Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (7) : 1031-1059    https://doi.org/10.1007/s11705-021-2113-3
REVIEW ARTICLE
Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook
Toyin D. Shittu1, Olumide B. Ayodele2,3()
1. Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
2. Department of Micro and Nanofabrication, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
3. School of Chemical Engineering, Engineering Campus, University of Science Malaysia, Nibong Tebal 14300, Malaysia
 Download: PDF(2414 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ethylene is an important feedstock for various industrial processes, particularly in the polymer industry. Unfortunately, during naphtha cracking to produce ethylene, there are instances of acetylene presence in the product stream, which poisons the Ziegler–Natta polymerization catalysts. Thus, appropriate process modification, optimization, and in particular, catalyst design are essential to ensure the production of highly pure ethylene that is suitable as a feedstock in polymerization reactions. Accordingly, carefully selected process parameters and the application of various catalyst systems have been optimized for this purpose. This review provides a holistic view of the recent reports on the selective hydrogenation of acetylene. Previously published reviews were limited to Pd catalysts. However, effective new metal and non-metal catalysts have been explored for selective acetylene hydrogenation. Updates on this recent progress and more comprehensive computational studies that are now available for the reaction are described herein. In addition to the favored Pd catalysts, other catalyst systems including mono, bimetallic, trimetallic, and ionic catalysts are presented. The specific role(s) that each process parameter plays to achieve high acetylene conversion and ethylene selectivity is discussed. Attempts have been made to elucidate the possible catalyst deactivation mechanisms involved in the reaction. Extensive reports suggest that acetylene adsorption occurs through an active single-site mechanism rather than via dual active sites. An increase in the reaction temperature affords high acetylene conversion and ethylene selectivity to obtain reactant streams free of ethylene. Conflicting findings to this trend have reported the presence of ethylene in the feed stream. This review will serve as a useful resource of condensed information for researchers in the field of acetylene-selective hydrogenation.

Keywords selectivity      hydrogenation      acetylene      ethylene      palladium     
Corresponding Author(s): Olumide B. Ayodele   
Online First Date: 05 January 2022    Issue Date: 15 July 2022
 Cite this article:   
Toyin D. Shittu,Olumide B. Ayodele. Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1031-1059.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2113-3
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I7/1031
  Scheme 1 Reaction mechanism of acetylene hydrogenation.
Fig.1  Simulation data showing the effects of temperature on (a) acetylene conversion and ethylene selectivity as well as (b) acetylene and hydrogen coverage at atmospheric pressure and feed composition of 2% C2H2 and 20% H2. Reprinted with permission from ref. [13], copyright 2019, American Chemical Society.
Fig.2  Effect of acetylene partial pressure on acetylene turnover frequency (Black, green, and red represent Pd/Al2O3, PdIn0.23/Al2O3, and PdIn0.41/Al2O3, respectively). Reprinted with permission from ref. [43], copyright 2017, American Chemical Society.
S/N Feed composition
/vol%
Temperature
/°C
Pressure
/MPa
GHSV/SV/FL Tested catalyst Preparation method Conversion/% Selectivity/% Ref.
1 0.6 C2H2, 1.8 H2, bal. N2 30–70 2.1 120 mL·min–1 PdIn/Al2O3 Incipient wetness, co-impregnation ca. 98 ca. 90 [43]
2 2 C2H2, 20 H2, bal. He and 2 C2H2, 40 C2H4, 20 H2, bal. He 60–110 N.A. 180000 mL·g–1·h–1 PdZn Wet impregnation 100 100 [8]
3 0.738 C2H2, 34.45 C2H6, 64.59 C2H4, H2:C2H2 = 0.5–1.5 35–60 1.5–2.0 2600–6200 h–1 PdAg/α-Al2O3 Impregnation ca. 80 ca. 94 [2]
4 1 C2H2, 2 H2, bal. N2 80 0.1 30000 mL·g–1·h–1 Pd/TiO2 Incipient wetness impregnation 100 68 [53]
5 1 C2H2, 2 H2, bal. N2 40–100 0.1 30000 mL·g–1·h–1 Pd/SiC Incipient wetness impregnation 98 96 [54]
6 0.951 C2H2 in C2H4, H2:C2H2 = 2:1 30–55 0.05 10056 h–1 PdGa/MgO-Al2O3 Impregnation 100 95 [4]
7 0.35 C2H2, 0.6 H2, bal. N2, H2:C2H2 = 2:1 30–100 0.4 8040 h–1 Pd/HT, Pd/Al2O3, Pd/MgO Wet impregnation 100 for Pd/HT 100 for Pd/HT [42]
8 C2H2:H2:N2 = 1:2:6 130 N.A. 18000 h–1 Pd-MgO/TiO2 Wet impregnation 97.7 70.7 [55]
9 2 C2H2, 50 C2H4, 4 H2, bal. Ar 10–120 mL·min–1 NaN3-Pd/SAC Impregnation ca. 36 ca. 60 [19]
10 0.5 C2H2, 35 C2H4, bal. N2,
H2:C2H2 = 5:1
0–125 66 mL·min–1 Pd/C, Pd/MgO,
Pd/Al2O3
Wet impregnation 100 ca. 55 [3]
11 H2 = 4.3, C2H4 = 70, C2H2 = M (1, 0.6, 0.8), Ar= M (27.4, 25.1, 24.9) (mol%) 51 and 62 0.12 200 mL·min–1 Pd/α-Al2O3 Impregnation ca. 90 N.A. [6]
12 0.72 C2H2, 60.1 C2H4, 9.14 C2H6, 30.02 H2 10–20 1.520 21.6–216 cm3·gcat–1·s–1 Pd/α-Al2O3
Pd/γ-Al2O3
Wet impregnation 100 N.A. [56]
13 0.72 C2H2, 1.46 H2, 52.6 C2H4 in He 0.1 60 mL·min–1 Pd/TiO2
PdAg/TiO2
Photo deposition method 82 79 [57]
14 C2H2:H2 = 0.3 50–75 0.00013 Pt/M, Pd/M, Rh/M, Ir/M
(M= SiO2, NaY)
Wet impregnation, ion exchange 100 ca. 95 [58]
15 1 C2H2, 20 C2H4, 10 H2, bal. He 20–180 60000 h–1 Pd/ND@G 100 ca. 90 [59]
16 0.5 C2H2, 35 C2H4, 1000 ppm CO, bal. N2, feed gas:H2 = 5:1 70 Pd/SiO2
PdAg/SiO2
Sequential impregnation, co-impregnation 99.3 ca. 85 [23]
17 0.962 C2H2 in C2H4, H2:C2H2 30–70 0.2 10056 h–1 PdNi/MMO
PdNi/MgAl-LDH
Co-impregnation, sol-immobilization 100 80 [21]
18 0.5 C2H2, 50 C2H4, 5 H2, bal. He 200 30 mL·min–1 PdGa ca. 90 ca. 75 [60]
19 1 C2H2, 1.1 H2, bal. He 40 15–35 mL·min–1 Pd/SiO2
PdAu/SiO2
Ion exchange 33.7 77.2 [46]
20 75–175 Pd/N-G Freeze-drying-assisted method 99 93.5 [61]
21 1 C2H2, 20 C2H4, 3 H2, bal. N2 120 mL·min–1 Pd/CNT Impregnation, incipient wetness ca. 85 ca. 40 [62]
22 H2:C2H2 = 2:1 Ar 70 60–180 33000 h–1 Pd/MWNTs
PdSn/MWNTs
Chemical vapor deposition and polyol method ca. 100 96 [11]
23 1.5 C2H2, 1.7 H2, bal. C2H4 40 52580, 32577, 22534, 12385 h–1 Pd/α-Al2O3
Pd/γ-Al2O3
Pd/γ-Al2O3-α-Al2O3
Incipient wetness impregnation ca. 85 ca. 100 [63]
24 1.2 C2H2, H2:C2H2 = 2:1, bal. N2 and 0.6 C2H2, 5.4 C2H4, H2:C2H2 = 2:1, bal. N2 50–225 0.1 256000 h–1 PdP2/TiO2 Impregnation 100 84 [9]
25 0.6 C2H2, 1.8 H2, bal. N2
H2:C2H2 = 3:1
50–150 0.1 24000 h–1 Cu/Al2O3
Pd/Al2O3
PdCu/Al2O3
Impregnation >99 >80 [64]
26 0.6 C2H2, 99.4 N2,
H2:C2H2 = 3:1 or 10:1 and 0.6 C2H2, 5.4 C2H4, bal. 94 N2,
H2:C2H2 = 3:1 or 1.5:1
50–150 0.1–0.5 24000 h–1 Cu/Al2O3
Pd/Al2O3
PdCu/Al2O3
Sequential impregnation, co-impregnation 98 80 [65]
27 1.2 C2H2, 32 C2H4, 4.3 H2, bal. He 57–107 16.2 mL·min–1 PdZn/CeO2 Wet impregnation 98 98 [66]
28 H2:C2H2 = 5–30 250–400 0.1 In2O3, CeO2 100 >85 [67]
29 1 C2H2, 30 C2H4, 1 C3H8, 1 H2, 67 Ar 30–60 1 4000 h–1 Pd/Al2O3
PdAg/Al2O3
Impregnation 82 64 [68]
30 H2:HC= 3, 5, 7, 10, 30, or 60, Conc. of C2H2 = 0.1 and 0.3 30–450 0.1 7500 h–1 Au/CeO2 Direct anionic exchange 100 100 [69]
31 H2:C2H2 = 2:1 40–250 Au/Al2O3 Deposition–precipitation N.A. 100 [70]
32 2 C2H2, 80 H2 in He 27–373 0.1 50000 h–1 PG(Al2Au)
PG(Ag3Au)
N.A. >95 [71]
33 0.15 C2H2, 1.5 H2, bal. He 80–250 40000 mL·g–1·h−1 Au-Cu/SBA-15 Deposition ca. 45 ca. 50 [72]
34 0.8 C2H2, 16 H2, bal. C2H4 150–250
150–400
90000 mL·g–1·h–1 Au/SiO2 Deposition ca. 75 ca. 80 [73]
35 0.6 C2H2, 3 H2, 96.4 Ar 25–300 17200 mL·g–1·h–1 Au/CeO2 Immobilization 100 50 [74]
36 1.5 C2H2, 2 H2, bal. C2H4 40 100 mL·min–1 AuPd/TiO2 Co-impregnation, deposition, precipitation ca. 50 >95 [75]
37 1 C2H2, 20 C2H4, 5 H2, bal. He 65 50–250 cm3·min–1 Pd/SiO2
PdAg/SiO2
PdAu/SiO2
Electroless deposition 60 50 [76]
38 H2/C2H2/N2
= 60/15/25
175 700 mL·min–1 Zn/Al2O3
Ni/Al2O3
ZnNi/Al2O3
Co-precipitation N.A. N.A. [77]
39 1 C2H2, 5 H2, bal. Ar 180 0.1 36000 mL·g–1·h–1 NiIn/SiO2 Incipient wetness impregnation 100 ca. 60 [78]
40 C2H2:C2H4:H2 = 1:70:4
0.5 C2H2, 35 C2H4, bal. N2
20–200 21000 mL·g–1·h–1 Ni/CeO2 Incipient wetness impregnation, co-precipitation, sol-gel solution combustion synthesis 100 100 [79]
41 1 C2H2, 20 C2H4, 20 H2, bal. He 40–200 60000 mL·g–1·h–1 Ni/SiO2
NiAg/SiO2
Wetness co-impregnation 98 N.A. [80]
42 0.5–4 C2H2, 0.005–1 CO, 6–35 H2, bal. He 80 100 cm3·min–1 Ni/SiO2 Incipient wetness impregnation ca. 45 N.A. [81]
43 1 C2H2, 5 H2, 94 N2 180 0.1 36000 mL·g–1·h–1 Ni/SiO2
NiGa/SiO2
Incipient wetness impregnation 100 ca. 81 [82]
44 0.5 C2H2, 5 H2, 50 C2H4, bal. He 200 40 mL·min–1 Pd2Ga1−xSnx ca. 100 ca. 85 [83]
45 0.5 C2H2, 5 H2, 50 C2H4, bal. He 200 30 mL·min–1 BiRh nanoplate Microwave-assisted polyol process ca. 100 ca. 93 [84]
46 0.65 C2H2, 50 C2H4, 5 H2, bal. Ar 80–120 0.1 40 mL·min–1 Pd/Ni(OH)2
Pd/NiO
Pd/SiO2
Incipient impregnation ca. 100 80 [85]
47 40–140 PdZn/ZIF-8C Impregnation 100 ca. 90 [86]
48 100–165 Ni3Ga/MIHMs Topological self-template strategy 100 ca. 85 [87]
49 10 C2H2, 90 C2H4,
C2H2 + C2H4:H2 = 1:3, bal. N2
110 and 120 7.800 and 14.600 mL·g–1·h–1 (N) Gr, (P) Gr, (S) Gr, rGO, GO Gr Pyrolysis hummers oxidation, hydrothermal reduction 99 91.6 [88]
50 0.5 C2H2, 50 C2H4, 5 H2, bal. He 30–120 Pd@H-Zn/Co-ZIF
Pd@S-Zn/Co-ZIF
PdNPs/C
>80 >80 [89]
51 1 C2H2, 10 H2, bal. Ar 180–240 0.1 36000 mL·g–1·h–1 MoP Hydrogen reduction >99 73 [90]
52 0.01–0.294 C2H2, 39.5 C2H4, 0.76 H2, bal. He 80 34 mL·min–1 Pd/SiO2 Ion exchange N.A. ca. 80 [91]
53 Pd/α-Al2O3
Pd/γ-Al2O3
Wet impregnation N.A. N.A. [92]
54 1.2 C2H2, 93 C2H4, 2.4 H2, bal. N2
H2:C2H2 = 1. 1.2, 1.3
90–180 135 mL·min–1 Pd/MWCNT Incipient wetness impregnation 100 93 [45]
55 H2:C2H2 = 2, 45, 130 10–67 0.1 20–500 cm3·min–1 Pd/SiO2
Pd/Al2O3
Impregnation N.A. N.A. [33]
56 0.6 C2H2, 49.3 C2H4, 1.2 H2, bal. N2 60 40–180 mL·min–1 Pd(S)
Pd(C)
Incipient wetness impregnation 70 50 [93]
57 1 C2H2, 35.5 C2H4, 15 H2, bal. He and 0.3 C2H2, 0.44 H2, bal. C2H4 21.5, 34, 48 Pd/Al2O3
Pd/SiO2
PdCu/Al2O3
Deposition
co-impregnation
ca. 40 ca. 90 [94]
58 C2H2:H2 = 2:1, 2 C2H2 in C2H4 0.0073 Pd/Al2O3 Impregnation ca. 85 ca. 90 [95]
59 C2H2:C2H4:D2 = 9:1:40 302, 442, 502 0.0133 Pd/Al2O3 Deposition ca. 50 ca. 70 [30]
60 2 C2H2, 4 H2, bal. He
0.5 C2H2, 5 H2, 50 C2H4, bal. He
120 and 200 30 mL·min–1 PdGa, PdGa7,
Pd/Al2O3
Pd20Ag20
Milling, ammonia-assisted chemical etching ca. 80 ca. 84 [96]
61 1.42 C2H2, 1.71 H2, 15.47 C2H6, bal. C2H4 40 5400 h–1 Pd/TiO2 Incipient wetness impregnation ca. 40 ca. 93 [97]
62 1 C2H2, 20 C2H4, 20 H2, bal. He 40–240 60000 mL·g–1·h–1 PdAu/SiO2
Au/SiO2
Pd/SiO2
Incipient wetness co-impregnation 85.9 56.4 [98]
63 1 C2H2, 20 C2H4, 20 H2, bal. He 40–400 60000 mL·g–1·h–1 PdAg/SiO2 Incipient wetness co-impregnation 93 80 [99]
64 1 C2H2, 1 C2H4, 2 H2, 96 Ar 25 0.1 0–20 L·h–1 Pd/C Impregnation 50 76 [100]
65 H2:C2H2 = 9:1 100 and 160 0.006–0.06 30 cm3·min–1 Pt/Naβ-Al2O3 Deposition by sputtering ca. 84 ca. 80 [101]
66 0.351 C2H2, 0.697 H2, 30.5 C2H4, 66.7 N2 170 0.1 6000 h–1 Pd-IL/Al2O3 Incipient impregnation 100 ca. 90 [102]
67 C2H2 0.58, C2H4 57.33, C2H6 10.24, C3H6 0.12, H2 30.45, CO 1.28 (mol%) 30–110 1.6 133 cm3·min–1 Pd/Al2O3
Ag/Al2O3
PdAg/Al2O3
Impregnation ca. 100 ca. 100 [103]
Tab.1  Parameters of the selective hydrogenation of acetylene reported in the literature
Fig.3  Structure of PdZn intermetallic nanoparticle. (a) Unit cell (in Å) of 1:1 PdZn L10 type alloy; surfaces of (b) PdZn (100) with 1:1 stoichiometric ratio and (c) PdZn (111); slab layer models for (d) PdZn (100) and (e) PdZn (111). The neighboring Pd–Pd pair is the nearest neighbor; for example, on the PdZn (100) surface, Pd1 (blue) is neighboring with two Pd2 units underneath (green); on the PdZn (111) surface, Pd (blue) is neighboring with two surface Pd atoms and one Pd atom underneath (green). Reprinted with permission from ref. [8], copyright 2016, American Chemical Society.
Item PdZn (100) PdZn (111) Pd (111)
top- bridge- top- bridge- top- bridge-
ΔEad/(kJ·mol–1) –97 –91 –86 –91 –128 –190
vCO/cm–1 2069 1909 2059 1905 2078 1810
Tab.2  Vibrational frequency of CO and the adsorption energies on the PdZn (100), PdZn (111), and Pd (111) surfaces a)
Fig.4  Acetylene conversion and selectivity with (a) 10 mg Pd/ZnO and (b) 2.8 mg Pd/Al2O3. Reacting gas composition comprises 2 vol% acetylene and 20 vol% hydrogen (balance in He) with a flow rate of 30 mL·min–1. Reprinted with permission from ref. [8], copyright 2016, American Chemical Society.
Fig.5  (a) Ethene selectivity as a function of reaction temperature and (b) acetylene conversion using different catalysts, where I= Pd/MgO–Al2O3, II= Pd–Ga (2:1)/MgO–Al2O3, and III= Pd–Ga (1:5)/MgO–Al2O3 at a relative pressure of 0.05 MPa, GHSV of 10056 h–1, 33.2% C2H4/C2H2 mixed gases (containing 0.951% acetylene in ethene), 0.6% H2, and 66.2% N2. Reprinted with permission from ref. [4], copyright 2001, Elsevier.
Fig.6  TPR profiles of (a) 10% Cu/Al2O3 and (b) 1.67% Pd/Al2O3. Reprinted with permission from ref. [64], copyright 2014, Elsevier.
Fig.7  Fourier transform infrared spectra of reduced CuPd bimetallic catalysts after exposure to CO at 298 K at increasing pressures. (a) 10-CuPd; (b) 25-CuPd; (c) 50-CuPd; (d) 100-CuPd. Reprinted with permission from ref. [64], copyright 2014, Elsevier.
Fig.8  Promotion of selectivity by the addition of Sn to Pd in different molar ratios and at various temperatures (all catalysts contain 0.1 wt% Pd). Reprinted with permission from ref. [11], copyright 2012, Elsevier.
Fig.9  Preparation of supported L-PdNi/MMO catalyst. Reprinted with permission from ref. [21], copyright 2015, Elsevier.
Fig.10  Ethene selectivity as a function of reaction temperature. Reprinted with permission from ref. [21], copyright 2015, Elsevier.
Fig.11  Radar plot of the rate with key theoretical indicators including the adsorption energy of the alkyne (Eads(C2H2)) and activation energy for H2 dissociation (Ea(H2)) for activity, alkene adsorption energy (Eads(C2H4)) and ensemble area (Aensemble) for selectivity, and segregation energy (Eseg) for stability. Values closest to the perimeter lead to enhanced properties. Blue shaded area connects the optimal values reported till date for the Pd3S system. Reprinted with permission from ref. [122], copyright 2018, Nature.
Fig.12  (a) Acetylene conversion and (b) ethene selectivity as a function of reaction temperature. Reprinted with permission from ref. [54], copyright 2018, Elsevier.
Fig.13  (a) Conversion and (b) selectivity as a function of reaction temperature. Reprinted with permission from ref. [59], copyright 2018, American Chemical Society.
1 K Barazandeh, O Dehghani, M Hamidi, E Aryafard, M R Rahimpour. Investigation of coil outlet temperature effect on the performance of naphtha cracking furnace. Chemical Engineering Research & Design, 2015, 94(14): 307–316
https://doi.org/10.1016/j.cherd.2014.08.010
2 O Dehghani, M R Rahimpour, A Shariati. An experimental approach on industrial Pd-Ag supported α-Al2O3 catalyst used in acetylene hydrogenation process: mechanism, kinetic and catalyst decay. Processes (Basel, Switzerland), 2019, 7(3): 136–157
https://doi.org/10.3390/pr7030136
3 A D Benavidez, P D Burton, J L Nogales, A R Jenkins, S A Ivanov, J T Miller, A M Karim, A K Datye. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Applied Catalysis A, General, 2014, 482: 108–115
https://doi.org/10.1016/j.apcata.2014.05.027
4 Y He, L Liang, Y Liu, J Feng, C Ma, D Li. Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd-Ga/MgO-Al2O3 catalyst. Journal of Catalysis, 2014, 309: 166–173
https://doi.org/10.1016/j.jcat.2013.09.017
5 Á Molnár, A Sárkány, M Varga. Hydrogenation of carbon-carbon multiple bonds: chemo-, regio- and stereo-selectivity. Journal of Molecular Catalysis A Chemical, 2001, 173(1–2): 185–221
https://doi.org/10.1016/S1381-1169(01)00150-9
6 C Urmès, J M Schweitzer, A Cabiac, Y Schuurman. Kinetic study of the selective hydrogenation of acetylene over supported palladium under tail-end conditions. Catalysts, 2019, 9(2): 180–192
https://doi.org/10.3390/catal9020180
7 A J McCue, J A Anderson. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9(2): 142–153
https://doi.org/10.1007/s11705-015-1516-4
8 H Zhou, X Yang, L Li, X Liu, Y Huang, X Pan, A Wang, J Li, T Zhang. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catalysis, 2016, 6(2): 1054–1061
https://doi.org/10.1021/acscatal.5b01933
9 Y Liu, A J McCue, C Miao, J Feng, D Li, J A Anderson. Palladium phosphide nanoparticles as highly selective catalysts for the selective hydrogenation of acetylene. Journal of Catalysis, 2018, 364: 406–414
https://doi.org/10.1016/j.jcat.2018.06.001
10 C A Gärtner, A C van Veen, J A Lercher. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem, 2013, 5(11): 3196–3217
https://doi.org/10.1002/cctc.201200966
11 E Esmaeili, Y Mortazavi, A A Khodadadi, A M Rashidi, M Rashidzadeh. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene. Applied Surface Science, 2012, 263: 513–522
https://doi.org/10.1016/j.apsusc.2012.09.095
12 M T Ravanchi, S Sahebdelfar, S Komeili. Acetylene selective hydrogenation: a technical review on catalytic aspects. Reviews in Chemical Engineering, 2018, 34(2): 215–237
https://doi.org/10.1515/revce-2016-0036
13 O B Ayodele, R Cai, J Wang, Y Ziouani, Z Liang, M Chiara Spadaro, K Kovnir, J Arbiol, J Akola, R Palmer, et al.. Synergistic computational-experimental discovery of highly selective PtCu nanocluster catalysts for acetylene semihydrogenation. ACS Catalysis, 2019, 10(1): 451–457
https://doi.org/10.1021/acscatal.9b03539
14 S Zhang, C Y Chen, B W L Jang, A M Zhu. Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catalysis Today, 2015, 256: 161–169
https://doi.org/10.1016/j.cattod.2015.04.002
15 Y K Gulyaeva, V V Kaichev, V I Zaikovskii, E V Kovalyov, A P Suknev, B S Bal’zhinimaev. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catalysis Today, 2015, 245: 139–146
https://doi.org/10.1016/j.cattod.2014.05.028
16 S Komeili, M Takht Ravanchi, M Rahimi Fard, A Taeb. Effect of Ni-modified alpha alumina on the textural properties as a catalyst support. In 8th International Chemical Engineering Congress (IChEC 2014), Kish Island, Iran. 2014
17 F McKenna, L Mantarosie, R Wells, C Hardacre, J Anderson. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catalysis Science & Technology, 2012, 2(3): 632–638
https://doi.org/10.1039/c2cy00479h
18 B Yang, R Burch, C Hardacre, G Headdock, P Hu. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study. Journal of Catalysis, 2013, 305: 264–276
https://doi.org/10.1016/j.jcat.2013.05.027
19 M Hu, X Wang. Effect of N3– species on selective acetylene hydrogenation over Pd/SAC catalysts. Catalysis Today, 2016, 263: 98–104
https://doi.org/10.1016/j.cattod.2015.06.021
20 M Crespo-Quesada, S Yoon, M Jin, A Prestianni, R Cortese, F Cárdenas-Lizana, D Duca, A Weidenkaff, L Kiwi-Minsker. Shape-dependence of Pd nanocrystal carburization during acetylene hydrogenation. Journal of Physical Chemistry C, 2015, 119(2): 1101–1107
https://doi.org/10.1021/jp510347r
21 Q Jin, Y He, M Miao, C Guan, Y Du, J Feng, D Li. Highly selective and stable PdNi catalyst derived from layered double hydroxides for partial hydrogenation of acetylene. Applied Catalysis A, General, 2015, 500: 3–11
https://doi.org/10.1016/j.apcata.2015.04.035
22 W J Kim, S H Moon. Modified Pd catalysts for the selective hydrogenation of acetylene. Catalysis Today, 2012, 185(1): 2–16
https://doi.org/10.1016/j.cattod.2011.09.037
23 Y Jin, A K Datye, E Rightor, R Gulotty, W Waterman, M Smith, M Holbrook, J Maj, J Blackson. The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene. Journal of Catalysis, 2001, 203(2): 292–306
https://doi.org/10.1006/jcat.2001.3347
24 D Mei, P A Sheth, M Neurock, C M Smith. First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd (111). Journal of Catalysis, 2006, 242(1): 1–15
https://doi.org/10.1016/j.jcat.2006.05.009
25 A Borodziński, G C Bond. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews, 2006, 48(02): 91–144
https://doi.org/10.1080/01614940500364909
26 M Tejeda-Serrano, M Mon, B Ross, F Gonell, J Ferrando-Soria, A Corma, A Leyva-Pérez, D Armentano, E Pardo. Isolated Fe(III)-O sites catalyze the hydrogenation of acetylene in ethylene flows under front-end industrial conditions. Journal of the American Chemical Society, 2018, 140(28): 8827–8832
https://doi.org/10.1021/jacs.8b04669
27 D Albani, M Shahrokhi, Z Chen, S Mitchell, R Hauert, N López, J Pérez-Ramírez. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 2018, 9(1): 2634–2644
https://doi.org/10.1038/s41467-018-05052-4
28 Y He, Y Liu, P Yang, Y Du, J Feng, X Cao, J Yang, D Li. Fabrication of a PdAg mesocrystal catalyst for the partial hydrogenation of acetylene. Journal of Catalysis, 2015, 330: 61–70
https://doi.org/10.1016/j.jcat.2015.06.017
29 A Borodziński, G C Bond. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catalysis Reviews, 2008, 50(3): 379–469
https://doi.org/10.1080/01614940802142102
30 J M Moses, A H Weiss, K Matusek, L Guczi. The effect of catalyst treatment on the selective hydrogenation of acetylene over palladium/alumina. Journal of Catalysis, 1984, 86(2): 417–426
https://doi.org/10.1016/0021-9517(84)90387-7
31 A Backman, R Masel. An electron energy-loss spectroscopy study analysis of the surface species formed during ethylene hydrogenation on Pt (111). Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1991, 9(3): 1789–1792
https://doi.org/10.1116/1.577463
32 E W Shin, J H Kang, W J Kim, J D Park, S H Moon. Performance of Si-modified Pd catalyst in acetylene hydrogenation: the origin of the ethylene selectivity improvement. Applied Catalysis A, General, 2002, 223(1–2): 161–172
https://doi.org/10.1016/S0926-860X(01)00758-X
33 D Duca, F Frusteri, A Parmaliana, G Deganello. Selective hydrogenation of acetylene in ethylene feedstocks on Pd catalysts. Applied Catalysis A, General, 1996, 146(2): 269–284
https://doi.org/10.1016/S0926-860X(96)00145-7
34 D Duca, F Arena, A Parmaliana, G Deganello. Hydrogenation of acetylene in ethylene rich feedstocks: comparison between palladium catalysts supported on pumice and alumina. Applied Catalysis A, General, 1998, 172(2): 207–216
https://doi.org/10.1016/S0926-860X(98)00123-9
35 M Larsson, J Jansson, S Asplund. Incorporation of deuterium in coke formed on an acetylene hydrogenation catalyst. Journal of Catalysis, 1996, 162(2): 365–367
https://doi.org/10.1006/jcat.1996.0295
36 M Larsson, J Jansson, S Asplund. The role of coke in acetylene hydrogenation on Pd/α-Al2O3. Journal of Catalysis, 1998, 178(1): 49–57
https://doi.org/10.1006/jcat.1998.2128
37 Y H Park, G L Price. Temperature-programmed-reaction study on the effect of carbon monoxide on the acetylene reaction over palladium/alumina. Industrial & Engineering Chemistry Research, 1991, 30(8): 1700–1707
https://doi.org/10.1021/ie00056a004
38 Y H Park, G L Price. Deuterium tracer study on the effect of carbon monoxide on the selective hydrogenation of acetylene over palladium/alumina. Industrial & Engineering Chemistry Research, 1991, 30(8): 1693–1699
https://doi.org/10.1021/ie00056a003
39 P A Sheth, M Neurock, C M Smith. A first-principles analysis of acetylene hydrogenation over Pd (111). Journal of Physical Chemistry B, 2003, 107(9): 2009–2017
https://doi.org/10.1021/jp021342p
40 A Borodziński, A Cybulski. The kinetic model of hydrogenation of acetylene-ethylene mixtures over palladium surface covered by carbonaceous deposits. Applied Catalysis A, General, 2000, 198(1–2): 51–66
https://doi.org/10.1016/S0926-860X(99)00498-6
41 M Rose, T Mitsui, J Dunphy, A Borg, D Ogletree, M Salmeron, P Sautet. Ordered structures of CO on Pd (111) studied by STM. Surface Science, 2002, 512(1–2): 48–60
https://doi.org/10.1016/S0039-6028(02)01560-1
42 Y He, J Fan, J Feng, C Luo, P Yang, D Li. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: effect of support acidic and basic properties. Journal of Catalysis, 2015, 331: 118–127
https://doi.org/10.1016/j.jcat.2015.08.012
43 Y Cao, Z Sui, Y Zhu, X Zhou, D Chen. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: promotional effect of indium and composition-dependent performance. ACS Catalysis, 2017, 7(11): 7835–7846
https://doi.org/10.1021/acscatal.7b01745
44 D L Trimm, I O Liu, N W Cant. The effect of carbon monoxide on the oligomerization of acetylene in hydrogen over a Ni/SiO2 catalyst. Journal of Molecular Catalysis A Chemical, 2009, 307(1–2): 13–20
https://doi.org/10.1016/j.molcata.2009.03.004
45 H Bazzazzadegan, M Kazemeini, A Rashidi. A high performance multi-walled carbon nanotube-supported palladium catalyst in selective hydrogenation of acetylene-ethylene mixtures. Applied Catalysis A, General, 2011, 399(1–2): 184–190
https://doi.org/10.1016/j.apcata.2011.03.055
46 A Sarkany, A Horvath, A Beck. Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Applied Catalysis A, General, 2002, 229(1–2): 117–125
https://doi.org/10.1016/S0926-860X(02)00020-0
47 R Imbihl, R Behm, R Schlögl. Bridging the pressure and material gap in heterogeneous catalysis. Physical Chemistry Chemical Physics, 2007, 9(27): 3459–3459
https://doi.org/10.1039/b706675a
48 H Molero, B Bartlett, W Tysoe. The hydrogenation of acetylene catalyzed by palladium: hydrogen pressure dependence. Journal of Catalysis, 1999, 181(1): 49–56
https://doi.org/10.1006/jcat.1998.2294
49 Y Inoue, I Yasumori. Pressure jump and isotope replacement studies of acetylene hydrogenation on palladium surface. Journal of Physical Chemistry, 1971, 75(7): 880–887
https://doi.org/10.1021/j100677a006
50 S Riyapan, Y Zhang, A Wongkaew, B Pongthawornsakun, J R Monnier, J Panpranot. Preparation of improved Ag-Pd/TiO2 catalysts using the combined strong electrostatic adsorption and electroless deposition methods for the selective hydrogenation of acetylene. Catalysis Science & Technology, 2016, 6(14): 5608–5617
https://doi.org/10.1039/C6CY00121A
51 S F Parker, H C Walker, S K Callear, E Grünewald, T Petzold, D Wolf, K Möbus, J Adam, S D Wieland, M Jiménez-Ruiz, et al.. The effect of particle size, morphology and support on the formation of palladium hydride in commercial catalysts. Chemical Science (Cambridge), 2019, 10(2): 480–489
https://doi.org/10.1039/C8SC03766C
52 D Torres, F Cinquini, P Sautet. Pressure and temperature effects on the formation of a Pd/C surface carbide: insights into the role of Pd/C as a selective catalytic state for the partial hydrogenation of acetylene. Journal of Physical Chemistry C, 2013, 117(21): 11059–11065
https://doi.org/10.1021/jp400059m
53 Z Guo, Q Huang, S Luo, W Chu. Atmospheric discharge plasma enhanced preparation of Pd/TiO2 catalysts for acetylene selective hydrogenation. Topics in Catalysis, 2017, 60(12–14): 1009–1015
https://doi.org/10.1007/s11244-017-0766-4
54 Z Guo, Y Liu, Y Liu, W Chu. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene. Applied Surface Science, 2018, 442: 736–741
https://doi.org/10.1016/j.apsusc.2018.02.145
55 J Hong, W Chu, M Chen, X Wang, T Zhang. Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene. Catalysis Communications, 2007, 8(3): 593–597
https://doi.org/10.1016/j.catcom.2006.08.010
56 C Gigola, H Aduriz, P Bodnariuk. Particle size effect in the hydrogenation of acetylene under industrial conditions. Applied Catalysis, 1986, 27(1): 133–144
https://doi.org/10.1016/S0166-9834(00)81052-0
57 Y Han, D Peng, Z Xu, H Wan, S Zheng, D Zhu. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chemical Communications, 2013, 49(75): 8350–8352
https://doi.org/10.1039/c3cc43511c
58 A Den Hartog, M Deng, F Jongerius, V Ponec. Hydrogenation of acetylene over various group VIII metals: effect of particle size and carbonaceous deposits. Journal of Molecular Catalysis, 1990, 60(1): 99–108
https://doi.org/10.1016/0304-5102(90)85071-O
59 F Huang, Y Deng, Y Chen, X Cai, M Peng, Z Jia, P Ren, D Xiao, X Wen, N Wang, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. Journal of the American Chemical Society, 2018, 140(41): 13142–13146
https://doi.org/10.1021/jacs.8b07476
60 M Armbrüster, K Kovnir, M Behrens, D Teschner, Y Grin, R Schlögl. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. Journal of the American Chemical Society, 2010, 132(42): 14745–14747
https://doi.org/10.1021/ja106568t
61 S Zhou, L Shang, Y Zhao, R Shi, G I Waterhouse, Y C Huang, L Zheng, T Zhang. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Advanced Materials, 2019, 31(18): 1900509–1900515
https://doi.org/10.1002/adma.201900509
62 Y Cao, W Fu, Z Sui, X Duan, D Chen, X Zhou. Kinetics insights and active sites discrimination of Pd-catalyzed selective hydrogenation of acetylene. Industrial & Engineering Chemistry Research, 2019, 58(5): 1888–1895
https://doi.org/10.1021/acs.iecr.8b05687
63 S Komhom, O Mekasuwandumrong, P Praserthdam, J Panpranot. Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catalysis Communications, 2008, 10(1): 86–91
https://doi.org/10.1016/j.catcom.2008.07.039
64 A J McCue, C J McRitchie, A M Shepherd, J A Anderson. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135
https://doi.org/10.1016/j.jcat.2014.08.016
65 A J McCue, A M Shepherd, J A Anderson. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890
https://doi.org/10.1039/C5CY00253B
66 F Meunier, M Maffre, Y Schuurman, S Colussi, A Trovarelli. Acetylene semi-hydrogenation over Pd-Zn/CeO2: relevance of CO adsorption and methanation as descriptors of selectivity. Catalysis Communications, 2018, 105: 52–55
https://doi.org/10.1016/j.catcom.2017.11.012
67 D Albani, M Capdevila-Cortada, G Vilé, S Mitchell, O Martin, N López, J Pérez-Ramírez. Semihydrogenation of acetylene on indium oxide: proposed single-ensemble catalysis. Angewandte Chemie International Edition, 2017, 56(36): 10755–10760
https://doi.org/10.1002/anie.201704999
68 M Kuhn, M Lucas, P Claus. Long-time stability vs deactivation of Pd-Ag/Al2O3 egg-shell catalysts in selective hydrogenation of acetylene. Industrial & Engineering Chemistry Research, 2015, 54(26): 6683–6691
https://doi.org/10.1021/acs.iecr.5b01682
69 Y Azizi, C Petit, V Pitchon. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. Journal of Catalysis, 2008, 256(2): 338–344
https://doi.org/10.1016/j.jcat.2008.04.003
70 J Jia, K Haraki, J N Kondo, K Domen, K Tamaru. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. Journal of Physical Chemistry B, 2000, 104(47): 11153–11156
https://doi.org/10.1021/jp001213d
71 S Kameoka, M Krajčí, A P Tsai. Highly selective semi-hydrogenation of acetylene over porous gold with twin boundary defects. Applied Catalysis A, General, 2019, 569: 101–109
https://doi.org/10.1016/j.apcata.2018.10.027
72 J W Lee, X Liu, C Y Mou. Selective hydrogenation of acetylene over SBA-15 supported Au-Cu bimetallic catalysts. Journal of the Chinese Chemical Society (Taipei), 2013, 60(7): 907–914
https://doi.org/10.1002/jccs.201300160
73 X Liu, C Y Mou, S Lee, Y Li, J Secrest, B W L Jang. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene. Journal of Catalysis, 2012, 285(1): 152–159
https://doi.org/10.1016/j.jcat.2011.09.025
74 S Peng, X Sun, L Sun, M Zhang, Y Zheng, H Su, C Qi. Selective Hydrogenation of acetylene over gold nanoparticles supported on CeO2 pretreated under different atmospheres. Catalysis Letters, 2019, 149(2): 465–472
https://doi.org/10.1007/s10562-018-2628-5
75 B Pongthawornsakun, O Mekasuwandumrong, F J C S Aires, R Büchel, A Baiker, S E Pratsinis, J Panpranot. Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au-Pd-TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Applied Catalysis A, General, 2018, 549: 1–7
https://doi.org/10.1016/j.apcata.2017.09.014
76 Y Zhang, W Diao, C T Williams, J R Monnier. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426
https://doi.org/10.1016/j.apcata.2013.10.024
77 J Rodríguez, A Marchi, A Borgna, A Monzón. Effect of Zn content on catalytic activity and physicochemical properties of Ni-based catalysts for selective hydrogenation of acetylene. Journal of Catalysis, 1997, 171(1): 268–278
https://doi.org/10.1006/jcat.1997.1815
78 Y Chen, J Chen. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: promotional effect of In. Applied Surface Science, 2016, 387: 16–27
https://doi.org/10.1016/j.apsusc.2016.06.067
79 C Riley, A De La Riva, S Zhou, Q Wan, E Peterson, K Artyushkova, M D Farahani, H B Friedrich, L Burkemper, N V Atudorei, et al.. Synthesis of nickel-doped ceria catalysts for selective acetylene hydrogenation. ChemCatChem, 2019, 11(5): 1526–1533
https://doi.org/10.1002/cctc.201801976
80 G X Pei, X Y Liu, A Wang, Y Su, L Li, T Zhang. Selective hydrogenation of acetylene in an ethylene-rich stream over silica supported Ag-Ni bimetallic catalysts. Applied Catalysis A, General, 2017, 545: 90–96
https://doi.org/10.1016/j.apcata.2017.07.041
81 D L Trimm, I O Liu, N W Cant. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Applied Catalysis A, General, 2010, 374(1–2): 58–64
https://doi.org/10.1016/j.apcata.2009.11.030
82 L Wang, F Li, Y Chen, J Chen. Selective hydrogenation of acetylene on SiO2-supported Ni-Ga alloy and intermetallic compound. Journal of Energy Chemistry, 2019, 29: 40–49
https://doi.org/10.1016/j.jechem.2018.02.001
83 O Matselko, R R Zimmermann, A Ormeci, U Burkhardt, R Gladyshevskii, Y Grin, M Armbrüster. Revealing electronic influences in the semihydrogenation of acetylene. Journal of Physical Chemistry C, 2018, 122(38): 21891–21896
https://doi.org/10.1021/acs.jpcc.8b05732
84 D Köhler, M Heise, A I Baranov, Y Luo, D Geiger, M Ruck, M Armbrüster. Synthesis of BiRh nanoplates with superior catalytic performance in the semihydrogenation of acetylene. Chemistry of Materials, 2012, 24(9): 1639–1644
https://doi.org/10.1021/cm300518j
85 M Hu, J Zhang, W Zhu, Z Chen, X Gao, X Du, J Wan, K Zhou, C Chen, Y Li. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11(2): 905–912
https://doi.org/10.1007/s12274-017-1701-5
86 M Hu, S Zhao, S Liu, C Chen, W Chen, W Zhu, C Liang, W C Cheong, Y Wang, Y Yu, et al.. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Advanced Materials, 2018, 30(33): 1801878–1801884
https://doi.org/10.1002/adma.201801878
87 M Hu, W Yang, S Liu, W Zhu, Y Li, B Hu, Z Chen, R Shen, W C Cheong, Y Wang, et al.. Topological self-template directed synthesis of multi-shelled intermetallic Ni3Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science (Cambridge), 2019, 10(2): 614–619
https://doi.org/10.1039/C8SC03178A
88 A Primo, F Neatu, M Florea, V Parvulescu, H Garcia. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 2014, 5(1): 1–9
https://doi.org/10.1038/ncomms6291
89 J Yang, F Zhang, H Lu, X Hong, H Jiang, Y Wu, Y Li. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angewandte Chemie International Edition, 2015, 54(37): 10889–10893
https://doi.org/10.1002/anie.201504242
90 Z Guilin, W Puguang, Z Jiang, Y Pinliang, L Can. Selective hydrogenation of acetylene over a MoP catalyst. Chinese Journal of Catalysis, 2011, 32(1–2): 27–30
91 A Borodziński. The effect of palladium particle size on the kinetics of hydrogenation of acetylene-ethylene mixtures over Pd/SiO2 catalysts. Catalysis Letters, 2001, 71(3–4): 169–175
https://doi.org/10.1023/A:1009061916463
92 S Asplund. Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation. Journal of Catalysis, 1996, 158(1): 267–278
https://doi.org/10.1006/jcat.1996.0026
93 S K Kim, C Kim, J H Lee, J Kim, H Lee, S H Moon. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306: 146–154
https://doi.org/10.1016/j.jcat.2013.06.018
94 S Leviness, V Nair, A H Weiss, Z Schay, L Guczi. Acetylene hydrogenation selectivity control on PdCu/Al2O3 catalysts. Journal of Molecular Catalysis, 1984, 25(1–3): 131–140
https://doi.org/10.1016/0304-5102(84)80037-1
95 W T McGown, C Kemball, D A Whan, M S Scurrell. Hydrogenation of acetylene in excess ethylene on an alumina supported palladium catalyst in a static system. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1977, 73: 632–647
96 J Osswald, K Kovnir, M Armbrüster, R Giedigkeit, R E Jentoft, U Wild, Y Grin, R Schlögl. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258(1): 219–227
https://doi.org/10.1016/j.jcat.2008.06.014
97 J Panpranot, K Kontapakdee, P Praserthdam. Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation. Journal of Physical Chemistry B, 2006, 110(15): 8019–8024
https://doi.org/10.1021/jp057395z
98 G X Pei, X Y Liu, A Wang, L Li, Y Huang, T Zhang, J W Lee, B W Jang, C Y Mou. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38(5): 2043–2051
https://doi.org/10.1039/c3nj01136d
99 G X Pei, X Y Liu, A Wang, A F Lee, M A Isaacs, L Li, X Pan, X Yang, X Wang, Z Tai, et al.. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catalysis, 2015, 5(6): 3717–3725
https://doi.org/10.1021/acscatal.5b00700
100 Y A Ryndin, M Stenin, A Boronin, V Bukhtiyarov, V Zaikovskii. Effect of Pd/C dispersion on its catalytic properties in acetylene and vinylacetylene hydrogenation. Applied Catalysis, 1989, 54(1): 277–288
https://doi.org/10.1016/S0166-9834(00)82370-2
101 S Tracey, A Palermo, J P H Vazquez, R M Lambert. In situ electrochemical promotion by sodium of the selective hydrogenation of acetylene over platinum. Journal of Catalysis, 1998, 179(1): 231–240
https://doi.org/10.1006/jcat.1998.2179
102 Y Xu, Y Jiang, H Xu, Q Wang, W Huang, H He, Y Zhai, S Di, L Guo, X Xu, et al.. Highly selectivity catalytic hydrogenation of acetylene on Al2O3 supported palladium-imidazolium based ionic liquid phase. Applied Catalysis A, General, 2018, 567: 12–19
https://doi.org/10.1016/j.apcata.2018.09.002
103 Q Zhang, J Li, X Liu, Q Zhu. Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Applied Catalysis A, General, 2000, 197(2): 221–228
https://doi.org/10.1016/S0926-860X(99)00463-9
104 G C Bond. Supported metal catalysts: some unsolved problems. Chemical Society Reviews, 1991, 20(4): 441–475
https://doi.org/10.1039/cs9912000441
105 A L Bugaev, A A Guda, A Lazzarini, K A Lomachenko, E Groppo, R Pellegrini, A Piovano, H Emerich, A V Soldatov, L A Bugaev, et al.. In situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD. Catalysis Today, 2017, 283: 119–126
https://doi.org/10.1016/j.cattod.2016.02.065
106 G Vilé, J Pérez-Ramírez. Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale, 2014, 6(22): 13476–13482
https://doi.org/10.1039/C4NR02777A
107 Y Luo, S Alarcón Villaseca, M Friedrich, D Teschner, A Knop-Gericke, M Armbrüster. Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga-Pd compounds. Journal of Catalysis, 2016, 338: 265–272
https://doi.org/10.1016/j.jcat.2016.03.025
108 E Vignola, S N Steinmann, K Le Mapihan, B D Vandegehuchte, D Curulla, P Sautet. Acetylene adsorption on Pd-Ag alloys: evidence for limited island formation and strong reverse segregation from Monte Carlo simulations. Journal of Physical Chemistry C, 2018, 122(27): 15456–15463
https://doi.org/10.1021/acs.jpcc.8b04108
109 Q Feng, S Zhao, Y Wang, J Dong, W Chen, D He, D Wang, J Yang, Y Zhu, H Zhu, et al.. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. Journal of the American Chemical Society, 2017, 139(21): 7294–7301
https://doi.org/10.1021/jacs.7b01471
110 W Menezes, L Altmann, V Zielasek, K Thiel, M Bäumer. Bimetallic Co-Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 300: 125–135
https://doi.org/10.1016/j.jcat.2012.12.023
111 N A Khan, S Shaikhutdinov, H J Freund. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108(3–4): 159–164
https://doi.org/10.1007/s10562-006-0041-y
112 N López, C Vargas-Fuentes. Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory. Chemical Communications, 2012, 48(10): 1379–1391
https://doi.org/10.1039/C1CC14922A
113 M Krajčí, J Hafner. Selective semi-hydrogenation of acetylene: atomistic scenario for reactions on the polar threefold surfaces of GaPd. Journal of Catalysis, 2014, 312: 232–248
https://doi.org/10.1016/j.jcat.2014.02.001
114 B Bridier, M A Hevia, N López, J Pérez-Ramírez. Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply. Journal of Catalysis, 2011, 278(1): 167–172
https://doi.org/10.1016/j.jcat.2010.11.024
115 N Cherkasov, A O Ibhadon, A J McCue, J A Anderson, S K Johnston. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A, General, 2015, 497: 22–30
https://doi.org/10.1016/j.apcata.2015.02.038
116 C M Kruppe, J D Krooswyk, M Trenary. Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu (111) single-atom alloy. ACS Catalysis, 2017, 7(12): 8042–8049
https://doi.org/10.1021/acscatal.7b02862
117 P Miegge, J Rousset, B Tardy, J Massardier, J Bertolini. Pd1Ni99 and Pd5Ni95: Pd surface segregation and reactivity for the hydrogenation of 1,3-butadiene. Journal of Catalysis, 1994, 149(2): 404–413
https://doi.org/10.1006/jcat.1994.1307
118 Y Long, J Li, L Wu, Q Wang, Y Liu, X Wang, S Song, H Zhang. Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. Nano Research, 2019, 12(4): 869–875
https://doi.org/10.1007/s12274-018-2315-x
119 K Choe, F Zheng, H Wang, Y Yuan, W Zhao, G Xue, X Qiu, M Ri, X Shi, Y Wang, et al.. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angewandte Chemie, 2020, 132(9): 3679–3686
https://doi.org/10.1002/ange.201913453
120 H Lorenz, Q Zhao, S Turner, O I Lebedev, G Van Tendeloo, B Klötzer, C Rameshan, K Pfaller, J Konzett, S Penner. Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: a comparative study. Applied Catalysis A, General, 2010, 381(1–2): 242–252
https://doi.org/10.1016/j.apcata.2010.04.015
121 Y Cao, H Zhang, S Ji, Z Sui, Z Jiang, D Wang, F Zaera, X Zhou, X Duan, Y Li. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angewandte Chemie, 2020, 132(28): 11744–11749
https://doi.org/10.1002/ange.202004966
122 D Albani, M Shahrokhi, Z Chen, S Mitchell, R Hauert, N López, J Pérez-Ramírez. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 2018, 9(1): 1–11
https://doi.org/10.1038/s41467-018-05052-4
123 Y Liang, Q Liu, A M Asiri, X Sun, Y Luo. Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catalysis, 2014, 4(11): 4065–4069
https://doi.org/10.1021/cs501106g
124 Z Xing, Q Liu, A M Asiri, X Sun. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catalysis, 2014, 5(1): 145–149
https://doi.org/10.1021/cs5014943
125 L Shao, W Zhang, M Armbrüster, D Teschner, F Girgsdies, B Zhang, O Timpe, M Friedrich, R Schlögl, D S Su. Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10231–10235
https://doi.org/10.1002/anie.201008013
126 P Fang, Z J Tang, J H Huang, C P Cen, Z X Tang, X B Chen. Using sewage sludge as a denitration agent and secondary fuel in a cement plant: a case study. Fuel Processing Technology, 2015, 137: 1–7
https://doi.org/10.1016/j.fuproc.2015.03.014
127 M Bauer, R Schoch, L Shao, B Zhang, A Knop-Gericke, M Willinger, R Schlögl, D Teschner. Structure-activity studies on highly active palladium hydrogenation catalysts by X-ray absorption spectroscopy. Journal of Physical Chemistry C, 2012, 116(42): 22375–22385
https://doi.org/10.1021/jp306962v
128 A Bruix, J A Rodriguez, P J Ramírez, S D Senanayake, J Evans, J B Park, D Stacchiola, P Liu, J Hrbek, F Illas. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2 (111) and Pt/CeOx/TiO2 (110) catalysts. Journal of the American Chemical Society, 2012, 134(21): 8968–8974
https://doi.org/10.1021/ja302070k
129 J Zhao, H Chen, J Xu, J Shen. Effect of surface acidic and basic properties of the supported nickel catalysts on the hydrogenation of pyridine to piperidine. Journal of Physical Chemistry C, 2013, 117(20): 10573–10580
https://doi.org/10.1021/jp402238q
130 F Hoxha, B Schimmoeller, Z Cakl, A Urakawa, T Mallat, S E Pratsinis, A Baiker. Influence of support acid-base properties on the platinum-catalyzed enantioselective hydrogenation of activated ketones. Journal of Catalysis, 2010, 271(1): 115–124
https://doi.org/10.1016/j.jcat.2010.02.012
131 P D Burton, T J Boyle, A K Datye. Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280(2): 145–149
https://doi.org/10.1016/j.jcat.2011.03.022
132 D Teschner, J Borsodi, Z Kis, L Szentmiklósi, Z Révay, A Knop-Gericke, R Schlögl, D Torres, P Sautet. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. Journal of Physical Chemistry C, 2010, 114(5): 2293–2299
https://doi.org/10.1021/jp9103799
133 J Sa, G D Arteaga, R A Daley, J Bernardi, J A Anderson. Factors influencing hydride formation in a Pd/TiO2 catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095
https://doi.org/10.1021/jp062205l
134 M Wilde, K Fukutani, W Ludwig, B Brandt, J H Fischer, S Schauermann, H J Freund. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angewandte Chemie International Edition, 2008, 47(48): 9289–9293
https://doi.org/10.1002/anie.200801923
135 W Ludwig, A Savara, K H Dostert, S Schauermann. Olefin hydrogenation on Pd model supported catalysts: new mechanistic insights. Journal of Catalysis, 2011, 284(2): 148–156
https://doi.org/10.1016/j.jcat.2011.10.010
136 W Ludwig, A Savara, R J Madix, S Schauermann, H J Freund. Subsurface hydrogen diffusion into Pd nanoparticles: role of low-coordinated surface sites and facilitation by carbon. Journal of Physical Chemistry C, 2012, 116(5): 3539–3544
https://doi.org/10.1021/jp209033s
137 M W Tew, M Nachtegaal, M Janousch, T Huthwelker, J A van Bokhoven. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L 3 edge XAS. Physical Chemistry Chemical Physics, 2012, 14(16): 5761–5768
https://doi.org/10.1039/c2cp24068h
138 W Vogel, W He, Q H Huang, Z Zou, X G Zhang, H Yang. Palladium nanoparticles “breathe” hydrogen: a surgical view with X-ray diffraction. International Journal of Hydrogen Energy, 2010, 35(16): 8609–8620
https://doi.org/10.1016/j.ijhydene.2010.05.117
139 A Soldatov, S Della Longa, A Bianconi. Relevant role of hydrogen atoms in the XANES of Pd hydride: evidence of hydrogen induced unoccupied states. Solid State Communications, 1993, 85(10): 863–868
https://doi.org/10.1016/0038-1098(93)90193-Q
140 P D’Angelo, M Benfatto, S Della Longa, N Pavel. Combined XANES and EXAFS analysis of Co2+, Ni2+, and Zn2+ aqueous solutions. Physical Review. B, 2002, 66(6): 064209–064216
https://doi.org/10.1103/PhysRevB.66.064209
141 C P Balde, A E Mijovilovich, D C Koningsberger, A M van der Eerden, A D Smith, K P de Jong, J H Bitter. XAFS study of the Al K-edge in NaAlH4. Journal of Physical Chemistry C, 2007, 111(31): 11721–11725
https://doi.org/10.1021/jp068678+
142 L Mino, G Agostini, E Borfecchia, D Gianolio, A Piovano, E Gallo, C Lamberti. Low-dimensional systems investigated by X-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases. Journal of Physics. D, Applied Physics, 2013, 46(42): 423001–423074
https://doi.org/10.1088/0022-3727/46/42/423001
143 S Bordiga, E Groppo, G Agostini, J A van Bokhoven, C Lamberti. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850
https://doi.org/10.1021/cr2000898
144 J A van Bokhoven, C Lamberti. Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 2014, 277: 275–290
https://doi.org/10.1016/j.ccr.2014.05.013
145 S A Guda, A A Guda, M A Soldatov, K A Lomachenko, A L Bugaev, C Lamberti, W Gawelda, C Bressler, G Smolentsev, A V Soldatov, et al.. Optimized finite difference method for the full-potential XANES simulations: application to molecular adsorption geometries in MOFs and metal-ligand intersystem crossing transients. Journal of Chemical Theory and Computation, 2015, 11(9): 4512–4521
https://doi.org/10.1021/acs.jctc.5b00327
146 C Langhammer, V P Zhdanov, I Zorić, B Kasemo. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chemical Physics Letters, 2010, 488(1–3): 62–66
https://doi.org/10.1016/j.cplett.2010.01.071
147 A L Bugaev, A A Guda, K A Lomachenko, V V Srabionyan, L A Bugaev, A V Soldatov, C Lamberti, V P Dmitriev, J A van Bokhoven. Temperature- and pressure-dependent hydrogen concentration in supported PdHx nanoparticles by Pd K-edge X-ray absorption spectroscopy. Journal of Physical Chemistry C, 2014, 118(19): 10416–10423
https://doi.org/10.1021/jp500734p
148 A L Bugaev, V V Srabionyan, A V Soldatov, L A Bugaev, J A van Bokhoven. The role of hydrogen in formation of Pd XANES in Pd-nanoparticles. Journal of Physics: Conference Series, 2013, 430: 012028
149 M Yamauchi, R Ikeda, H Kitagawa, M Takata. Nanosize effects on hydrogen storage in palladium. Journal of Physical Chemistry C, 2008, 112(9): 3294–3299
https://doi.org/10.1021/jp710447j
150 A Shabaev, D Papaconstantopoulos, M Mehl, N Bernstein. First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system. Physical Review. B, 2010, 81(18): 184103–184112
https://doi.org/10.1103/PhysRevB.81.184103
151 T Shegai, C Langhammer. Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scatteringspectroscopy. Advanced Materials, 2011, 23(38): 4409–4414
https://doi.org/10.1002/adma.201101976
152 D Teschner, J Borsodi, A Wootsch, Z Révay, M Hävecker, A Knop-Gericke, S D Jackson, R Schlögl. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320(5872): 86–89
https://doi.org/10.1126/science.1155200
153 D Stacchiola, H Molero, W Tysoe. Palladium-catalyzed cyclotrimerization and hydrogenation: from ultrahigh vacuum to high-pressure catalysis. Catalysis Today, 2001, 65(1): 3–11
https://doi.org/10.1016/S0920-5861(00)00539-3
154 M García-Mota, B Bridier, J Pérez-Ramírez, N López. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273(2): 92–102
https://doi.org/10.1016/j.jcat.2010.04.018
155 D Narehood, S Kishore, H Goto, J H Adair, J Nelson, H Gutierrez, P Eklund. X-ray diffraction and H-storage in ultra-small palladium particles. International Journal of Hydrogen Energy, 2009, 34(2): 952–960
https://doi.org/10.1016/j.ijhydene.2008.10.080
156 A Borodziński, A Janko. Flow reactor for kinetic studies with simultaneous X-ray phase analysis of a catalyst. Reaction Kinetics and Catalysis Letters, 1977, 7(2): 163–169
https://doi.org/10.1007/BF02061833
157 A. Frackiewicz Hydrogenation of ethylene on thin films of palladium and palladium hydride. 1977
158 D Teschner, E Vass, M Hävecker, S Zafeiratos, P Schnörch, H Sauer, A Knop-Gericke, R Schlögl, M Chamam, A Wootsch. Alkyne hydrogenation over Pd catalysts: a new paradigm. Journal of Catalysis, 2006, 242(1): 26–37
https://doi.org/10.1016/j.jcat.2006.05.030
159 P Albers, J Pietsch, S F Parker. Poisoning and deactivation of palladium catalysts. Journal of Molecular Catalysis A Chemical, 2001, 173(1–2): 275–286
https://doi.org/10.1016/S1381-1169(01)00154-6
160 A Pachulski, R Schödel, P Claus. Performance and regeneration studies of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 400(1–2): 14–24
https://doi.org/10.1016/j.apcata.2011.03.019
161 R J Liu, P Crozier, C Smith, D Hucul, J Blackson, G Salaita. Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts. Applied Catalysis A, General, 2005, 282(1–2): 111–121
https://doi.org/10.1016/j.apcata.2004.12.015
162 I Y Ahn, J H Lee, S S Kum, S H Moon. Formation of C4 species in the deactivation of a Pd/SiO2 catalyst during the selective hydrogenation of acetylene. Catalysis Today, 2007, 123(1–4): 151–157
https://doi.org/10.1016/j.cattod.2007.02.011
163 O Bolarinwa Ayodele, S Vinati, E Barborini, L Boddapati, K El Hajraoui, J Kröhnert, F L Deepak, A Trunschke, Y V Kolen’ko. Selectivity boost in partial hydrogenation of acetylene via atomic dispersion of platinum over ceria. Catalysis Science & Technology, 2020, 10(22): 7471–7475
https://doi.org/10.1039/D0CY01592J
[1] Weiwei Wang, Xiaoyu Zhang, Min Guo, Jianan Li, Chong Peng. An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(6): 950-962.
[2] Guiqin Bai, Jianzhong Xia, Bing Cao, Rui Zhang, Junquan Meng, Pei Li. Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation[J]. Front. Chem. Sci. Eng., 2022, 16(5): 709-719.
[3] Hao Guo, Xianhui Li, Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao, Chuyang Y. Tang. Nanofiltration for drinking water treatment: a review[J]. Front. Chem. Sci. Eng., 2022, 16(5): 681-698.
[4] Pingle Liu, Yu Liu, Yang Lv, Wei Xiong, Fang Hao, Hean Luo. Zinc modification of Ni-Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics[J]. Front. Chem. Sci. Eng., 2022, 16(4): 461-474.
[5] Deng Pan, Jiahua Zhou, Bo Peng, Shengping Wang, Yujun Zhao, Xinbin Ma. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid[J]. Front. Chem. Sci. Eng., 2022, 16(3): 397-407.
[6] Mingyue Zhu, Zhenhao Tian, Lingling Jin, Xiaokui Huo, Chao Wang, Jingnan Cui, Yan Tian, Xiangge Tian, Lei Feng. A highly selective fluorescent probe for real-time imaging of UDP-glucuronosyltransferase 1A8 in living cells and tissues[J]. Front. Chem. Sci. Eng., 2022, 16(1): 103-111.
[7] Yong Luo, Yuhui Xie, Renjie Chen, Ruizhi Zheng, Hua Wu, Xinxin Sheng, Delong Xie, Yi Mei. A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1332-1345.
[8] Wei Xiong, Susu Zhou, Zeyong Zhao, Fang Hao, Zhihui Cai, Pingle Liu, Hailiang Zhang, Hean Luo. Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(4): 998-1007.
[9] Jingwei Zhang, Lingxin Kong, Yao Chen, Huijiang Huang, Huanhuan Zhang, Yaqi Yao, Yuxi Xu, Yan Xu, Shengping Wang, Xinbin Ma, Yujun Zhao. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2021, 15(3): 666-678.
[10] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[11] Edward Mohamed Hadji, Bo Fu, Ayob Abebe, Hafiz Muhammad Bilal, Jingtao Wang. Sponge-based materials for oil spill cleanups: A review[J]. Front. Chem. Sci. Eng., 2020, 14(5): 749-762.
[12] Jie Gao, Zhikai Li, Mei Dong, Weibin Fan, Jianguo Wang. Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction[J]. Front. Chem. Sci. Eng., 2020, 14(5): 847-856.
[13] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[14] Jiao Feng, Qiuhao Lu, Weimin Tan, Kequan Chen, Pingkai Ouyang. The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate[J]. Front. Chem. Sci. Eng., 2019, 13(1): 80-89.
[15] Alberto T. Penteado, Mijin Kim, Hamid R. Godini, Erik Esche, Jens-Uwe Repke. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production[J]. Front. Chem. Sci. Eng., 2018, 12(4): 598-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed