Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (3) : 326-333    https://doi.org/10.1007/s11705-022-2213-8
RESEARCH ARTICLE
Role of oxygen vacancy inducer for graphene in graphene-containing anodes
Fei Wang, Jian Mao()
College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
 Download: PDF(4409 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Currently, graphene is only considered as a conductive additive and expansion inhibitor in oxides/graphene composite anodes. In this study, a new graphene role (oxygen vacancy inducer) in graphene/oxides composites anodes, which are treated at high-temperature, is proposed and verified using experiments and density functional theory calculations. During high-temperature processing, graphene forms carbon vacancies due to increased thermal vibration, and the carbon vacancies capture oxygen atoms, facilitating the formation of oxygen vacancies in oxides. Moreover, the induced oxygen vacancy concentrations can be regulated by sintering temperatures, and the behavior is unaffected by oxide crystal structures (crystalline and amorphous) and morphology (size and shape). According to density functional theory calculations and electrochemical measurements, the oxygen vacancies enhance the lithium-ion storage performance. The findings can result in a better understanding of graphene’s roles in graphene/oxide composite anodes, and provide a new method for designing high-performance oxide anodes.

Keywords oxide      oxygen vacancy      graphene      anode      density functional theory calculation     
Corresponding Author(s): Jian Mao   
Online First Date: 15 December 2022    Issue Date: 17 March 2023
 Cite this article:   
Fei Wang,Jian Mao. Role of oxygen vacancy inducer for graphene in graphene-containing anodes[J]. Front. Chem. Sci. Eng., 2023, 17(3): 326-333.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2213-8
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I3/326
Fig.1  EPR spectra of (a) SiO2 and SiO2/G-500, (b) ZnO and ZnO/G-500, (c) Fe2O3 and Fe2O3/G-500, (d) TiO2 and TiO2/G-500, (e) SiO and SiO/G-500, and (f) ZnO/G-300, ZnO/G-500, and ZnO/G-700.
Fig.2  Band structures and DOS profiles of (a) SiO2, (b) SiO2-Ov, (c) ZnO, (d) ZnO-Ov, (e) Fe2O3, (f) Fe2O3-Ov, (g) TiO2, and (h) TiO2-Ov.
Fig.3  (a) In situ Raman spectra of graphene at 500 °C and room temperature. (b) AIMD calculations of graphene at presupposed 298 and 573 K, and (c) the corresponding C–C bond length of graphene (marked in (b)) within 5 fs. (d) Energy barriers for forming an oxygen vacancy in ZnO with help of carbon-vacancy-containing graphene. (e) Energy barriers for forming an oxygen vacancy in ZnO.
Fig.4  (a) Rate and (b) cycling (0.5 A·g?1) performance of ZnO/G, ZnO/G-300, ZnO/G-500, and ZnO/G-700. (c) EIS profiles of the four electrodes. (d) ?Et/?Es values of the four electrodes during the discharging time.
Fig.5  (a) Ead of ZnO and ZnO-Ov for Li+. A possible Li+ diffusion pathway in (b) ZnO and (c) ZnO-Ov, and corresponding energy barrier profiles. (d) Rate performance of Fe2O3/G-500 and Fe2O3/G. (e) Rate performance of TiO2/G-500 and TiO2/G.
1 J Zhu, H Ren, Y Bi. Opacified graphene-doped silica aerogels with controllable thermal conductivity. Journal of Porous Materials, 2018, 25(6): 1697–1705
https://doi.org/10.1007/s10934-018-0583-6
2 F Wang, X Qi, L Mao, J Mao. Aligned ferric oxide/graphene with strong coupling effect for high-performance anode. ACS Applied Energy Materials, 2021, 4(1): 331–340
https://doi.org/10.1021/acsaem.0c02275
3 J Wang, Z Wang, B Huang, Y Ma, Y Liu, X Qin, X Zhang, Y Dai. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Applied Materials & Interfaces, 2012, 4(8): 4024–4030
https://doi.org/10.1021/am300835p
4 J Su, M Cao, L Ren, C Hu. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties. Journal of Physical Chemistry C, 2011, 115(30): 14469–14477
https://doi.org/10.1021/jp201666s
5 S H Choi, Y C Kang. Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon, 2014, 79: 58–66
https://doi.org/10.1016/j.carbon.2014.07.042
6 Z Xiang, Y Chen, J Li, X Xia, Y He, H Liu. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21(8): 2425–2432
https://doi.org/10.1007/s10008-017-3566-7
7 G Wang, H Wang, S Cai, J Bai, Z Ren, J Bai. Synthesis and evaluation of carbon-coated Fe2O3 loaded on graphene nanosheets as an anode material for high performance lithium ion batteries. Journal of Power Sources, 2013, 239: 37–44
https://doi.org/10.1016/j.jpowsour.2013.03.105
8 R Li, W Yue, X Chen. Fabrication of porous carbon-coated ZnO nanoparticles on electrochemical exfoliated graphene as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 784: 800–806
https://doi.org/10.1016/j.jallcom.2019.01.117
9 A Jiménez. Carbon as reducing agent for the precipitation of plasmonic Cu particles in glass. Journal of Alloys and Compounds, 2016, 656: 685–688
https://doi.org/10.1016/j.jallcom.2015.10.009
10 F Wang, L Mao, X Qi, L Xia, H Xie, J Mao. Sulfur-induced abundant oxygen vacancies in hollow silica microsphere toward super anode. Chemical Engineering Journal, 2021, 418: 129397
https://doi.org/10.1016/j.cej.2021.129397
11 H Zheng, Y Zeng, H Zhang, X Zhao, M Chen, J Liu, X Lu. Oxygen vacancy activated Bi2O3 nanoflowers as a high-performance anode for rechargeable alkaline battery. Journal of Power Sources, 2019, 433: 126684
https://doi.org/10.1016/j.jpowsour.2019.05.090
12 H Yue, C Ren, G Wang, G Li, R Jin. Oxygen-vacancy-abundant ferrites on N-doped carbon nanosheets as high-performance Li-ion battery anodes. Chemistry, 2020, 26(46): 10575–10584
https://doi.org/10.1002/chem.202001430
13 Y Li, L Zhang. Synthesis of highly substitutional nitrogen doped TiO2 via oxygen vacancy mediated strategy for ultrafast-charging lithium ion storage. Chemical Engineering Journal, 2022, 431: 134164
https://doi.org/10.1016/j.cej.2021.134164
14 X Zhang, X Liu, Y Zeng, Y Tong, X Lu. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: recent advances and challenges. Small Methods, 2020, 4(6): 1900823
https://doi.org/10.1002/smtd.201900823
15 X Zhang, Y Huang, S Wu, Y Zeng, M Yu, F Cheng, X Lu, Y Tong. Engineering oxygen-deficient Na2Ti3O7 nanobelt arrays on carbon cloth as advanced flexible anodes for sodium-ion batteries. Physico-Chimica Sinica, 2018, 34(2): 219–226 (in Chinese)
16 S J Clark, M D Segall, C J Pickard, P J Hasnip, M I J Probert, K Refson, M C Payne. First principles methods using CASTEP. Zeitschrift für Kristallographie. Crystalline Materials, 2005, 220(5−6): 567–570
https://doi.org/10.1524/zkri.220.5.567.65075
17 Q He, B Yu, Z Li, Y Zhao. Density functional theory for battery materials. Energy & Environmental Materials, 2019, 2(4): 264–279
https://doi.org/10.1002/eem2.12056
18 F Wang, X Liao, H Wang, Y Zhao, J Mao, D G Truhlar. Bioinspired mechanically interlocking holey graphene@SiO2 anode. Interdisciplinary Materials, 2022, 1(4): 517–525
https://doi.org/10.1002/idm2.12032
19 F Wang, L Xia, X Li, W Yang, Y Zhao, J Mao. Nano-ferric oxide embedded in graphene oxide: high-performance electrocatalyst for nitrogen reduction at ambient condition. Energy & Environmental Materials, 2021, 4(1): 88–94
https://doi.org/10.1002/eem2.12100
20 D Jiang, A K Mukherjee. The influence of oxygen vacancy on the optical transmission of an yttria-magnesia nanocomposite. Scripta Materialia, 2011, 64(12): 1095–1097
https://doi.org/10.1016/j.scriptamat.2011.02.029
21 Z Liu, Y Huang, Y Cai, X Wang, Y Zhang, Y Guo, J Ding, W Cheng. Oxygen vacancy enhanced two-dimensional lithium titanate for ultrafast and long-life bifunctional lithium storage. ACS Applied Materials & Interfaces, 2021, 13(16): 18876–18886
https://doi.org/10.1021/acsami.1c02962
22 Q Li, F Huang, S Li, H Zhang, X Yu. Oxygen vacancy engineering synergistic with surface hydrophilicity modification of hollow Ru doped CoNi-LDH nanotube arrays for boosting hydrogen evolution. Small, 2022, 18(2): 2104323
https://doi.org/10.1002/smll.202104323
23 H Liu, H Fu, Y Liu, X Chen, K Yu, L Wang. Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis. Chemosphere, 2021, 272: 129534
https://doi.org/10.1016/j.chemosphere.2021.129534
24 Y Shi, D Zhang, C Chang, K Huang, R Holze. Enhanced electrochemical performance of oxygen-deficient Li4Ti5O12 anode material induced by graphene oxide. Journal of Alloys and Compounds, 2015, 639: 274–279
https://doi.org/10.1016/j.jallcom.2015.03.152
25 F Wang, J Mao. Aerogel constructed by ultrasmall Mn-doped silica nanoparticles for superior lithium-ion storage. ACS Applied Materials & Interfaces, 2021, 13(24): 28181–28187
https://doi.org/10.1021/acsami.1c05620
26 F Banhart, J Kotakoski, A Krasheninnikov. Structural defects in graphene. ACS Nano, 2011, 5(1): 26–41
https://doi.org/10.1021/nn102598m
27 Q Zhang, P Tu, F Yuan, H Huang, T Chen, F Mao. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. Journal of the Electrochemical Society, 2007, 154(2): A65
https://doi.org/10.1149/1.2400609
28 Y Zhang, Y Song, J Yuan, X Yin, C Sun, B Zhu. Polypropylene separator coated with a thin layer of poly(lithium-acrylate-co-butyl-acrylate) for high-performance lithium-ion batteries. Journal of Applied Polymer Science, 2018, 135(26): 46423
https://doi.org/10.1002/app.46423
29 M Xia, Q Liu, Z Zhou, Y Tao, M Li, K Liu, Z Wu, D Wang. A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator. Journal of Power Sources, 2014, 266: 29–35
https://doi.org/10.1016/j.jpowsour.2014.04.151
30 H Fan, S Chen, X Chen, Q Tang, A Hu, W Luo, H Liu, S Dou. 3D selenium sulfide@carbon nanotube array as long-life and high-rate cathode material for lithium storage. Advanced Functional Materials, 2018, 28(43): 1805018
https://doi.org/10.1002/adfm.201805018
31 F Wang, J Mao. Extra Li-ion storage and rapid Li-ion transfer of a graphene quantum dot tiling hollow porous SiO2 anode. ACS Applied Materials & Interfaces, 2021, 13(11): 13191–13199
https://doi.org/10.1021/acsami.0c22636
32 R Jana, C Chowdhury, A Datta. Transition-metal phosphorus trisulfides and its vacancy defects: emergence of a new class of anode material for Li-ion batteries. ChemSusChem, 2020, 13(15): 3855–3864
https://doi.org/10.1002/cssc.202001302
33 X Su, Q Wu, J Li, X Xiao, A Lott, W Lu, B Sheldon, J Wu. Silicon-based nanomaterials for lithium-ion batteries: a review. Advanced Energy Materials, 2014, 4(1): 1300882
https://doi.org/10.1002/aenm.201300882
[1] FCE-22041-OF-WF_suppl_1 Download
[2] FCE-22041-OF-WF_suppl_2 Video  
[1] Yitong Wang, Yue Zhang, Li Wang. Simultaneous removal of total oxidizable carbon, phosphate and various metallic ions from H2O2 solution with amino-functionalized zirconia as adsorbents[J]. Front. Chem. Sci. Eng., 2023, 17(4): 470-482.
[2] Zihuan Yu, Haiqing Yan, Chaonan Wang, Zheng Wang, Huiqin Yao, Rong Liu, Cheng Li, Shulan Ma. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(4): 437-448.
[3] Junjun Cheng, Yitao Zhao, Guohao Xu, Peng Zhang, Xuedong Zhu, Fan Yang. ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide[J]. Front. Chem. Sci. Eng., 2023, 17(4): 404-414.
[4] Quan Liu, Xian Wang, Yanan Guo, Gongping Liu, Kai-Ge Zhou. Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation[J]. Front. Chem. Sci. Eng., 2023, 17(3): 347-357.
[5] Xinyuan Wang, Heriberto Pfeiffer, Jiangjiang Wei, Jinyu Wang, Jinli Zhang. Fluoride ions adsorption from water by CaCO3 enhanced Mn–Fe mixed metal oxides[J]. Front. Chem. Sci. Eng., 2023, 17(2): 236-248.
[6] Lihong Chen, Ruxin Deng, Shaoshi Guo, Zihuan Yu, Huiqin Yao, Zhenglong Wu, Keren Shi, Huifeng Li, Shulan Ma. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 102-115.
[7] Shangjun Fu, Kuiyi You, Zhenpan Chen, Taobo Liu, Qiong Wang, Fangfang Zhao, Qiuhong Ai, Pingle Liu, He’an Luo. Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective catalytic oxidation of cyclohexane[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1211-1223.
[8] Xuesong Lu, Xiaojiao Luo, Warren A. Thompson, Jeannie Z.Y. Tan, M. Mercedes Maroto-Valer. Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1149-1163.
[9] Jianxin Chen, Yupeng Li, Jihui Li, Jian Han, Guijun Zhu, Liang Ren. Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1125-1138.
[10] Kumar Siddharth, Yian Wang, Jing Wang, Fei Xiao, Gabriel Sikukuu Nambafu, Usman Bin Shahid, Fei Yang, Ernest Pahuyo Delmo, Minhua Shao. Platinum on nitrogen doped graphene and tungsten carbide supports for ammonia electro-oxidation reaction[J]. Front. Chem. Sci. Eng., 2022, 16(6): 930-938.
[11] Dean Xu, Tong Ding, Yuqing Sun, Shilong Li, Wenheng Jing. Interlayer-confined two-dimensional manganese oxide-carbon nanotube catalytic ozonation membrane for efficient water purification[J]. Front. Chem. Sci. Eng., 2022, 16(5): 731-744.
[12] Pingle Liu, Yu Liu, Yang Lv, Wei Xiong, Fang Hao, Hean Luo. Zinc modification of Ni-Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics[J]. Front. Chem. Sci. Eng., 2022, 16(4): 461-474.
[13] Xiangyu Liu, Yanling Pan, Peng Zhang, Yilin Wang, Guohao Xu, Zhaojie Su, Xuedong Zhu, Fan Yang. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst[J]. Front. Chem. Sci. Eng., 2022, 16(3): 384-396.
[14] Wenjing Zhang, Xiaoxue Yuan, Xuehua Yan, Mingyu You, Hui Jiang, Jieyu Miao, Yanli Li, Wending Zhou, Yihan Zhu, Xiaonong Cheng. Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide with remarkable performance in the supercapacitor[J]. Front. Chem. Sci. Eng., 2022, 16(3): 420-432.
[15] Mengying Liu, Yun Xu, Yanjun Zhao, Zheng Wang, Dunyun Shi. Hydroxyl radical-involved cancer therapy via Fenton reactions[J]. Front. Chem. Sci. Eng., 2022, 16(3): 345-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed