| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					Bilayer borophene: an efficient catalyst for hydrogen evolution reaction  | 
  					 
  					  										
						Na Xing1, Nan Gao3, Panbin Ye3, Xiaowei Yang2( ), Haifeng Wang1( ), Jijun Zhao2 | 
					 
															
						1. College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi 832000, China 2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, China 3. School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  The electrocatalytic hydrogen evolution reaction is a crucial technique for green hydrogen production. However, finding affordable, stable, and efficient catalyst materials to replace noble metal catalysts remains a significant challenge. Recent experimental breakthroughs in the synthesis of two-dimensional bilayer borophene provide a theoretical framework for exploring their physical and chemical properties. In this study, we systematically considered nine types of bilayer borophenes as potential electrocatalysts for the hydrogen evolution reaction. Our first-principles calculations revealed that bilayer borophenes exhibit high stability and excellent conductivity, possessing a relatively large specific surface area with abundant active sites. Both surface boron atoms and the bridge sites between two boron atoms can serve as active sites, displaying high activity for the hydrogen evolution reaction. Notably, the Gibbs free energy change associated with adsorption for these bilayer borophenes can reach as low as ‒0.002 eV, and the Tafel reaction energy barriers are lower (0.70 eV) than those on Pt. Moreover, the hydrogen evolution reaction activity of these two-dimensional bilayer borophenes can be described by engineering their work function. Additionally, we considered the effect of pH on hydrogen evolution reaction activity, with significant activity observed in an acidic environment. These theoretical results reveal the excellent catalytic performance of two-dimensional bilayer borophenes and provide crucial guidance for the experimental exploration of multilayer boron for various energy applications. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				bilayer borophene  
																		  																																				hydrogen evolution reaction  
																		  																																				work function  
																		  																																				pH effect  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Xiaowei Yang,Haifeng Wang   
																													     		
													     	 | 
														 
																																										
															| 
																															Just Accepted Date: 12 December 2023  
																																																													Issue Date: 05 February 2024
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      J A Turner . Sustainable hydrogen production. Science, 2004, 305(5686): 972–974 
														     														     	 
														     															     		https://doi.org/10.1126/science.1103197
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      L Schlapbach , A Zuttel . Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353–358 
														     														     	 
														     															     		https://doi.org/10.1038/35104634
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      S Bhavsar , M Najera , R Solunke , G Veser . Chemical looping: to combustion and beyond. Catalysis Today, 2014, 228: 96–105 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2013.12.025
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      J Liu , G Yu , X Huang , W Chen . The crucial role of strained ring in enhancing the hydrogen evolution catalytic activity for the 2D carbon allotropes: a high-throughput first-principles investigation. 2D Materials, 2020, 7(1): 15015
														     															 | 
																  
																														
															| 5 | 
															 
														      L Adamska , S Sadasivam , J J IV Foley , P Darancet , S Sharifzadeh . First-principles investigation of borophene as a monolayer transparent conductor. Journal of Physical Chemistry C, 2018, 122(7): 4037–4045 
														     														     	 
														     															     		https://doi.org/10.1021/acs.jpcc.7b10197
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														      Y Huang , S N Shirodkar , B I Yakobson . Two-dimensional boron polymorphs for visible range plasmonics: a first-principles exploration. Journal of the American Chemical Society, 2017, 139(47): 17181–17185 
														     														     	 
														     															     		https://doi.org/10.1021/jacs.7b10329
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      F Fan , R Wang , H Zhang , W Wu . Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50(19): 10983–11031 
														     														     	 
														     															     		https://doi.org/10.1039/C9CS00821G
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      X Zhang , L Hou , A Ciesielski , P Samorì . 2D materials beyond graphene for high-performance energy storage applications. Advanced Energy Materials, 2016, 6(23): 1600671 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201600671
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      B Feng , J Zhang , S Ito , M Arita , C Cheng , L Chen , K Wu , F Komori , O Sugino , K Miyamoto . et al.. Discovery of 2D anisotropic dirac cones. Advanced Materials, 2018, 30(2): 1704025 
														     														     	 
														     															     		https://doi.org/10.1002/adma.201704025
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      X Yang , C Shang , S Zhou , J Zhao . MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horizons, 2020, 5(7): 1106–1115 
														     														     	 
														     															     		https://doi.org/10.1039/D0NH00242A
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      X Zhang , T Wu , H Wang , R Zhao , H Chen , T Wang , P Wei , Y Luo , Y Zhang , X Sun . Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media. ACS Catalysis, 2019, 9(5): 4609–4615 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.8b05134
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      G Tai , M Xu , C Hou , R Liu , X Liang , Z Wu . Borophene nanosheets as high-efficiency catalysts for the hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2021, 13(51): 60987–60994 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.1c15953
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      F Qun , C Choi , C Yan , Y Liu , J Qiu , S Hong , Y Jung , Z Sun . High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction. Chemical Communications, 2019, 55(29): 4246–4249 
														     														     	 
														     															     		https://doi.org/10.1039/C9CC00985J
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      S C De la Barrera , M R Sinko , D P Gopalan , N Sivadas , K L Seyler , K Watanabe , T Taniguchi , A W Tsen , X Xu , D Xiao . et al.. Tuning lsing superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nature Communications, 2018, 9(1): 14–27 
														     														     	 
														     															     		https://doi.org/10.1038/s41467-018-03888-4
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      P Kumar , J Liu , M Motlag , L Tong , Y Hu , X Huang , A Bandopadhyay , S K Pati , L Ye , J Irudayaraj . et al.. Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moiré superlattices. Nano Letters, 2019, 19(1): 283–291 
														     														     	 
														     															     		https://doi.org/10.1021/acs.nanolett.8b03895
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      N Gao , X Wu , X Jiang , Y Bai , J Zhao . Structure and stability of bilayer borophene: the roles of hexagonal holes and interlayer bonding. FlatChem, 2018, 7: 48–54 
														     														     	 
														     															     		https://doi.org/10.1016/j.flatc.2017.08.008
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      D Li , Q Tang , J He , B Li , G Ding , C Feng , H Zhou , G Zhang . From two- to three-dimensional van der Waals layered structures of boron crystals: an ab initio study. ACS Omega, 2019, 4(5): 8015–8021 
														     														     	 
														     															     		https://doi.org/10.1021/acsomega.9b00534
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      Y Xu , X Xuan , T Yang , Z Zhang , S Li , W Guo . Quasi-freestanding bilayer borophene on Ag (111). Nano Letters, 2022, 22(8): 3488–3494 
														     														     	 
														     															     		https://doi.org/10.1021/acs.nanolett.1c05022
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      X Liu , Q Li , Q Ruan , M S Rahn , B I Yakobson , M C Hersam . Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 2022, 21(1): 35–40 
														     														     	 
														     															     		https://doi.org/10.1038/s41563-021-01084-2
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      C Chen , H Lv , P Zhang , Z Zhuo , Y Wang , C Ma , W Li , X Wang , B Feng , P Cheng . et al.. Synthesis of bilayer borophene. Nature Chemistry, 2022, 14(1): 25–31 
														     														     	 
														     															     		https://doi.org/10.1038/s41557-021-00813-z
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      P Sutter , E Sutter . Large-scale layer-by-layer synthesis of borophene on Ru (0001). Chemistry of Materials, 2021, 33(22): 8838–8843 
														     														     	 
														     															     		https://doi.org/10.1021/acs.chemmater.1c03061
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      N Gao , P Ye , J Chen , J Xiao , X Yang . Density functional theory study of bilayer borophene-based anode material for rechargeable lithium ion batteries. Langmuir, 2023, 39(29): 10270–10279 
														     														     	 
														     															     		https://doi.org/10.1021/acs.langmuir.3c01371
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      N Gao , J Li , J Chen , X Yang . Interaction between bilayer borophene and metal or inert substrates. Applied Surface Science, 2023, 626: 157157 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2023.157157
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      Y Chang , J Liu , H Liu , Y W Zhang , J Gao , J Zhao . Robust sandwiched B/TM/B structures by metal intercalating into bilayer borophene leading to excellent hydrogen evolution reaction. Advanced Energy Materials, 2023, 13(29): 2301331 
														     														     	 
														     															     		https://doi.org/10.1002/aenm.202301331
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      G Kresse , J Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186 
														     														     	 
														     															     		https://doi.org/10.1103/PhysRevB.54.11169
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      G Kresse , D Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775 
														     														     	 
														     															     		https://doi.org/10.1103/PhysRevB.59.1758
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      J P Perdew , K Burke , M Ernzerhof . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868 
														     														     	 
														     															     		https://doi.org/10.1103/PhysRevLett.77.3865
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      S Grimme , J Antony , S Ehrlich , H Krieg . A consistent and accurateab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 2010, 132(15): 154104 
														     														     	 
														     															     		https://doi.org/10.1063/1.3382344
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      J Carrasco , A Hodgson , A Michaelides . A molecular perspective of water at metal interfaces. Nature Materials, 2012, 11(8): 667–674 
														     														     	 
														     															     		https://doi.org/10.1038/nmat3354
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      M H Dalsaniya , T K Gajaria , N N Som , P K Jha . Electron density modulation of a metallic GeSb monolayer by pnictogen doping for excellent hydrogen evolution. Physical Chemistry Chemical Physics, 2020, 22(35): 19823–19836 
														     														     	 
														     															     		https://doi.org/10.1039/D0CP02541K
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      A Guha , T Veettil Vineesh , A Sekar , S Narayanaru , M Sahoo , S Nayak , S Chakraborty , T N Narayanan . Mechanistic insight into enhanced hydrogen evolution reaction activity of ultrathin hexagonal boron nitride-modified Pt electrodes. ACS Catalysis, 2018, 8(7): 6636–6644 
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.8b00938
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      G Henkelman , B P Uberuaga , H Jónsson . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904 
														     														     	 
														     															     		https://doi.org/10.1063/1.1329672
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      G Henkelman , A Arnaldsson , H Jónsson . A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3): 354–360 
														     														     	 
														     															     		https://doi.org/10.1016/j.commatsci.2005.04.010
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      M Parrinello , A Rahman . Crystal structure and pair potentials: a molecular-dynamics. Physical Review Letters, 1980, 45(14): 1196–1199 
														     														     	 
														     															     		https://doi.org/10.1103/PhysRevLett.45.1196
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      D Chodvadiya , M H Dalsaniya , N N Som , B Chakraborty , D Kurzydłowski , K J Kurzydłowski , P K Jha . Defects and doping engineered two-dimensional o-B2N2 for hydrogen evolution reaction catalyst: insights from DFT simulation. International Journal of Hydrogen Energy, 2023, 48(13): 5138–5151 
														     														     	 
														     															     		https://doi.org/10.1016/j.ijhydene.2022.10.211
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      J N Hansen , H Prats , K K Toudahl , Secher N Mørch , K Chan , J Kibsgaard , I Chorkendorff . Is there anything better than Pt for HER?. ACS Energy Letters, 2021, 6(4): 1175–1180 
														     														     	 
														     															     		https://doi.org/10.1021/acsenergylett.1c00246
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      Y Luo , Z Zhang , F Yang , J Li , Z Liu , W Ren , S Zhang , B Liu . Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy & Environmental Science, 2021, 14(8): 4610–4619 
														     														     	 
														     															     		https://doi.org/10.1039/D1EE01487K
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      M Luo , J Yang , X Li , M Eguchi , Y Yamauchi , Z Wang . Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chemical Science, 2023, 14(13): 3400–3414 
														     														     	 
														     															     		https://doi.org/10.1039/D2SC06298D
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      J L Fajin . DS Cordeiro M N, Gomes J R. Density functional theory study of the water dissociation on platinum surfaces: general trends. Journal of Physical Chemistry A, 2014, 118(31): 5832–5840 
														     														     	 
														     															     		https://doi.org/10.1021/jp411500j
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      S Nie , P J Feibelman , N C Bartelt , K Thürmer . Pentagons and heptagons in the first water layer on Pt (111). Physical Review Letters, 2010, 105(2): 026102 
														     														     	 
														     															     		https://doi.org/10.1103/PhysRevLett.105.026102
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														      D Donadio , L M Ghiringhelli , L Delle Site . Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface. Journal of the American Chemical Society, 2012, 134(46): 19217–19222 
														     														     	 
														     															     		https://doi.org/10.1021/ja308899g
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      P Zhang , L Sun . Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chinese Journal of Chemistry, 2020, 38(9): 996–1004 
														     														     	 
														     															     		https://doi.org/10.1002/cjoc.201900467
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      K Mathew , R Sundararaman , K Letchworth-Weaver , T A Arias , R G Hennig . Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. Journal of Chemical Physics, 2014, 140(8): 084106 
														     														     	 
														     															     		https://doi.org/10.1063/1.4865107
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      Q Zhang , A Asthagiri . Solvation effects on DFT predictions of ORR activity on metal surfaces. Catalysis Today, 2019, 323: 35–43 
														     														     	 
														     															     		https://doi.org/10.1016/j.cattod.2018.07.036
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      X Yang , N Gao , S Zhou , J Zhao . MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Physical Chemistry Chemical Physics, 2018, 20(29): 19390–19397 
														     														     	 
														     															     		https://doi.org/10.1039/C8CP02635A
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      E Skúlason , V Tripkovic , M E Björketun , S Gudmundsdóttir , G Karlberg , J Rossmeisl , T Bligaard , H Jónsson , J K Nørskov . Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. Journal of Physical Chemistry C, 2010, 114(42): 18182–18197 
														     														     	 
														     															     		https://doi.org/10.1021/jp1048887
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      H B Michaelson . The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729–4733 
														     														     	 
														     															     		https://doi.org/10.1063/1.323539
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														      Y Qian , B Zheng , Y Xie , J He , J Chen , L Yang , X Lu , H Yu . Imparting α-borophene with high work function by fluorine adsorption: a first-principles investigation. Langmuir, 2021, 37(37): 11027–11040 
														     														     	 
														     															     		https://doi.org/10.1021/acs.langmuir.1c01598
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														      N Liu , Y Zhao , S Zhou , J Zhao . CO2 reduction on p-block metal oxide overlayers on metal substrates—2D MgO as a prototype. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(11): 5688–5698 
														     														     	 
														     															     		https://doi.org/10.1039/C9TA13864A
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														      B Shan , K Cho . First principles study of work functions of single wall carbon nanotubes. Physical Review Letters, 2005, 94(23): 236602 
														     														     	 
														     															     		https://doi.org/10.1103/PhysRevLett.94.236602
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |