol as additives. Journal of the American Chemical Society, 2021, 143(48): 20491–20500
https://doi.org/10.1021/jacs.1c10805
22 W Hong , M Luthra , J B Jakobsen , M R Madsen , A C Castro , H C Hammershøj , S U Pedersen , D Balcells , T Skrydstrup , K Daasbjerg . et al.. Exploring the parameters controlling product selectivity in electrochemical CO2 reduction in competition with hydrogen evolution employing manganese bipyridine complexes. ACS Catalysis, 2023, 13(5): 3109–3119
https://doi.org/10.1021/acscatal.2c05951
23 C Lee , W Yang , R G Parr . Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B: Condensed Matter, 1988, 37(2): 785–789
https://doi.org/10.1103/PhysRevB.37.785
24 S Grimme , J Antony , S Ehrlich , H Krieg . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 2010, 132(15): 154104
https://doi.org/10.1063/1.3382344
25 J P Perdew . Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical review. Condensed Matter B, 1986, 33: 8822–8824
26 T Yanai , D P Tew , N C Handy . A new hybrid exchangecorrelation functional using the coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 2004, 393(1-3): 51–57
https://doi.org/10.1016/j.cplett.2004.06.011
27 Y Zhao , D G Truhlar . A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics, 2006, 125(19): 194101
https://doi.org/10.1063/1.2370993
28 Y Zhao , D G Truhlar . Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 2008, 41(2): 157–167
https://doi.org/10.1021/ar700111a
29 Y Zhao , D G Truhlar . The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 2008, 120(1): 215–241
https://doi.org/10.1007/s00214-007-0310-x
30 C Adamo , V Barone . Toward reliable density functional methods without adjustable parameters: the PBE0 model. Journal of Chemical Physics, 1999, 110(13): 6158–6170
https://doi.org/10.1063/1.478522
31 J D Chai , M Head-Gordon . Systematic optimization of long-range corrected hybrid density functionals. Journal of Chemical Physics, 2008, 128(8): 084106
https://doi.org/10.1063/1.2834918
32 W J Hehre , R Ditchfield , J A Pople . Self-consistent molecular orbital methods. XII. further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. Journal of Chemical Physics, 1972, 56(5): 2257–2261
https://doi.org/10.1063/1.1677527
33 P J Hay , W R Wadt . Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. Journal of Chemical Physics, 1985, 82(1): 270–283
https://doi.org/10.1063/1.448799
34 M Panneerselvam , M Jaccob . Role of anation on the mechanism of proton reduction involving a pentapyridine cobalt complex: a theoretical study. Inorganic Chemistry, 2018, 57(14): 8116–8127
https://doi.org/10.1021/acs.inorgchem.8b00286
35 M Cossi , N Rega , G Scalmani , V Barone . Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry, 2003, 24(6): 669–681
https://doi.org/10.1002/jcc.10189
36 W J Stevens , M Krauss , H Basch , P G Jasien . Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Canadian Journal of Chemistry, 1992, 70(2): 612–630
https://doi.org/10.1139/v92-085
37 P Lian , R C Johnston , J M Parks , J C Smith . Quantum chemical calculation of pKa as of environmentally relevant functional groups: carboxylic acids, amines, and thiols in aqueous solution. Journal of Physical Chemistry A, 2018, 122(17): 4366–4374
https://doi.org/10.1021/acs.jpca.8b01751
38 Y Fu , L Liu , H Z Yu , Y M Wang , Q X Guo . Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. Journal of the American Chemical Society, 2005, 127(19): 7227–7234
https://doi.org/10.1021/ja0421856
39 A Dreuw , M Head-Gordon . Single-reference ab initio methods for the calculation of excited states of large molecules. Chemical Reviews, 2005, 105(11): 4009–4037
https://doi.org/10.1021/cr0505627
40 F Biegler-König , J Schönbohm . Update of the AIM2000-program for atoms in molecules. Journal of Computational Chemistry, 2002, 23(15): 1489–1494
https://doi.org/10.1002/jcc.10085
41 M J FrischG W TrucksH B SchlegelG E ScuseriaM A RobbJ R CheesemanG ScalmaniV BaroneB MennucciG A Petersson, et al.. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013
42 K M Waldie , F M Brunner , C P Kubiak . Transition metal hydride catalysts for sustainable interconversion of CO2 and formate: thermodynamic and mechanistic considerations. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6841–6848
https://doi.org/10.1021/acssuschemeng.8b00628
43 J Y Yang , T A Kerr , X S Wang , J M Barlow . Reducing CO2 to HCO2– at mild potentials: lessons from formate dehydrogenase. Journal of the American Chemical Society, 2020, 142(46): 19438–19445
https://doi.org/10.1021/jacs.0c07965
44 K M Waldie , A L Ostericher , M H Reineke , A F Sasayama , C P Kubiak . Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catalysis, 2018, 8(2): 1313–1324
https://doi.org/10.1021/acscatal.7b03396
45 S I Johnson , R J Nielsen , W A III Goddard . Selectivity for HCO2– over H2 in the electrochemical catalytic reduction of CO2 by (POCOP)IrH2. ACS Catalysis, 2016, 6(10): 6362–6371
https://doi.org/10.1021/acscatal.6b01755
46 Y Wang , X Jin , H S Yu , D G Truhlar , X He . Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): 8487–8492
https://doi.org/10.1073/pnas.1705670114
47 H Joshi , N Sinha , K Parveen , S Pakhira . Unveiling the electrocatalytic activity of cobaloxime metallolinker in the UU-100(Co) metal-organic framework toward the H2 evolution reaction: a DFT study. Energy & Fuels, 2023, 37(24): 19771–19784
https://doi.org/10.1021/acs.energyfuels.3c03013
48 W Qi , N Wang , L Qin , P Yu , Z Zheng . Panoramic mechanistic insights into hydrogen production via aqueous-phase reforming of methanol catalyzed by ruthenium complexes of bis-N-heterocyclic carbene pincer ligands. ACS Catalysis, 2024, 14(5): 3434–3445
https://doi.org/10.1021/acscatal.3c06138
49 W Hong , J B Jakobsen , D Golo , M R Madsen , M S Ahlquist , T Skrydstrup , S U Pedersen , K Daasbjerg . Effect of variable amine pendants in the secondary coordination sphere of manganese bipyridine complexes on the electrochemical CO2 reduction. ChemElectroChem, 2024, 11(4): e202300553–e202300563
https://doi.org/10.1002/celc.202300553
[1] FCE-24055-OF-PM_suppl_1 Download
[1] Jianxia Gu, Ying Zhu, Haiyan Zheng, Chunyi Sun, Zhongmin Su. Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy[J]. Front. Chem. Sci. Eng., 2024, 18(5): 57-.
[2] Na Xing, Nan Gao, Panbin Ye, Xiaowei Yang, Haifeng Wang, Jijun Zhao. Bilayer borophene: an efficient catalyst for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2024, 18(3): 26-.
[3] Zihuan Yu, Haiqing Yan, Chaonan Wang, Zheng Wang, Huiqin Yao, Rong Liu, Cheng Li, Shulan Ma. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(4): 437-448.
[4] Dan Cui, Yanqin Li, Keke Pan, Jinbao Liu, Qiang Wang, Minmin Liu, Peng Cao, Jianming Dan, Bin Dai, Feng Yu. NO hydrogenation to NH3 over FeCu/TiO2 catalyst with improved activity[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1973-1985.
[5] Xin Li, Meng Su, Yao Chen, Mehar U. Nisa, Ning Zhao, Xiangning Jiang, Zhenhua Li. The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1224-1236.
[6] Toyin D. Shittu, Olumide B. Ayodele. Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1031-1059.
[7] Weiwei Wang, Xiaoyu Zhang, Min Guo, Jianan Li, Chong Peng. An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(6): 950-962.
[8] Hao Guo, Xianhui Li, Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao, Chuyang Y. Tang. Nanofiltration for drinking water treatment: a review[J]. Front. Chem. Sci. Eng., 2022, 16(5): 681-698.
[9] Folin Liu, Shaohua Feng, Siyuan Xiu, Bin Yang, Yang Hou, Lecheng Lei, Zhongjian Li. Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1761-1771.
[10] Guojia Yu, Dongyu Jin, Xinyu Li, Fan Zhang, Shichao Tian, Yixin Qu, Zhiyong Zhou, Zhongqi Ren. Extractive desulfurization of model fuels with a nitrogen-containing heterocyclic ionic liquid[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1735-1742.
[11] Vishal Kandathil, Akshay Moolakkil, Pranav Kulkarni, Alaap Kumizhi Veetil, Manjunatha Kempasiddaiah, Sasidhar Balappa Somappa, R. Geetha Balakrishna, Siddappa A. Patil. Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1514-1525.
[12] Mingyue Zhu, Zhenhao Tian, Lingling Jin, Xiaokui Huo, Chao Wang, Jingnan Cui, Yan Tian, Xiangge Tian, Lei Feng. A highly selective fluorescent probe for real-time imaging of UDP-glucuronosyltransferase 1A8 in living cells and tissues[J]. Front. Chem. Sci. Eng., 2022, 16(1): 103-111.
[13] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[14] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[15] Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong. Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution reaction electrocatalyst[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1134-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed