Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (3) : 26    https://doi.org/10.1007/s11705-024-2389-1
Bilayer borophene: an efficient catalyst for hydrogen evolution reaction
Na Xing1, Nan Gao3, Panbin Ye3, Xiaowei Yang2(), Haifeng Wang1(), Jijun Zhao2
1. College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi 832000, China
2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, China
3. School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
 Download: PDF(8645 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The electrocatalytic hydrogen evolution reaction is a crucial technique for green hydrogen production. However, finding affordable, stable, and efficient catalyst materials to replace noble metal catalysts remains a significant challenge. Recent experimental breakthroughs in the synthesis of two-dimensional bilayer borophene provide a theoretical framework for exploring their physical and chemical properties. In this study, we systematically considered nine types of bilayer borophenes as potential electrocatalysts for the hydrogen evolution reaction. Our first-principles calculations revealed that bilayer borophenes exhibit high stability and excellent conductivity, possessing a relatively large specific surface area with abundant active sites. Both surface boron atoms and the bridge sites between two boron atoms can serve as active sites, displaying high activity for the hydrogen evolution reaction. Notably, the Gibbs free energy change associated with adsorption for these bilayer borophenes can reach as low as ‒0.002 eV, and the Tafel reaction energy barriers are lower (0.70 eV) than those on Pt. Moreover, the hydrogen evolution reaction activity of these two-dimensional bilayer borophenes can be described by engineering their work function. Additionally, we considered the effect of pH on hydrogen evolution reaction activity, with significant activity observed in an acidic environment. These theoretical results reveal the excellent catalytic performance of two-dimensional bilayer borophenes and provide crucial guidance for the experimental exploration of multilayer boron for various energy applications.

Keywords bilayer borophene      hydrogen evolution reaction      work function      pH effect     
Corresponding Author(s): Xiaowei Yang,Haifeng Wang   
Just Accepted Date: 12 December 2023   Issue Date: 05 February 2024
 Cite this article:   
Na Xing,Nan Gao,Panbin Ye, et al. Bilayer borophene: an efficient catalyst for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2024, 18(3): 26.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2389-1
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I3/26
Fig.1  (a?i) Top and side views of bilayer borophenes (the boron atoms on the top and bottom layers are labeled in pink and light purple, respectively).
ParameterLattice parameterSystem symmetryD/?εp/eVΦ/eV
BL-αa = b = 15.1 ?, θ = 120°P?6M2 (D3H-1)1.73?3.735.19
BL-βa = 16.1 ?, b = 34.4 ?, θ = 69.2°P1 (C1-1)1.82?3.434.55
BL-ia = 11.4 ?, b = 13.2 ?, θ = 90°CMMM (D2H-19)1.72?4.104.39
BL-la = 13.1 ?, b = 23.0 ?, θ = 90°CMMM (D2H-19)1.79?3.944.53
BL-ma = 9.8 ?, b = 17.2 ?, θ = 90°CMMM (D2H-19)1.67?3.685.30
BL-na = 16.1 ?, c = 13.4 ?, θ = 90°P2/M (C2H-1)1.85?3.095.15
BL-ob = 11.4 ?, b = 13.1 ?, θ = 90°PMM2 (C2V-1)1.73?2.813.05
BL-sa = 11.5 ?, b = 13.3 ?, θ = 90°CMMM (D2H-19)1.84?3.404.98
BL-ta = b = 11.4 ?, θ = 120.1°C2 (C2-3)1.73?3.855.04
Tab.1  Structural and electronic parameters of BL-x borophene (x = α, β, i, l, m, n, o, s, t) substrates, including optimized lattice parameters, system symmetry, interlayer distance (d), p-band center (εp) and work function of the structures (Φ)
Fig.2  AIMD simulation results indicating the time evolution of the energy and temperature of (a) BL-β borophene, (b) BL-i borophene, and (c) BL-s borophene at 300 K after 10 ps (The insets show snapshot structures of BL-β borophene, BL-i borophene, and BL-s borophene catalysts).
Fig.3  Heat map of ?GH* of BL-x borophene (x = β, i, s, t, m, n, α) catalysts (Bluer regions indicate better catalytic activity for HER).
Fig.4  Free energy diagram of the hydrogen evolution process of BL-x borophene (x = β, i, s) catalysts at zero potential and pH = 0: (a) top site of BL-β borophene; (b) bridge site of BL-β borophene; (c) top site of BL-i borophene; (d) bridge site of BL-i borophene; (e) top site of BL-s borophene and (f) bridge site of BL-s borophene, respectively.
Fig.5  Observations and analyses of BL-x borophene (x = β, i, s) catalysts: (a?c) distribution of Bader charge transfer and coordination numbers relative to ?GH* on the BL-β borophene, BL-i borophene and BL-s borophene; (d?f) the adsorption energies of reaction molecules by considering an implicit solvent model on BL-β borophene, BL-i borophene and BL-s borophene catalysts.
BL-x borophenepH = 0pH = 1pH = 2pH = 3pH = 4pH = 5pH = 6pH = 7
BL-β borophene0.007?0.0060.022?0.0220.0270.086??
BL-i borophene?0.0020.057??0.090?0.0310.0260.085?
BL-s borophene0.018?0.0020.057?????
BL-n borophene???????0.062?0.003
BL-m borophene?????0.091?0.032?0.016?0.015
BL-α borophene????0.075?0.0160.0420.101?
BL-t borophene????????
Tab.2  Calculation of the better ?GH* ranging from ?0.10 to 0.10 eV at pH = 0?7 for H adsorption in acidic media
Fig.6  Free energy profiles of the Tafel reaction for H2 formation on the (a) BL-β borophene, (b) BL-i borophene, and (c) BL-s borophene (The side views of the BL-β borophene BL-i borophene and BL-s borophene are shown (from left to right) for the initial, transition, and final states, respectively. The H and B atoms are shown in white and pink colors, respectively. The blue numbers indicate the energy barrier).
Fig.7  Electronic structure and relationship between work function and HER activity: (a?c) band structure and PDOS of BL-β borophene, BL-i borophene and BL-s borophene; (d) ?GH* of BL-x borophene (x = α, β, i, m, n, s, t) as a function of work function (Φ).
Fig.8  Electrocatalytic mechanism of the BL borophenes: (a) values of the Ef and Evac of BL-x borophene (x = α, β, i, m, n, s, t), respectively; (b) Ef of BL-x borophene (x = α, β, i, m, n, s, t) as a function of the total charge transfer number (Q).
1 J A Turner . Sustainable hydrogen production. Science, 2004, 305(5686): 972–974
https://doi.org/10.1126/science.1103197
2 L Schlapbach , A Zuttel . Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353–358
https://doi.org/10.1038/35104634
3 S Bhavsar , M Najera , R Solunke , G Veser . Chemical looping: to combustion and beyond. Catalysis Today, 2014, 228: 96–105
https://doi.org/10.1016/j.cattod.2013.12.025
4 J Liu , G Yu , X Huang , W Chen . The crucial role of strained ring in enhancing the hydrogen evolution catalytic activity for the 2D carbon allotropes: a high-throughput first-principles investigation. 2D Materials, 2020, 7(1): 15015
5 L Adamska , S Sadasivam , J J IV Foley , P Darancet , S Sharifzadeh . First-principles investigation of borophene as a monolayer transparent conductor. Journal of Physical Chemistry C, 2018, 122(7): 4037–4045
https://doi.org/10.1021/acs.jpcc.7b10197
6 Y Huang , S N Shirodkar , B I Yakobson . Two-dimensional boron polymorphs for visible range plasmonics: a first-principles exploration. Journal of the American Chemical Society, 2017, 139(47): 17181–17185
https://doi.org/10.1021/jacs.7b10329
7 F Fan , R Wang , H Zhang , W Wu . Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50(19): 10983–11031
https://doi.org/10.1039/C9CS00821G
8 X Zhang , L Hou , A Ciesielski , P Samorì . 2D materials beyond graphene for high-performance energy storage applications. Advanced Energy Materials, 2016, 6(23): 1600671
https://doi.org/10.1002/aenm.201600671
9 B Feng , J Zhang , S Ito , M Arita , C Cheng , L Chen , K Wu , F Komori , O Sugino , K Miyamoto . et al.. Discovery of 2D anisotropic dirac cones. Advanced Materials, 2018, 30(2): 1704025
https://doi.org/10.1002/adma.201704025
10 X Yang , C Shang , S Zhou , J Zhao . MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horizons, 2020, 5(7): 1106–1115
https://doi.org/10.1039/D0NH00242A
11 X Zhang , T Wu , H Wang , R Zhao , H Chen , T Wang , P Wei , Y Luo , Y Zhang , X Sun . Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media. ACS Catalysis, 2019, 9(5): 4609–4615
https://doi.org/10.1021/acscatal.8b05134
12 G Tai , M Xu , C Hou , R Liu , X Liang , Z Wu . Borophene nanosheets as high-efficiency catalysts for the hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2021, 13(51): 60987–60994
https://doi.org/10.1021/acsami.1c15953
13 F Qun , C Choi , C Yan , Y Liu , J Qiu , S Hong , Y Jung , Z Sun . High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction. Chemical Communications, 2019, 55(29): 4246–4249
https://doi.org/10.1039/C9CC00985J
14 S C De la Barrera , M R Sinko , D P Gopalan , N Sivadas , K L Seyler , K Watanabe , T Taniguchi , A W Tsen , X Xu , D Xiao . et al.. Tuning lsing superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nature Communications, 2018, 9(1): 14–27
https://doi.org/10.1038/s41467-018-03888-4
15 P Kumar , J Liu , M Motlag , L Tong , Y Hu , X Huang , A Bandopadhyay , S K Pati , L Ye , J Irudayaraj . et al.. Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moiré superlattices. Nano Letters, 2019, 19(1): 283–291
https://doi.org/10.1021/acs.nanolett.8b03895
16 N Gao , X Wu , X Jiang , Y Bai , J Zhao . Structure and stability of bilayer borophene: the roles of hexagonal holes and interlayer bonding. FlatChem, 2018, 7: 48–54
https://doi.org/10.1016/j.flatc.2017.08.008
17 D Li , Q Tang , J He , B Li , G Ding , C Feng , H Zhou , G Zhang . From two- to three-dimensional van der Waals layered structures of boron crystals: an ab initio study. ACS Omega, 2019, 4(5): 8015–8021
https://doi.org/10.1021/acsomega.9b00534
18 Y Xu , X Xuan , T Yang , Z Zhang , S Li , W Guo . Quasi-freestanding bilayer borophene on Ag (111). Nano Letters, 2022, 22(8): 3488–3494
https://doi.org/10.1021/acs.nanolett.1c05022
19 X Liu , Q Li , Q Ruan , M S Rahn , B I Yakobson , M C Hersam . Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 2022, 21(1): 35–40
https://doi.org/10.1038/s41563-021-01084-2
20 C Chen , H Lv , P Zhang , Z Zhuo , Y Wang , C Ma , W Li , X Wang , B Feng , P Cheng . et al.. Synthesis of bilayer borophene. Nature Chemistry, 2022, 14(1): 25–31
https://doi.org/10.1038/s41557-021-00813-z
21 P Sutter , E Sutter . Large-scale layer-by-layer synthesis of borophene on Ru (0001). Chemistry of Materials, 2021, 33(22): 8838–8843
https://doi.org/10.1021/acs.chemmater.1c03061
22 N Gao , P Ye , J Chen , J Xiao , X Yang . Density functional theory study of bilayer borophene-based anode material for rechargeable lithium ion batteries. Langmuir, 2023, 39(29): 10270–10279
https://doi.org/10.1021/acs.langmuir.3c01371
23 N Gao , J Li , J Chen , X Yang . Interaction between bilayer borophene and metal or inert substrates. Applied Surface Science, 2023, 626: 157157
https://doi.org/10.1016/j.apsusc.2023.157157
24 Y Chang , J Liu , H Liu , Y W Zhang , J Gao , J Zhao . Robust sandwiched B/TM/B structures by metal intercalating into bilayer borophene leading to excellent hydrogen evolution reaction. Advanced Energy Materials, 2023, 13(29): 2301331
https://doi.org/10.1002/aenm.202301331
25 G Kresse , J Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186
https://doi.org/10.1103/PhysRevB.54.11169
26 G Kresse , D Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775
https://doi.org/10.1103/PhysRevB.59.1758
27 J P Perdew , K Burke , M Ernzerhof . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
28 S Grimme , J Antony , S Ehrlich , H Krieg . A consistent and accurateab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 2010, 132(15): 154104
https://doi.org/10.1063/1.3382344
29 J Carrasco , A Hodgson , A Michaelides . A molecular perspective of water at metal interfaces. Nature Materials, 2012, 11(8): 667–674
https://doi.org/10.1038/nmat3354
30 M H Dalsaniya , T K Gajaria , N N Som , P K Jha . Electron density modulation of a metallic GeSb monolayer by pnictogen doping for excellent hydrogen evolution. Physical Chemistry Chemical Physics, 2020, 22(35): 19823–19836
https://doi.org/10.1039/D0CP02541K
31 A Guha , T Veettil Vineesh , A Sekar , S Narayanaru , M Sahoo , S Nayak , S Chakraborty , T N Narayanan . Mechanistic insight into enhanced hydrogen evolution reaction activity of ultrathin hexagonal boron nitride-modified Pt electrodes. ACS Catalysis, 2018, 8(7): 6636–6644
https://doi.org/10.1021/acscatal.8b00938
32 G Henkelman , B P Uberuaga , H Jónsson . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
https://doi.org/10.1063/1.1329672
33 G Henkelman , A Arnaldsson , H Jónsson . A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3): 354–360
https://doi.org/10.1016/j.commatsci.2005.04.010
34 M Parrinello , A Rahman . Crystal structure and pair potentials: a molecular-dynamics. Physical Review Letters, 1980, 45(14): 1196–1199
https://doi.org/10.1103/PhysRevLett.45.1196
35 D Chodvadiya , M H Dalsaniya , N N Som , B Chakraborty , D Kurzydłowski , K J Kurzydłowski , P K Jha . Defects and doping engineered two-dimensional o-B2N2 for hydrogen evolution reaction catalyst: insights from DFT simulation. International Journal of Hydrogen Energy, 2023, 48(13): 5138–5151
https://doi.org/10.1016/j.ijhydene.2022.10.211
36 J N Hansen , H Prats , K K Toudahl , Secher N Mørch , K Chan , J Kibsgaard , I Chorkendorff . Is there anything better than Pt for HER?. ACS Energy Letters, 2021, 6(4): 1175–1180
https://doi.org/10.1021/acsenergylett.1c00246
37 Y Luo , Z Zhang , F Yang , J Li , Z Liu , W Ren , S Zhang , B Liu . Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy & Environmental Science, 2021, 14(8): 4610–4619
https://doi.org/10.1039/D1EE01487K
38 M Luo , J Yang , X Li , M Eguchi , Y Yamauchi , Z Wang . Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chemical Science, 2023, 14(13): 3400–3414
https://doi.org/10.1039/D2SC06298D
39 J L Fajin . DS Cordeiro M N, Gomes J R. Density functional theory study of the water dissociation on platinum surfaces: general trends. Journal of Physical Chemistry A, 2014, 118(31): 5832–5840
https://doi.org/10.1021/jp411500j
40 S Nie , P J Feibelman , N C Bartelt , K Thürmer . Pentagons and heptagons in the first water layer on Pt (111). Physical Review Letters, 2010, 105(2): 026102
https://doi.org/10.1103/PhysRevLett.105.026102
41 D Donadio , L M Ghiringhelli , L Delle Site . Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface. Journal of the American Chemical Society, 2012, 134(46): 19217–19222
https://doi.org/10.1021/ja308899g
42 P Zhang , L Sun . Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chinese Journal of Chemistry, 2020, 38(9): 996–1004
https://doi.org/10.1002/cjoc.201900467
43 K Mathew , R Sundararaman , K Letchworth-Weaver , T A Arias , R G Hennig . Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. Journal of Chemical Physics, 2014, 140(8): 084106
https://doi.org/10.1063/1.4865107
44 Q Zhang , A Asthagiri . Solvation effects on DFT predictions of ORR activity on metal surfaces. Catalysis Today, 2019, 323: 35–43
https://doi.org/10.1016/j.cattod.2018.07.036
45 X Yang , N Gao , S Zhou , J Zhao . MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Physical Chemistry Chemical Physics, 2018, 20(29): 19390–19397
https://doi.org/10.1039/C8CP02635A
46 E Skúlason , V Tripkovic , M E Björketun , S Gudmundsdóttir , G Karlberg , J Rossmeisl , T Bligaard , H Jónsson , J K Nørskov . Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. Journal of Physical Chemistry C, 2010, 114(42): 18182–18197
https://doi.org/10.1021/jp1048887
47 H B Michaelson . The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729–4733
https://doi.org/10.1063/1.323539
48 Y Qian , B Zheng , Y Xie , J He , J Chen , L Yang , X Lu , H Yu . Imparting α-borophene with high work function by fluorine adsorption: a first-principles investigation. Langmuir, 2021, 37(37): 11027–11040
https://doi.org/10.1021/acs.langmuir.1c01598
49 N Liu , Y Zhao , S Zhou , J Zhao . CO2 reduction on p-block metal oxide overlayers on metal substrates—2D MgO as a prototype. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(11): 5688–5698
https://doi.org/10.1039/C9TA13864A
50 B Shan , K Cho . First principles study of work functions of single wall carbon nanotubes. Physical Review Letters, 2005, 94(23): 236602
https://doi.org/10.1103/PhysRevLett.94.236602
[1] FCE-23068-OF-XN_suppl_1 Download
[1] Jianxia Gu, Ying Zhu, Haiyan Zheng, Chunyi Sun, Zhongmin Su. Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy[J]. Front. Chem. Sci. Eng., 2024, 18(5): 57-.
[2] Zihuan Yu, Haiqing Yan, Chaonan Wang, Zheng Wang, Huiqin Yao, Rong Liu, Cheng Li, Shulan Ma. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(4): 437-448.
[3] Xiaojing Li, Chunran Zhao, Junfeng Wang, Jiayu Zhang, Ying Wu, Yiming He. Cu-doped Bi/Bi2WO6 catalysts for efficient N2 fixation by photocatalysis[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1412-1422.
[4] Folin Liu, Shaohua Feng, Siyuan Xiu, Bin Yang, Yang Hou, Lecheng Lei, Zhongjian Li. Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1761-1771.
[5] Vishal Kandathil, Akshay Moolakkil, Pranav Kulkarni, Alaap Kumizhi Veetil, Manjunatha Kempasiddaiah, Sasidhar Balappa Somappa, R. Geetha Balakrishna, Siddappa A. Patil. Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1514-1525.
[6] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[7] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[8] Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong. Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution reaction electrocatalyst[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1134-1146.
[9] Shenghua Ye, Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
[10] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[11] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed