Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (1) : 6    https://doi.org/10.1007/s11705-023-2373-1
RESEARCH ARTICLE
Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting
Yongji Qin1, Huijie Cao2,3, Qian Liu4, Shaoqing Yang1, Xincai Feng1, Hao Wang5, Meiling Lian6, Dongxing Zhang1, Hua Wang1, Jun Luo1(), Xijun Liu3()
1. ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
2. Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
3. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
4. Institute for Advanced Study, Chengdu University, Chengdu 610106, China
5. China National Coal Group Corporation, Beijing 100120, China
6. Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
 Download: PDF(6891 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Layered double hydroxides have demonstrated great potential for the oxygen evolution reaction, which is a crucial half-reaction of overall water splitting. However, it remains challenging to apply layered double hydroxides in other electrochemical reactions with high efficiency and stability. Herein, we report two-dimensional multifunctional layered double hydroxides derived from metal-organic framework sheet precursors supported by nanoporous gold with high porosity, which exhibit appealing performances toward oxygen/hydrogen evolution reactions, hydrazine oxidation reaction, and overall hydrazine splitting. The as-prepared catalyst only requires an overpotential of 233 mV to reach 10 mA·cm–2 toward oxygen evolution reaction. The overall hydrazine splitting cell only needs a cell voltage of 0.984 V to deliver 10 mA·cm–2, which is far more superior than that of the overall water splitting system (1.849 V). The appealing performances of the catalyst can be contributed to the synergistic effect between the metal components of the layered double hydroxides and the supporting effect of the nanoporous gold substrate, which could endow the sample with high surface area and excellent conductivity, resulting in superior activity and stability.

Keywords layered double hydroxide      oxygen evolution reaction      hydrazine oxidation reaction      overall hydrazine splitting      hydrogen production     
Corresponding Author(s): Jun Luo,Xijun Liu   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Just Accepted Date: 09 October 2023   Issue Date: 21 November 2023
 Cite this article:   
Yongji Qin,Huijie Cao,Qian Liu, et al. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting[J]. Front. Chem. Sci. Eng., 2024, 18(1): 6.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2373-1
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I1/6
Fig.1  Schematic illustration of the fabrication process of the NPG-HS-LDH.
Fig.2  (a) TEM, (b) SEM, (c) XRD, (d) HAADF-STEM and elemental mapping images of the NPG-HS-LDH.
Fig.3  XPS data of the NPG-HS-LDH: (a) XPS survey spectrum; HR-XPS spectra of the (b) Ni 2p, (c) Co 2p, (d) Fe 2p, (e) Cu 2p and (f) Au 4f.
Fig.4  The electrochemical OER performances of the as-prepared samples. (a) Polarization curves; (b) Tafel plots; (c) comparison diagram of overpotentials and Tafel slopes; (d) double-layer capacitances (Cdl); (e) EIS spectra. (f) stability test at constant current density of 10 mA·cm–2 of the NPG-HS-LDH.
Fig.5  (a) HzOR performance of the NPG-HS-LDH; (b) schematic illustration of the OHzS device; (c) OWS and OHzS LSV curves of the NPG-HS-LDH taken in a two-electrode system; (d) stability test of the NPG-HS-LDH.
1 A Han , B Wang , A Kumar , Y Qin , J Jin , X Wang , C Yang , B Dong , Y Jia , J Liu . et al.. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods, 2019, 3(9): 1800471
https://doi.org/10.1002/smtd.201800471
2 H F Wang , L Chen , H Pang , S Kaskel , Q Xu . MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49(5): 1414–1448
https://doi.org/10.1039/C9CS00906J
3 Y Kang , O Cretu , J Kikkawa , K Kimoto , H Nara , A S Nugraha , H Kawamoto , M Eguchi , T Liao , Z Sun . et al.. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nature Communications, 2023, 14(1): 4182
https://doi.org/10.1038/s41467-023-39157-2
4 H Wang , B Wang , Y Bian , L Dai . Enhancing photocatalytic activity of graphitic carbon nitride by codoping with P and C for efficient hydrogen generation. ACS Applied Materials & Interfaces, 2017, 9(26): 21730–21737
https://doi.org/10.1021/acsami.7b02445
5 H Wang , Y Bian , J Hu , L Dai . Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Applied Catalysis B: Environmental, 2018, 238: 592–598
https://doi.org/10.1016/j.apcatb.2018.07.023
6 Q Zhang , K Lian , Q Liu , G Qi , S Zhang , J Luo , X Liu . High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. Journal of Colloid and Interface Science, 2023, 646: 844–854
https://doi.org/10.1016/j.jcis.2023.05.074
7 C X Zhao , J N Liu , J Wang , D Ren , B Q Li , Q Zhang . Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50(13): 7745–7778
https://doi.org/10.1039/D1CS00135C
8 W Liu , D Zheng , T Deng , Q Chen , C Zhu , C Pei , H Li , F Wu , W Shi , S W Yang . et al.. Boosting electrocatalytic activity of 3d-block metal (hydro)oxides by ligand-induced conversion. Angewandte Chemie International Edition, 2021, 60(19): 10614–10619
https://doi.org/10.1002/anie.202100371
9 H Chen , S Zhang , Q Liu , P Yu , J Luo , G Hu , X Liu . CoSe2 nanocrystals embedded into carbon framework as efficient bifunctional catalyst for alkaline seawater splitting. Inorganic Chemistry Communications, 2022, 146: 110170
https://doi.org/10.1016/j.inoche.2022.110170
10 M P S Santos , D P Hanak . Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1291–1317
https://doi.org/10.1007/s11705-022-2151-5
11 H Cao , T Wei , Q Liu , S Zhang , Y Qin , H Wang , J Luo , X Liu . Hollow carbon cages derived from polyoxometalate-encapsuled metal-organic frameworks for energy-saving hydrogen production. ChemCatChem, 2023, 15(5): e202201615
https://doi.org/10.1002/cctc.202201615
12 H Shen , T Wei , Q Liu , S Zhang , J Luo , X Liu . Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. Journal of Colloid and Interface Science, 2023, 634: 730–736
https://doi.org/10.1016/j.jcis.2022.12.067
13 T Wei , W Liu , S Zhang , Q Liu , J Luo , X Liu . A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chemical Communications, 2023, 59(4): 442–445
https://doi.org/10.1039/D2CC05722K
14 H Zhang , G Qi , W Liu , S Zhang , Q Liu , J Luo , X Liu . Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution. Inorganic Chemistry Frontiers, 2023, 10(8): 2423–2429
https://doi.org/10.1039/D3QI00013C
15 H Liu , Y Liu , M Li , X Liu , J Luo . Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production. Materials Today. Advances, 2020, 7: 100083
https://doi.org/10.1016/j.mtadv.2020.100083
16 T Wei , G Meng , Y Zhou , Z Wang , Q Liu , J Luo , X Liu . Amorphous Fe-Co oxide as an active and durable bifunctional catalyst for the urea-assisted H2 evolution reaction in seawater. Chemical Communications, 2023, 59(66): 9992–9995
https://doi.org/10.1039/D3CC02419A
17 Z Jiang , Z Li , Z Qin , H Sun , X Jiao , D Chen . LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale, 2013, 5(23): 11770–11775
https://doi.org/10.1039/c3nr03829g
18 L Zhou , M Shao , M Wei , X Duan . Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26(6): 1094–1106
https://doi.org/10.1016/j.jechem.2017.09.015
19 Y Zhao , G I N Waterhouse , G Chen , X Xiong , L Z Wu , C H Tung , T Zhang . Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48(7): 1972–2010
https://doi.org/10.1039/C8CS00607E
20 D Zhou , Z Cai , Y Jia , X Xiong , Q Xie , S Wang , Y Zhang , W Liu , H Duan , X Sun . Activating basal plane in NiFe layered double hydroxide by Mn2+ doping for efficient and durable oxygen evolution reaction. Nanoscale Horizons, 2018, 3(5): 532–537
https://doi.org/10.1039/C8NH00121A
21 D Zhou , P Li , X Lin , A Mckinley , Y Kuang , W Liu , W F Lin , X Sun , X Duan . Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chemical Society Reviews, 2021, 50(15): 8790–8817
https://doi.org/10.1039/D1CS00186H
22 Y Li , L Zhang , X Xiang , D Yan , F Li . Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13250–13258
https://doi.org/10.1039/C4TA01275E
23 Y Tang , R Wang , Y Yang , D Yan , X Xiang . Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Applied Materials & Interfaces, 2016, 8(30): 19446–19455
https://doi.org/10.1021/acsami.6b04937
24 Y Tang , X Fang , X Zhang , G Fernandes , Y Yan , D Yan , X Xiang , J He . Space-confined earth-abundant bifunctional electrocatalyst for high-efficiency water splitting. ACS Applied Materials & Interfaces, 2017, 9(42): 36762–36771
https://doi.org/10.1021/acsami.7b10338
25 H Sun , L Chen , Y Lian , W Yang , L Lin , Y Chen , J Xu , D Wang , X Yang , M H Rummerli . et al.. Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation. Advanced Materials, 2020, 32(52): 2006784
https://doi.org/10.1002/adma.202006784
26 J Zhang , L Yu , Y Chen , X F Lu , S Gao , X W D Lou . Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Advanced Materials, 2020, 32(16): 1906432
https://doi.org/10.1002/adma.201906432
27 Y Qin , B Wang , Y Qiu , X Liu , G Qi , S Zhang , A Han , J Luo , J Liu . Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction. Chemical Communications, 2021, 57(22): 2752–2755
https://doi.org/10.1039/D0CC07643K
28 Y Kang , Y Tang , L Zhu , B Jiang , X Xu , O Guselnikova , H Li , T Asahi , Y Yamauchi . Porous nanoarchitectures of nonprecious metal borides: from controlled synthesis to heterogeneous catalyst applications. ACS Catalysis, 2022, 12(23): 14773–14793
https://doi.org/10.1021/acscatal.2c03480
29 D A Patel , A M Weller , R B Chevalier , C A Karos , E C Landis . Ordering and defects in self-assembled monolayers on nanoporous gold. Applied Surface Science, 2016, 387: 503–512
https://doi.org/10.1016/j.apsusc.2016.05.149
30 Y Xue , F Scaglione , F Celegato , P Denis , H J Fecht , P Rizzi , L Battezzati . Shape controlled gold nanostructures on de-alloyed nanoporous gold with excellent SERS performance. Chemical Physics Letters, 2018, 709: 46–51
https://doi.org/10.1016/j.cplett.2018.08.044
31 B Jiang , Y Guo , F Sun , S Wang , Y Kang , X Xu , J Zhao , J You , M Eguchi , Y Yamauchi . et al.. Nanoarchitectonics of metallene materials for electrocatalysis. ACS Nano, 2023, 17(14): 13017–13043
https://doi.org/10.1021/acsnano.3c01380
32 S H Kim . Nanoporous gold for energy applications. Chemical Record, 2021, 21(5): 1199–1215
https://doi.org/10.1002/tcr.202100015
33 J S Sun , Y T Zhou , R Q Yao , H Shi , Z Wen , X Y Lang , Q Jiang . Nanoporous gold supported chromium-doped NiFe oxyhydroxides as high-performance catalysts for the oxygen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(16): 9690–9697
https://doi.org/10.1039/C9TA01027K
34 M Tian , S Shi , Y Shen , H Yin . PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell. Electrochimica Acta, 2019, 293: 390–398
https://doi.org/10.1016/j.electacta.2018.10.048
35 Y Qin , F Wang , J Shang , M Iqbal , A Han , X Sun , H Xu , J Liu . Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Energy Chemistry, 2020, 43: 104–107
https://doi.org/10.1016/j.jechem.2019.08.014
36 M Yang , J Sun , Y Qin , H Yang , S Zhang , X Liu , J Luo . Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Science China Materials, 2022, 65(2): 536–542
https://doi.org/10.1007/s40843-021-1890-7
37 G Yilmaz , K M Yam , C Zhang , H J Fan , G W Ho . In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Advanced Materials, 2017, 29(26): 1606814
https://doi.org/10.1002/adma.201606814
38 Y Yang , L Dang , M J Shearer , H Sheng , W Li , J Chen , P Xiao , Y Zhang , R J Hamers , S Jin . Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2018, 8(15): 1703189
https://doi.org/10.1002/aenm.201703189
39 M S Burke , M G Kast , L Trotochaud , A M Smith , S W Boettcher . Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. Journal of the American Chemical Society, 2015, 137(10): 3638–3648
https://doi.org/10.1021/jacs.5b00281
40 P Hao , X Dong , H Wen , R Xu , J Xie , Q Wang , G Cui , J Tian , B Tang . In-situ assembly of 2D/3D porous nickel cobalt sulfide solid solution as superior pre-catalysts to boost multi-functional electrocatalytic oxidation. Chinese Chemical Letters, 2023, 34(5): 107843
https://doi.org/10.1016/j.cclet.2022.107843
41 W Hu , M Zheng , H Duan , W Zhu , Y Wei , Y Zhang , K Pan , H Pang . Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chinese Chemical Letters, 2022, 33(3): 1412–1416
https://doi.org/10.1016/j.cclet.2021.08.025
42 X Zhou , T Yang , T Li , Y Zi , S Zhang , L Yang , Y Liu , J Yang , J Tang . In-situ fabrication of carbon compound NiFeMo-P anchored on nickel foam as bi-functional catalyst for boosting overall water splitting. Nano Research Energy, 2023, 2: e9120086
https://doi.org/10.26599/NRE.2023.9120086
43 M Yang , G Meng , H Li , T Wei , Q Liu , J He , L Feng , X Sun , X Liu . Bifunctional bimetallic oxide nanowires for high-efficiency electrosynthesis of 2,5-furandicarboxylic acid and ammonia. Journal of Colloid and Interface Science, 2023, 652: 155–163
https://doi.org/10.1016/j.jcis.2023.08.079
44 Z Su , Q Huang , Q Guo , S J Hoseini , F Zheng , W Chen . Metal-organic framework and carbon hybrid nanostructures: fabrication strategies and electrocatalytic application for the water splitting and oxygen reduction reaction. Nano Research Energy, 2023, 2: e9120078
https://doi.org/10.26599/NRE.2023.9120078
45 D Qi , S Liu , H Chen , S Lai , Y Qin , Y Qiu , S Dai , S Zhang , J Luo , X Liu . Rh nanoparticle functionalized heteroatom-doped hollow carbon spheres for efficient electrocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2021, 5(7): 3125–3131
https://doi.org/10.1039/D1QM00156F
46 X Han , L Zhang , X Wang , S Song , H Zhang . Recent progress on the synthesis and applications of high-entropy alloy catalysts. Nano Research Energy, 2023, 2: e9120084
https://doi.org/10.26599/NRE.2023.9120084
47 H Wei , J Si , L Zeng , S Lyu , Z Zhang , Y Suo , Y Hou . Electrochemically exfoliated Ni-doped MoS2 nanosheets for highly efficient hydrogen evolution and Zn-H2O battery. Chinese Chemical Letters, 2023, 34(1): 107144
https://doi.org/10.1016/j.cclet.2022.01.037
48 T Wang , S Gao , T Wei , Y Qin , S Zhang , J Ding , Q Liu , J Luo , X Liu . Co nanoparticles confined in mesoporous Mo/N Co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction. Chemistry, 2023, 29(23): e202204034
https://doi.org/10.1002/chem.202204034
49 M Chen , N Kitiphatpiboon , C Feng , A Abudula , Y Ma , G Guan . Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: a critical review. eScience, 2023, 3(2): 100111
50 L Chen , R Deng , S Guo , Z Yu , H Yao , Z Wu , K Shi , H Li , S Ma . Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17(1): 102–115
https://doi.org/10.1007/s11705-022-2179-6
[1] FCE-23052-OF-QY_suppl_1 Download
[1] Ying Wang, Yue Han, Ruiyang Zhao, Jishu Han, Lei Wang. Efficient flower-like ZnSe/Cu0.08Zn0.92S photocatalyst for hydrogen production application[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1301-1310.
[2] Xin Chen, Liang Luo, Shihong Huang, Xingbo Ge, Xiuyun Zhao. Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study[J]. Front. Chem. Sci. Eng., 2023, 17(5): 570-580.
[3] Qing-Hui Kong, Xian-Wei Lv, Jin-Tao Ren, Hao-Yu Wang, Xin-Lian Song, Feng Xu, Zhong-Yong Yuan. “Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygen evolution performance[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1755-1764.
[4] Xuanze Li, Wenyan Tian, Caichao Wan, Sulai Liu, Xinyi Liu, Jiahui Su, Huayun Chai, Yiqiang Wu. Hierarchically porous cellulose nanofibril aerogel decorated with polypyrrole and nickel-cobalt layered double hydroxide for high-performance nonenzymatic glucose sensors[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1593-1607.
[5] Lihong Chen, Ruxin Deng, Shaoshi Guo, Zihuan Yu, Huiqin Yao, Zhenglong Wu, Keren Shi, Huifeng Li, Shulan Ma. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 102-115.
[6] Lingtao Kong, Zhouxun Li, Hui Zhang, Mengmeng Zhang, Jiaxing Zhu, Mingli Deng, Zhenxia Chen, Yun Ling, Yaming Zhou. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1114-1124.
[7] Siliu Lyu, Muhammad Adnan Younis, Zhibin Liu, Libin Zeng, Xianyun Peng, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review[J]. Front. Chem. Sci. Eng., 2022, 16(6): 777-798.
[8] Hongtao Xie, Qin Geng, Xiaoyue Liu, Jian Mao. Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures[J]. Front. Chem. Sci. Eng., 2022, 16(3): 376-383.
[9] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[10] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[11] Huiying Quan, Kejiang Qian, Ying Xuan, Lan-Lan Lou, Kai Yu, Shuangxi Liu. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1561-1571.
[12] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[13] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[14] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[15] Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 409-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed