Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (5) : 57    https://doi.org/10.1007/s11705-024-2416-2
Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy
Jianxia Gu1(), Ying Zhu2, Haiyan Zheng2, Chunyi Sun2(), Zhongmin Su2
1. Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
2. School of Chemistry, Northeast Normal University, Changchun 130024, China
 Download: PDF(5903 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel, cheap and highly efficient Ni-Co/Mo2C/Co6Mo6C2@C nanocomposite has been successfully constructed through simple one-step carbonization method in a nitrogen atmosphere. Polyethyleneimine in the precursor can effectively anchor molybdenum-based Keggin-type polyoxometallate and NiCo-layered double hydroxide through electrostatic and coordination interactions, which avoids the aggregation of catalyst particles during the pyrolysis process. After optimization, the obtained Ni-Co/Mo2C/Co6Mo6C2@C possesses small size (3–8 nm), large specific surface area and hierarchical pore structure. More importantly, Ni-Co/Mo2C/Co6Mo6C2@C presents remarkable hydrogen evolution reaction activity with low overpotentials in 0.5 mol·L–1 H2SO4 (102.3 mV) and 1 mol·L–1 KOH (95 mV) to afford the current density of 10 mA·cm–2, as well as small Tafel slopes of 82.49 and 99.92 mV·dec–1, respectively. Simultaneously, this catalyst also shows outstanding stability for 12 h without a significant change in current density. The excellent catalytic performance of Ni-Co/Mo2C/Co6Mo6C2@C can put down to the synergistic effect between multiple components and the small size of the catalyst. This work provides unique insights into the preparation of efficient transition metal-based catalysts for HER.

Keywords polyoxometallates      layered double hydroxide      transition metal-based electrocatalysts      hydrogen evolution reaction     
Corresponding Author(s): Jianxia Gu,Chunyi Sun   
Just Accepted Date: 25 January 2024   Issue Date: 19 March 2024
 Cite this article:   
Jianxia Gu,Ying Zhu,Haiyan Zheng, et al. Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy[J]. Front. Chem. Sci. Eng., 2024, 18(5): 57.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2416-2
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I5/57
  Scheme1 Synthesis diagram of Ni-Co/Mo2C/Co6Mo6C2@C.
Fig.1  XRD patterns of Ni-Co/Mo2C/Co6Mo6C2@C, Mo2C@C, Ni-Co@C and C.
Fig.2  (a) TEM image of Ni-Co/Mo2C/Co6Mo6C2@C (illustrated as particle size distribution in Ni-Co/Mo2C/Co6Mo6C2@C), (b–e) HRTEM images of Ni-Co/Mo2C/Co6Mo6C2@C, (f–i) EDX mapping of Ni, Co, and Mo in Ni-Co/Mo2C/Co6Mo6C2@C.
Fig.3  XPS spectra of Ni–Co/Mo2C/Co6Mo6C2@C, (a) C 1s, (b) N 1s, (c) Mo 3d and (d) Co 2p.
Fig.4  LSV curves and corresponding Tafel plots of Ni-Co/Mo2C/Co6Mo6C2@C, Mo2C@C, Ni-Co@C, C and commercial 20% Pt/C in (a, c) 0.5 mol·L–1 H2SO4 and (b, d) 1 mol·L–1 KOH. (e, f) Cdl fitting graphs of Ni-Co/Mo2C/Co6Mo6C2@C, Mo2C@C, Ni-Co@C, C in 0.5 mol·L–1 H2SO4 and 1 mol·L–1 KOH.
Fig.5  (a, b) Comparison of polarization curves of Ni-Co/Mo2C/Co6Mo6C2@C during 2000 cycles in acidic and alkaline solutions. (c, d) Stability tests of Ni-Co/Mo2C/Co6Mo6C2@C at constant voltage in acidic and alkaline solutions.
1 T Takata , J Z Jiang , Y Sakata , M Nakabayashi , N Shibata , V Nandal , K Seki , T Hisatomi , K Domen . Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581(7809): 411–414
https://doi.org/10.1038/s41586-020-2278-9
2 Z H Yu , H Q Yan , C N Wang , Z Wang , H Q Yao , R Liu , C Li , S L Ma . Oxygen-deficient MoOx/Ni3S2 heterostructure grown onnickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17(4): 437–448
https://doi.org/10.1007/s11705-022-2228-1
3 L Q He , W B Zhang , Q J Mo , W J Huang , L C Yang , Q S Gao . Molybdenum carbide-oxide heterostructures: in-situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2020, 59(9): 3544–3548
https://doi.org/10.1002/anie.201914752
4 R W Qi , X Liu , H K Bu , X Q Niu , X Y Ji , J W Ma , H T Gao . In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1430–1439
https://doi.org/10.1007/s11705-023-2320-1
5 Q Z Xiong , Y Wang , P F Liu , L R Zheng , G Z Wang , H G Yang , P K Wong , H M Zhang , H J Zhao . Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Advanced Materials, 2018, 30(29): 1801450
https://doi.org/10.1002/adma.201801450
6 X G Feng , H X Wang , X J Bo , L P Guo . Bimetal-organic framework-derived porous rodlike cobalt/nickel nitride for all-pH value electrochemical hydrogen evolution. ACS Applied Materials & Interfaces, 2019, 11(8): 8018–8024
https://doi.org/10.1021/acsami.8b21369
7 W Huang , D J Zhou , G C Qi , X J Liu . Fe-doped MoS2 nanosheets array for high-current-density seawater electrolysis. Nanotechnology, 2021, 32(41): 415403
https://doi.org/10.1088/1361-6528/ac1195
8 S R Xu , H T Zhao , T S Li , J Liang , S Y Lu , G Chen , S Y Gao , A M Asiri , Q Wu , X P Sun . Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(38): 19729–19745
https://doi.org/10.1039/D0TA05628F
9 J M Ge , S T Diao , J X Jin , Y P Wang , X H Zhao , F Z Zhang , X D Lei . NiFeCu phosphides with surface reconstruction via the topotactic transformation of layered double hydroxides for overall water splitting. Inorganic Chemistry Frontiers, 2023, 10(12): 3515–3524
https://doi.org/10.1039/D2QI02582E
10 B Fabre , C Falaise , E Cadot . Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: recent advances and prospects. ACS Catalysis, 2022, 12(19): 12055–12091
https://doi.org/10.1021/acscatal.2c01847
11 J Song , J L Chen , Z C Xu , R Y Y Lin . Metal-organic framework-derived 2D layered double hydroxide ultrathin nanosheets for efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2022, 58(76): 10655–10658
https://doi.org/10.1039/D2CC03994J
12 Z H Hu , J T Huang , Y Luo , M Q Liu , X B Li , M G Yan , Z G Ye , Z Chen , Z J Feng , S F Huang . Wrinkled Ni-doped Mo2C coating on carbon fiber paper: an advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction. Electrochimica Acta, 2019, 319: 293–301
https://doi.org/10.1016/j.electacta.2019.06.178
13 Y T Xu , X F Xiao , Z M Ye , S L Zhao , R G Shen , C T He , J P Zhang , Y D Li , X M Chen . Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. Journal of the American Chemical Society, 2017, 139(15): 5285–5288
https://doi.org/10.1021/jacs.7b00165
14 J X Huang , J L Wang , H X Zhong , L Z Zhang . N-Cyanoethyl polyethylenimine as a water-soluble binder for LiFePO4 cathode in lithium-ion batteries. Journal of Materials Science, 2018, 53(13): 9690–9700
https://doi.org/10.1007/s10853-018-2247-y
15 K Yamamoto , T Imaoka , M Tanabe , T Kambe . New horizon of nanoparticle and cluster catalysis with dendrimers. Chemical Reviews, 2020, 120(2): 1397–1437
https://doi.org/10.1021/acs.chemrev.9b00188
16 Y Q Jiao , H J Yan , R H Wang , X W Wang , X M Zhang , A P Wu , C G Tian , B J Jiang , H G Fu . Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12(44): 49596–49606
https://doi.org/10.1021/acsami.0c13533
17 W S Tang , J Q Bai , P C Zhou , Q H He , F Xiao , M J Zhao , P L Yang , L Liao , Y Wang , P He . et al.. Polymethylene blue nanospheres supported honeycomb-like NiCo-LDH for high-performance supercapacitors. Electrochimica Acta, 2023, 439: 141683
https://doi.org/10.1016/j.electacta.2022.141683
18 H Y Liang , J H Lin , H N Jia , S L Chen , J L Qi , J Cao , T S Lin , W D Fei , J C Feng . Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(31): 15040–15046
https://doi.org/10.1039/C8TA05065A
19 X G Feng , X J Bo , L P Guo . An advanced hollow bimetallic carbide/nitrogen-doped carbon nanotube for efficient catalysis of oxygen reduction and hydrogen evolution and oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 575: 69–77
https://doi.org/10.1016/j.jcis.2020.04.093
20 J Wan , J B Wu , X Gao , T Q Li , Z M Hu , H M Yu , L Huang . Structure confined porous Mo2C for efficient hydrogen evolution. Advanced Functional Materials, 2017, 27(45): 1703933
https://doi.org/10.1002/adfm.201703933
21 J X Gu , X Zhao , Y Sun , J Zhou , C Y Sun , X L Wang , Z H Kang , Z M Su . A photo-activated process cascaded electrocatalysis for the highly efficient CO2 reduction over a core-shell ZIF-8@Co/C. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(32): 16616–16623
https://doi.org/10.1039/D0TA04595K
22 H Y Zheng , N Xu , B S Hou , X Zhao , M Dong , C Y Sun , X L Wang , Z M Su . Bimetallic metal-organic framework-derived graphitic carbon-coated small Co/VN nanoparticles as advanced trifunctional electrocatalysts. ACS Applied Materials & Interfaces, 2021, 13(2): 2462–2471
https://doi.org/10.1021/acsami.0c16205
23 Y Zhu , H Y Zheng , X Y Liu , C Y Sun , M Dong , X L Wang , Z M Su . Ultra-small porous WN/W2C nanoparticles for sustained hydrogen production by a polyoxometalate-intercalated pyrolysis strategy. New Journal of Chemistry, 2022, 46(48): 23292–23296
https://doi.org/10.1039/D2NJ04218E
24 L B Wang , W B Zhang , X S Zheng , Y Z Chen , W L Wu , J X Qiu , X C Zhao , X Zhao , Y Z Dai , J Zeng . Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nature Energy, 2017, 2(11): 869–876
https://doi.org/10.1038/s41560-017-0015-x
25 B B Fan , H Z Wang , H Zhang , Y Song , X R Zheng , C J Li , Y Q Tan , X P Han , Y D Deng , W B Hu . Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity. Advanced Functional Materials, 2022, 32(20): 2110783
https://doi.org/10.1002/adfm.202110783
26 R Boppella , J Park , W S Yang , J W Tan , J Moon . Efficient electrocatalytic proton reduction on CoP nanocrystals embedded in microporous P, N Co-doped carbon spheres with dual active sites. Carbon, 2020, 156: 529–537
https://doi.org/10.1016/j.carbon.2019.09.082
27 Y J Tang , C H Liu , W Huang , X L Wang , L Z Dong , S L Li , Y Q Lan . Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(20): 16977–16985
https://doi.org/10.1021/acsami.7b01096
28 Q Qing , L L Chen , T Wei , Y M Wang , X E Liu . Ni/NiM2O4 (M = Mn or Fe) supported on N-doped carbon nanotubes as trifunctional electrocatalysts for ORR, OER and HER. Catalysis Science & Technology, 2019, 9(7): 1595–1601
https://doi.org/10.1039/C8CY02504E
29 H J Liu , S Zhang , W Z Qiao , R Y Fan , B Liu , S T Wang , H Hu , Y M Chai , B Dong . Bimetallic metal-organic framework-derived bamboo-like N-doped carbon nanotube-encapsulated Ni-doped MoC nanoparticles for water oxidation. Journal of Colloid and Interface Science, 2024, 657: 208–218
https://doi.org/10.1016/j.jcis.2023.11.133
30 J Q Chi , J Y Xie , W W Zhang , B Dong , J F Qin , X Y Zhang , J H Lin , Y M Chai , C G Liu . Chai Y M. N-Doped sandwich-structured Mo2C@C@Pt interface with ultralow Pt loading for pH-universal hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2019, 11(4): 4047–4056
https://doi.org/10.1021/acsami.8b20209
31 L F Lai , J R Potts , D Zhan , L Wang , C K Poh , C H Tang , H Gong , Z X Shen , J Y Lin , R S Ruoff . Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 2012, 5(7): 7936–7942
https://doi.org/10.1039/c2ee21802j
32 C Wu , D Liu , H Li , J H Li . Molybdenum carbide-decorated metallic cobalt@nitrogen-doped carbon polyhedrons for enhanced electrocatalytic hydrogen evolution. Small, 2018, 14(16): 1704227
https://doi.org/10.1002/smll.201704227
33 H J Liu , S Zhang , Y M Chai , B Dong . Ligand modulation of active sites to promote cobalt-doped 1T-MoS2 electrocatalytic hydrogen evolution in alkaline media. Angewandte Chemie International Edition, 2023, 62(48): 202313845
https://doi.org/10.1002/anie.202313845
34 Q S Gao , W B Zhang , Z P Shi , L C Yang , Y Tang . Structural design and electronic modulation of transition metal-carbide electrocatalysts toward efficient hydrogen evolution. Advanced Materials, 2019, 31(2): 1802880
https://doi.org/10.1002/adma.201802880
35 M S Faber , S Jin . Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy & Environmental Science, 2014, 7(11): 3519–3542
https://doi.org/10.1039/C4EE01760A
36 J Q Chi , Y M Chai , X Shang , B Dong , C G Liu , W J Zhang , Z Jin . Heterointerface engineering of trilayer-shelled ultrathin MoS2/MoP/N-doped carbon hollow nanobubbles for efficient hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(48): 24783–24792
https://doi.org/10.1039/C8TA08753A
37 N N Chen , W B Zhang , J C Zeng , L Q He , D Li , Q S Gao . Plasma-engineered MoP with nitrogen doping: electron localization toward efficient alkaline hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268: 118441
https://doi.org/10.1016/j.apcatb.2019.118441
38 X Z Chen , J Qi , P Wang , C Li , X Chen , C H Liang . Polyvinyl alcohol protected Mo2C/Mo2N multicomponent electrocatalysts with controlled morphology for hydrogen evolution reaction in acid and alkaline medium. Electrochimica Acta, 2018, 273: 239–247
https://doi.org/10.1016/j.electacta.2018.04.033
39 Y Zang , B P Yang , A Li , C G Liao , G Chen , M Liu , X H Liu , R Z Ma , N Zhang . Tuning interfacial active sites over porous Mo2N-supported cobalt sulfides for efficient hydrogen evolution reactions in acid and alkaline electrolytes. ACS Applied Materials & Interfaces, 2021, 13(35): 41573–41583
https://doi.org/10.1021/acsami.1c10060
40 H J Yan , Y Xie , Y Q Jiao , A P Wu , C G Tian , X M Zhang , L Wang , H G Fu . Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution. Advanced Materials, 2018, 30(2): 1704156
https://doi.org/10.1002/adma.201704156
41 Q Q Du , R H Zhao , T Y Guo , L Liu , X J Chen , J Zhang , J P Du , J P Li , L Q Mai , T Asefa . Highly dispersed Mo2C nanodots in carbon nanocages derived from Mo-based xerogel: efficient electrocatalysts for hydrogen evolution. Small Methods, 2021, 5(11): 2100334
https://doi.org/10.1002/smtd.202100334
42 W Liu , X T Wang , J K Qu , X L Liu , Z F Zhang , Y Z Guo , H Y Yin , D H Wang . Tuning Ni dopant concentration to enable co-deposited superhydrophilic self-standing Mo2C electrode for high-efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2022, 307: 121–201
https://doi.org/10.1016/j.apcatb.2022.121201
43 J Y Qin , C Xi , R Zhang , T Liu , P C Zou , D Y Wu , Q J Guo , J Mao , H L Xin , J Yang . Activating edge-Mo of 2H-MoS2 via coordination with pyridinic N–C for pH-universal hydrogen evolution electrocatalysis. ACS Catalysis, 2021, 11(8): 4486–4497
https://doi.org/10.1021/acscatal.0c04415
44 T Ouyang , Y Q Ye , C Y Wu , K Xiao , Z Q Liu . Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and beta-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angewandte Chemie International Edition, 2019, 58(15): 4923–4928
https://doi.org/10.1002/anie.201814262
45 X B Hou , H M Zhou , M Zhao , Y B Cai , Q F Wei . MoS2 nanoplates embedded in Co-N-doped carbon nanocages as efficient catalyst for HER and OER. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5724–5733
https://doi.org/10.1021/acssuschemeng.0c00810
46 C Y Wang , W J Zhao , H X Jiang , M Y Cui , Y Jin , R X Sun , X F Lin , L L Zhang . Molybdenum disulfide composite materials with encapsulated copper nanoparticles as hydrogen evolution catalysts. RSC Advances, 2022, 12(21): 13393–13400
https://doi.org/10.1039/D2RA02012B
47 J L Wei , L Xu , L H Hu , T J Wang , Y F Ma . Dual-doping strategy for enhancing hydrogen evolution on molybdenum carbide catalysts. Catalysts, 2023, 13(6): 931
https://doi.org/10.3390/catal13060931
48 P R Chen , L Z Ouyang , C G Lang , H Zhong , J W Liu , H Wang , Z G Huang , M Zhu . All-pH hydrogen evolution by heterophase molybdenum carbides prepared via mechanochemical synthesis. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3585–3593
https://doi.org/10.1021/acssuschemeng.2c05547
49 Y Qiu , J Z Liu , M X Sun , J F Yang , J Z Liu , X Y Zhang , X J Liu , L X Zhang . Rational design of electrocatalyst with abundant Co/MoN heterogeneous domains for accelerating hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2022, 41: 2207040–2207045
50 M Y Ma , H Z Yu , L M Deng , L Q Wang , S Y Liu , H Pan , J W Ren , M Y Maximov , F Hu , S J Peng . Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting. Tungsten, 2023, 5(4): 589–597
https://doi.org/10.1007/s42864-023-00212-6
[1] FCE-23095-OF-GJ_suppl_1 Download
[1] Na Xing, Nan Gao, Panbin Ye, Xiaowei Yang, Haifeng Wang, Jijun Zhao. Bilayer borophene: an efficient catalyst for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2024, 18(3): 26-.
[2] Yongji Qin, Huijie Cao, Qian Liu, Shaoqing Yang, Xincai Feng, Hao Wang, Meiling Lian, Dongxing Zhang, Hua Wang, Jun Luo, Xijun Liu. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting[J]. Front. Chem. Sci. Eng., 2024, 18(1): 6-.
[3] Zihuan Yu, Haiqing Yan, Chaonan Wang, Zheng Wang, Huiqin Yao, Rong Liu, Cheng Li, Shulan Ma. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(4): 437-448.
[4] Xuanze Li, Wenyan Tian, Caichao Wan, Sulai Liu, Xinyi Liu, Jiahui Su, Huayun Chai, Yiqiang Wu. Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered double hydroxide for high-performance nonenzymatic glucose sensors[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1593-1607.
[5] Lihong Chen, Ruxin Deng, Shaoshi Guo, Zihuan Yu, Huiqin Yao, Zhenglong Wu, Keren Shi, Huifeng Li, Shulan Ma. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 102-115.
[6] Folin Liu, Shaohua Feng, Siyuan Xiu, Bin Yang, Yang Hou, Lecheng Lei, Zhongjian Li. Co anchored on porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO2 in H2-mediated microbial electrosynthesis[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1761-1771.
[7] Vishal Kandathil, Akshay Moolakkil, Pranav Kulkarni, Alaap Kumizhi Veetil, Manjunatha Kempasiddaiah, Sasidhar Balappa Somappa, R. Geetha Balakrishna, Siddappa A. Patil. Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1514-1525.
[8] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[9] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[10] Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong. Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution reaction electrocatalyst[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1134-1146.
[11] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[12] Shenghua Ye, Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
[13] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[14] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[15] Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas[J]. Front. Chem. Sci. Eng., 2017, 11(4): 613-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed