Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (5) : 570-580    https://doi.org/10.1007/s11705-022-2247-y
RESEARCH ARTICLE
Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study
Xin Chen1,2,3(), Liang Luo1, Shihong Huang1, Xingbo Ge1, Xiuyun Zhao4
1. Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
3. Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
4. Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland
 Download: PDF(2928 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, metal–organic frameworks are one of the potential catalytic materials for electrocatalytic applications. The oxygen reduction reaction and oxygen evolution reaction catalytic activities of heterometallic cluster-based organic frameworks are investigated using density functional theory. Firstly, the catalytic activities of heterometallic clusters are investigated. Among all heterometallic clusters, Fe2Mn–Mn has a minimum overpotential of 0.35 V for oxygen reduction reaction, and Fe2Co–Co possesses the smallest overpotential of 0.32 V for oxygen evolution reaction, respectively 100 and 50 mV lower than those of Pt(111) and RuO2(110) catalysts. The analysis of the potential gap of Fe2M clusters indicates that Fe2Mn, Fe2Co, and Fe2Ni clusters possess good bifunctional catalytic activity. Additionally, the catalytic activity of Fe2Mn and Fe2Co connected through 3,3′,5,5′-azobenzenetetracarboxylate linker to form Fe2M–PCN–Fe2M is explored. Compared with Fe2Mn–PCN–Fe2Mn, Fe2Co–PCN–Fe2Co, and isolated Fe2M clusters, the mixed-metal Fe2Co–PCN–Fe2Mn possesses excellent bifunctional catalytic activity, and the values of potential gap on the Mn and Co sites of Fe2Co–PCN–Fe2Mn are 0.69 and 0.70 V, respectively. Furthermore, the analysis of the electron structure indicates that constructing a mixed-metal cluster can efficiently enhance the electronic properties of the catalyst. In conclusion, the mixed-metal cluster strategy provides a new approach to further design and synthesize high-efficiency bifunctional electrocatalysts.

Keywords bimetallic metal–organic frameworks      bifunctional electrocatalyst      density functional theory      oxygen reduction reaction      oxygen evolution reaction     
Corresponding Author(s): Xin Chen   
About author:

*These authors equally shared correspondence to this manuscript.

Online First Date: 01 March 2023    Issue Date: 28 April 2023
 Cite this article:   
Xin Chen,Liang Luo,Shihong Huang, et al. Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study[J]. Front. Chem. Sci. Eng., 2023, 17(5): 570-580.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2247-y
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I5/570
Fig.1  (a) Optimized configuration of Fe3 cluster. The orange circle represents the location of the metal to be replaced. (b) Transition metals considered in this work. (c) Active sites of Fe2Ti cluster. The blue dotted circle represents the active site.
Active site?E*OOH/eV?E*O/eV?E*OH/eV
Fe2Ti–Ti1.66?0.44?1.72
Fe2Ti–Fe3.200.86?1.01
Fe2V–V2.07?0.48?1.14
Fe2V–Fe3.001.600.02
Fe2Cr–Cr2.220.56?0.85
Fe2Cr–Fe2.521.33?0.31
Fe2Mn–Mn3.712.690.70
Fe2Mn–Fe4.062.671.04
Fe2Co–Co4.042.841.02
Fe2Co–Fe3.973.001.00
Fe2Ni–Ni3.762.800.57
Fe2Ni–Fe3.202.320.26
Fe2Cu–Cu4.274.491.93
Fe2Cu–Fe4.293.281.19
Fe2Zn–Zn4.384.601.85
Fe2Zn–Fe4.283.281.19
Pt(111)3.661.650.88
RuO2(110)3.912.660.97
Tab.1  ?Especies values of reaction intermediates on all possible active sites of Fe2M clusters
Fig.2  Scaling relationships of (a) ?G*OOH vs. ?G*OH and (b) ?G*O vs. ?G*OH on Fe2M clusters.
Fig.3  Volcano plot of ηORR and ?ηOER as a function of ?G*OH (the square and circle symbols represent ηORR and ?ηOER, respectively). Taking ORR as an example, blue line: ηORR = 0.76?G*OH ? 0.42; orange line: ηORR = 0.60?G*OH ? 0.75; purple line: ηORR = ?0.36?G*OH ? 0.06; green line: ηORR = ??G*OH + 1.23.
ItemFe2TiFe2VFe2CrFe2MnFe2CoFe2NiFe2CuFe2Zn
HOMO/eV?4.749?4.724?4.708?5.859?5.792?5.269?5.985?6.146
LUMO/eV?3.829?4.311?4.087?5.049?4.978?4.672?5.041?4.995
Egap/eV0.9200.4130.6210.8100.8140.5970.9441.151
Tab.2  HOMO, LUMO, and Egap values of Fe2M clusters
Fig.4  Values of ?E on Fe2M clusters.
Fig.5  Optimal configurations of (a) Fe2Mn–PCN–Fe2Mn, (b) Fe2Co–PCN–Fe2Co, and (c) Fe2Co–PCN–Fe2Mn.
CatalystSite?E*OOH/eV?E*O/eV?E*OH/eV
Fe2Mn–PCN–Fe2MnMn site3.712.560.61
Fe2Co–PCN–Fe2CoCo site3.613.150.82
Fe2Co–PCN–Fe2MnMn site3.682.550.72
Co site3.682.820.98
Tab.3  ?Especies values on Fe2M–PCN–Fe2M
Fig.6  Free energy diagrams of ORR and OER on (a) Fe2Mn–PCN–Fe2Mn, (b) Fe2Co–PCN–Fe2Co, (c) Mn site of Fe2Co–PCN–Fe2Mn, and (d) Co site of Fe2Co–PCN–Fe2Mn. The PDS of ORR and OER are denoted by blue and green lines, respectively.
Fig.7  (a) The number of electrons in the 3d orbital of Mn active atoms of Fe2Co–PCN–Fe2Mn and Fe2Mn; (b) the number of electrons in the 3d orbital of Co active atoms of Fe2Co–PCN–Fe2Mn and Fe2Co. The Fermi level is set to zero. Inset is the magnified pattern near the Fermi level.
Fig.8  DOS of d orbitals for Fe2Mn and Fe2Co–PCN–Fe2Mn. The O-p refers to the p orbital of the oxygen atom of *OOH.
1 N Li, Y Nam, J Y Lee. Catalytic nature of iron–nitrogen–graphene heterogeneous catalysts for oxygen evolution reaction and oxygen reduction reaction. Applied Surface Science, 2020, 514: 146073
https://doi.org/10.1016/j.apsusc.2020.146073
2 X Zheng, X Cao, Z Sun, K Zeng, J Yan, P Strasser, X Chen, S Sun, R Yang. Indiscrete metal/metal–N–C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn–air batteries. Applied Catalysis B: Environmental, 2020, 272: 118967
https://doi.org/10.1016/j.apcatb.2020.118967
3 L Deng, Z Yang, R Li, B Chen, Q Jia, Y Zhu, Y Xia. Graphene-reinforced metal–organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1487–1499
https://doi.org/10.1007/s11705-021-2085-3
4 M T M Koper. Theory of multiple proton−electron transfer reactions and its implications for electrocatalysis. Chemical Science, 2013, 4(7): 2710–2723
https://doi.org/10.1039/c3sc50205h
5 F Sun, C Li, B Li, Y Lin. Amorphous MoS: X developed on Co(OH)2 nanosheets generating efficient oxygen evolution catalysts. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(44): 23103–23114
https://doi.org/10.1039/C7TA07729G
6 X Chen. Oxygen reduction reaction on cobalt-(n)pyrrole clusters from DFT studies. RSC Advances, 2016, 6(7): 5535–5540
https://doi.org/10.1039/C5RA23568E
7 S Zhang, F Lv, X Zhang, Y Zhang, H Zhu, H Xing, Z Mu, J Li, S Guo, E Wang. Ni@RuM (M = Ni or Co) core@shell nanocrystals with high mass activity for overall water-splitting catalysis. Science China Materials, 2019, 62(12): 1868–1876
https://doi.org/10.1007/s40843-019-9463-8
8 X Lu, L Ge, P Yang, O Levin, V Kondratiev, Z Qu, L Liu, J Zhang, M An. N-doped carbon nanosheets with ultra-high specific surface area for boosting oxygen reduction reaction in Zn−air batteries. Applied Surface Science, 2021, 562: 150114
https://doi.org/10.1016/j.apsusc.2021.150114
9 X H Yu, J L Yi, R L Zhang, F Y Wang, L Liu. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407
https://doi.org/10.1007/s11705-021-2097-z
10 C Sun, Z Li, J Yang, S Wang, X Zhong, L Wang. Two-dimensional closely packed amide polyphthalocyanine iron absorbed on Vulcan XC-72 as an efficient electrocatalyst for oxygen reduction reaction. Catalysis Today, 2020, 353: 279–286
https://doi.org/10.1016/j.cattod.2018.01.029
11 Y Zhang, X Chen, H Zhang, X Ge. Screening of catalytic oxygen reduction reaction activity of 2, 9-dihalo-1, 10-phenanthroline metal complexes: The role of transition metals and halogen substitution. Journal of Colloid and Interface Science, 2022, 609: 130–138
https://doi.org/10.1016/j.jcis.2021.11.148
12 X Chen, F Sun, F Bai, Z Xie. DFT study of the two dimensional metal–organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Applied Surface Science, 2019, 471: 256–262
https://doi.org/10.1016/j.apsusc.2018.12.014
13 H Zhang, W Zhao, Y Wu, Y Wang, M Zou, A Cao. Dense monolithic MOF and carbon nanotube hybrid with enhanced volumetric and areal capacities for lithium–sulfur battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(15): 9195–9201
https://doi.org/10.1039/C9TA00485H
14 M Witman, S Ling, S Anderson, L Tong, K C Stylianou, B Slater, B Smit, M Haranczyk. In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chemical Science, 2016, 7(9): 6263–6272
https://doi.org/10.1039/C6SC01477A
15 Y Ban, M Zhao, W Yang. Metal–organic framework-based CO2 capture: from precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14(2): 188–215
https://doi.org/10.1007/s11705-019-1872-6
16 Z Zhang, Y Chen, Z Wang, C Hu, D Ma, W Chen, T Ao. Effective and structure-controlled adsorption of tetracycline hydrochloride from aqueous solution by using Fe-based metal–organic frameworks. Applied Surface Science, 2021, 542: 148662
https://doi.org/10.1016/j.apsusc.2020.148662
17 M Gu, S C Wang, C Chen, D Xiong, F Y Yi. Iron-based metal–organic framework system as an efficient bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions. Inorganic Chemistry, 2020, 59(9): 6078–6086
https://doi.org/10.1021/acs.inorgchem.0c00100
18 Q Shao, J Yang, X Huang. The design of water oxidation electrocatalysts from nanoscale metal–organic frameworks. Chemistry, 2018, 24(27): 15143–15155
https://doi.org/10.1002/chem.201801572
19 Z Gao, Z W Yu, F Q Liu, C Yang, Y H Yuan, Y Yu, F Luo. Stable iron hydroxide nanosheets@cobalt-metal−organic-framework heterostructure for efficient electrocatalytic oxygen evolution. ChemSusChem, 2019, 12(20): 4623–4628
https://doi.org/10.1002/cssc.201902118
20 A Kirchon, P Zhang, J Li, E A Joseph, W Chen, H C Zhou. Effect of isomorphic metal substitution on the fenton and photo-fenton degradation of methylene blue using Fe-based metal–organic frameworks. ACS Applied Materials & Interfaces, 2020, 12(8): 9292–9299
https://doi.org/10.1021/acsami.9b21408
21 K Gopalsamy, R Babarao. Heterometallic metal organic frameworks for air separation: a computational study. Industrial & Engineering Chemistry Research, 2020, 59(35): 15718–15731
https://doi.org/10.1021/acs.iecr.0c02449
22 S Li, Y Gao, N Li, L Ge, X Bu, P Feng. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy & Environmental Science, 2021, 14(4): 1897–1927
https://doi.org/10.1039/D0EE03697H
23 D Senthil Raja, H W Lin, S Y Lu. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019, 57: 1–13
https://doi.org/10.1016/j.nanoen.2018.12.018
24 W Zhou, D D Huang, Y P Wu, J Zhao, T Wu, J Zhang, D S Li, C Sun, P Feng, X Bu. Stable hierarchical bimetal−organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2019, 58(13): 4227–4231
https://doi.org/10.1002/anie.201813634
25 X L Wang, L Z Dong, M Qiao, Y J Tang, J Liu, Y Li, S L Li, J X Su, Y Q Lan. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal–organic framework system. Angewandte Chemie International Edition, 2018, 57(31): 9660–9664
https://doi.org/10.1002/anie.201803587
26 W Liu, L Ye, X Liu, L Yuan, J Jiang, C Yan. Hydrothermal syntheses, structures and luminescent properties of d10 metal–organic frameworks based on rigid 3,3′,5,5′-azobenzenetetracarboxylic acid. CrystEngComm, 2008, 10(10): 1395–1403
https://doi.org/10.1039/b806360e
27 Y P Li, L J Zhang, W J Ji. Synthesis, characterization, crystal structure of magnesium compound based 3,3′,5,5′-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation. Journal of Molecular Structure, 2017, 1133: 607–614
https://doi.org/10.1016/j.molstruc.2016.12.005
28 R E Osta, M Frigoli, J Marrot, N Guillou, H Chevreau, R I Walton, F Millange. A lithiumeorganic framework with coordinatively unsaturated metal sites that reversibly binds water. Chemical Communications, 2012, 48(86): 10639–10641
https://doi.org/10.1039/c2cc35861a
29 D Saha, T Maity, S Koner. A magnesium-based multifunctional metal–organic framework: synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study. Dalton Transactions, 2013, 42(38): 13912–13922
https://doi.org/10.1039/c3dt51509e
30 H Dong, X Zhang, X C Yan, Y X Wang, X Sun, G Zhang, Y Feng, F M Zhang. Mixed-metal-cluster strategy for boosting electrocatalytic oxygen evolution reaction of robust metal–organic frameworks. ACS Applied Materials & Interfaces, 2019, 11(48): 45080–45086
https://doi.org/10.1021/acsami.9b14995
31 B Delley. From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
https://doi.org/10.1063/1.1316015
32 J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
33 L Z Dong, L Zhang, J Liu, Q Huang, M Lu, W X Ji, Y Q Lan. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angewandte Chemie International Edition, 2020, 59(7): 2659–2663
https://doi.org/10.1002/anie.201913284
34 X Chen, F Ge, J Chang, N Lai. Exploring the catalytic activity of metal-fullerene C58M (M = Mn, Fe, Co, Ni, and Cu) toward oxygen reduction and CO oxidation by density functional theory. International Journal of Energy Research, 2019, 43(13): 7375–7383
35 B Modak, K Srinivasu, S K Ghosh. Exploring metal decorated porphyrin-like porous fullerene as catalyst for oxygen reduction reaction: a DFT study. International Journal of Hydrogen Energy, 2017, 42(4): 2278–2287
https://doi.org/10.1016/j.ijhydene.2016.12.017
36 F Calle-Vallejo, J I Martínez, J Rossmeisl. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Physical Chemistry Chemical Physics, 2011, 13(34): 15639–15643
https://doi.org/10.1039/c1cp21228a
37 X Chen, H Zhang, X Li. Mechanisms of fullerene and single-walled carbon nanotube composite as the metal-free multifunctional electrocatalyst for the oxygen reduction, oxygen evolution, and hydrogen evolution. Molecular Catalysis, 2021, 502: 111383
https://doi.org/10.1016/j.mcat.2020.111383
38 X Zhao, X Liu, B Huang, P Wang, Y Pei. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(42): 24583–24593
https://doi.org/10.1039/C9TA08661G
39 Y Ma, F Jin, Y H Hu. Bifunctional electrocatalysts for oxygen reduction and oxygen evolution: a theoretical study on 2D metallic WO2-supported single atom (Fe, Co, or Ni) catalysts. Physical Chemistry Chemical Physics, 2021, 23(24): 13687–13695
https://doi.org/10.1039/D1CP00540E
40 B Wei, Z Fu, D Legut, T C Germann, S Du, H Zhang, J S Francisco, R Zhang. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Advanced Materials, 2021, 33(40): 2102595
https://doi.org/10.1002/adma.202102595
41 S Surblé, C Serre, C Mellot-Draznieks, F Millange, G Férey. A new isoreticular class of metal–organic-frameworks with the MIL-88 topology. Chemical Communications, 2006, (3): 284–286
https://doi.org/10.1039/B512169H
42 X Chen, F Sun, J Chang. Cobalt or nickel doped SiC nanocages as efficient electrocatalyst for oxygen reduction reaction: a computational prediction. Journal of the Electrochemical Society, 2017, 164(6): F616–F619
https://doi.org/10.1149/2.1211706jes
43 J Rossmeisl, Z W Qu, H Zhu, G J Kroes, J K Nørskov. Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007, 607(1-2): 83–89
https://doi.org/10.1016/j.jelechem.2006.11.008
44 A Kulkarni, S Siahrostami, A Patel, J K Nørskov. Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews, 2018, 118(5): 2302–2312
https://doi.org/10.1021/acs.chemrev.7b00488
45 T He, S K Matta, G Will, A Du. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods, 2019, 3(9): 1800419
https://doi.org/10.1002/smtd.201800419
46 X Chen, S Huang, H Zhang. Bimetallic alloys encapsulated in fullerenes as efficient oxygen reduction or oxygen evolution reaction catalysts: a density functional theory study. Journal of Alloys and Compounds, 2022, 894: 162508
https://doi.org/10.1016/j.jallcom.2021.162508
47 J I Aihara. Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. Journal of Physical Chemistry A, 1999, 103(37): 7487–7495
https://doi.org/10.1021/jp990092i
48 F Ge, Q Qiao, X Chen, Y Wu. Probing the catalytic activity of M-N4−xOx embedded graphene for the oxygen reduction reaction by density functional theory. Frontiers of Chemical Science and Engineering, 2020, 15(5): 1206–1216
https://doi.org/10.1007/s11705-020-2017-7
49 D M Morales, M A Kazakova, S Dieckhöfer, A G Selyutin, G V Golubtsov, W Schuhmann, J Masa. Trimetallic Mn−Fe−Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Advanced Functional Materials, 2020, 30(6): 1905992
https://doi.org/10.1002/adfm.201905992
50 G Fu, Z Cui, Y Chen, Y Li, Y Tang, J B Goodenough. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Advanced Energy Materials, 2017, 7(1): 1601172
https://doi.org/10.1002/aenm.201601172
51 Y Gorlin, T F Jaramillo. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. Journal of the American Chemical Society, 2010, 132(39): 13612–13614
https://doi.org/10.1021/ja104587v
52 T Tang, W J Jiang, S Niu, N Liu, H Luo, Y Y Chen, S F Jin, F Gao, L J Wan, J S Hu. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139(24): 8320–8328
https://doi.org/10.1021/jacs.7b03507
[1] FCE-22072-OF-CX_suppl_1 Download
[1] Yong Zheng, Mingjin Li, Yongye Wang, Niu Huang, Wei Liu, Shan Chen, Xuepeng Ni, Kunming Li, Siwei Xiong, Yi Shen, Siliang Liu, Baolong Zhou, Niaz Ali Khan, Liqun Ye, Chao Zhang, Tianxi Liu. Floret-like Fe–Nx nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer boosting oxygen electroreduction[J]. Front. Chem. Sci. Eng., 2023, 17(5): 525-535.
[2] Shengwang Su, Li Sun, Feng Xie, Jialong Qian, Yihe Zhang. Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor[J]. Front. Chem. Sci. Eng., 2023, 17(5): 491-503.
[3] Ji Liu, Shuang-Wei Yang, Wei Zhao, Yu-Long Wu, Bin Hu, Si-Han Hu, Shan-Wei Ma, Qiang Lu. Theoretical study on the mechanism of sulfur migration to gas in the pyrolysis of benzothiophene[J]. Front. Chem. Sci. Eng., 2023, 17(3): 334-346.
[4] Fei Wang, Jian Mao. Role of oxygen vacancy inducer for graphene in graphene-containing anodes[J]. Front. Chem. Sci. Eng., 2023, 17(3): 326-333.
[5] Lihong Chen, Ruxin Deng, Shaoshi Guo, Zihuan Yu, Huiqin Yao, Zhenglong Wu, Keren Shi, Huifeng Li, Shulan Ma. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 102-115.
[6] Lingtao Kong, Zhouxun Li, Hui Zhang, Mengmeng Zhang, Jiaxing Zhu, Mingli Deng, Zhenxia Chen, Yun Ling, Yaming Zhou. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1114-1124.
[7] Hongtao Xie, Qin Geng, Xiaoyue Liu, Jian Mao. Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures[J]. Front. Chem. Sci. Eng., 2022, 16(3): 376-383.
[8] Wang Li, Wen-Ying Li, Xing-Bao Wang, Jie Feng. Regulation of radicals by hydrogen-donor solvent in direct coal liquefaction[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1689-1699.
[9] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[10] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[11] Fan Ge, Qingan Qiao, Xin Chen, You Wu. Probing the catalytic activity of M-N4xOx embedded graphene for the oxygen reduction reaction by density functional theory[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1206-1216.
[12] Kai Cai, Ying Li, Hongbao Shen, Zaizhe Cheng, Shouying Huang, Yue Wang, Xinbin Ma. A density functional theory study on the mechanism of dimethyl ether carbonylation over heteropolyacids catalyst[J]. Front. Chem. Sci. Eng., 2021, 15(2): 319-329.
[13] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[14] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[15] Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan. Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction[J]. Front. Chem. Sci. Eng., 2018, 12(4): 790-797.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed