Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (5) : 58    https://doi.org/10.1007/s11705-024-2417-1
The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate
Stoyan P. Gramatikov1, Petko St. Petkov1, Zhendong Wang2, Weimin Yang2, Georgi N. Vayssilov1()
1. Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria
2. State Key Laboratory of Green Chemical Engineering and Industrial Catalysis; Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China
 Download: PDF(2730 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report results from computational modeling of the relative stability of germanosilicate SCM-15 structure due to different distribution of germanium heteroatoms in the double four-member rings (D4Rs) of the framework and the orientation of the structure directing agent (SDA) molecules in the as-synthesized zeolite. The calculated relative energies of the bare zeolite framework suggest that structures with germanium ions clustered in the same D4Rs, e.g., with large number of Ge–O–Ge contacts, are the most stable. The simulations of various orientations of the SDA in the pores of the germanosilicate zeolite show different stability order—the most stable models are the structures with germanium spread among all D4Rs. Thus, for SCM-15 the stabilization due to the presence of the SDA and their orientation, is thermodynamic factor directing both the formation of specific framework type and Ge distribution in the framework during the synthesis. The relative stability of bare structures with different germanium distribution is of minor importance. This differs from SCM-14 germanosilicate, reported earlier, for which the stability order is preserved in presence of SDA. Thus, even for zeolites with the same chemical composition and SDA, the characteristics of their framework lead to different energetic preference for germanium distribution.

Keywords zeolite      density functional theory      structure-directing agent      SCM-15     
Corresponding Author(s): Georgi N. Vayssilov   
Just Accepted Date: 01 February 2024   Issue Date: 19 March 2024
 Cite this article:   
Stoyan P. Gramatikov,Petko St. Petkov,Zhendong Wang, et al. The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate[J]. Front. Chem. Sci. Eng., 2024, 18(5): 58.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2417-1
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I5/58
StructureΔEZ/eVN(Ge–O–Ge)D4R(8Ge)4R(4Ge)D4R(8Si)Ge–O–Ge
S15a0.0028214129.1
S15b0.1324202128.2
S15c0.1528214129.4
S15d0.2823123129.3
S15e0.4122113128.9
S15f0.5224133129.1
S15g0.5624104130.1
S15h0.669011131.8
S15i0.754000141.6
S15j0.7611010128.4
S15k0.899000129.6
S15l1.0012102130.1
S15m1.028000133.4
S15n1.310000
Tab.1  Summary of the relative stability and some structural parameters for SCM-15 germanosilicate with different Ge distribution with respect to the most stable structure (in eV), number of Ge–O–Ge contacts per unit cell, number of D4R(8Ge) per unit cell containing only Ge as T-atoms, number of 4R(4Ge) containing only Ge as T-atoms without those in D4R(8Ge) per unit cell, average Ge–O–Ge angles
Fig.1  Nine of the modeled structures of SCM-15 germanosilicate with different relative distribution of germanium ions (blue spheres) in the D4R; structures are denoted according to the notation, used in Tab.1.
Fig.2  Relative stabilities of the SCM-15 structures with different germanium distribution in the D4Rs versus the number of the Ge–O–Ge contacts in the unit cell.
StructureGe–O–GeGe–O–SiSi–O–SiGe–GeGe–SiSi–Si
S15a129.1131.0147.63.213.093.10
S15b128.2132.6147.83.203.103.10
S15c129.4130.5148.53.213.083.10
S15d129.3132.6147.63.223.103.10
S15e128.9134.1147.23.223.113.11
S15l130.1132.9147.73.223.103.11
S15k129.6134.9147.83.223.133.10
S15m133.4134.0147.73.263.123.11
S15n136.3147.23.143.10
Tab.2  Average interatomic distances (in ?) and angles (in degrees) of 9 SCM-15 germanosilicate structures with different Ge distribution
Fig.3  Relative stability of 9 of the SCM-15 structures with different germanium distribution in the D4Rs (three structures with 2 D4Rs made up only by Ge—S15a, S15b and S15c, three models containing 1 D4R(8Ge)—S15d, S15e and S15l, and three models without D4R(8Ge) units—S15k, S15m and S15n): (A) versus the average distance Ge–Si in the unit cell and (B) versus the average angle Ge–O–Si in the unit cell.
Fig.4  Model structure of as-synthesized SCM-15 with SDA in its cavities, shown along each axis.
StructureΔEZSDAΔEZEstabΔEstabD4R(8Si)SDA orientation
Series 1
S15j_10.000.76–23.630.080d/u/u/d_fl/br/br/bl
S15k_10.360.89–23.410.310d/u/u/d_fl/br/br/bl
S15m_10.461.02–23.420.290d/u/u/d_fl/br/br/bl
S15f_10.540.52–22.850.863d/u/u/d_fl/br/br/bl
S15b_10.570.13–22.431.291d/u/u/d_fl/br/br/bl
S15e_10.740.41–22.541.183d/u/u/d_fl/br/br/bl
S15d_10.780.28–22.371.353d/u/u/d_fl/br/br/bl
S15h_10.830.66–22.701.011d/u/u/d_fl/br/br/bl
S15i_10.900.75–22.721.000d/u/u/d_fl/br/br/bl
S15a_10.980.00–21.891.824d/u/u/d_fl/br/br/bl
S15l_10.991.00–22.880.832d/u/u/d_fl/br/br/bl
S15c_11.040.15–21.981.744d/u/u/d_fl/br/br/bl
S15n_11.151.31–23.030.690d/u/u/d_fl/br/br/bl
S15g_11.650.56–21.781.944d/u/u/d_fl/br/br/bl
Series 2
S15a_21.350.00–21.522.204u/u/u/u_fr/fr/fr/fr
S15a_30.820.00–22.061.664d/u/u/d_fr/fr/fr/fr
S15a_40.670.00–22.201.524d/u/u/d_fl/fr/bl/br
S15a_51.390.00–21.482.244d/d/u/d_fl/br/br/bl
S15a_61.750.00–21.122.594u/d/u/d_fr/fr/br/bl
S15a_70.950.00–21.921.804d/u/u/d_fl/fr/br/br
S15a_81.890.00–20.982.744d/d/d/d_fl/br/br/br
Series 3
S15a_40.670.00–22.201.524d/u/u/d_fl/fr/bl/br
S15l_40.781.00–23.090.622d/u/u/d_fl/fr/bl/br
S15k_40.050.89–23.720.000d/u/u/d_fl/fr/bl/br
S15m_40.191.02–23.700.020d/u/u/d_fl/fr/bl/br
S15j_40.480.76–23.150.570d/u/u/d_fl/fr/bl/br
Tab.3  General information about the models with SDA inside the pores of SCM-15a)
Fig.5  (a) Relative energies of the models with SDA from Series 1 versus the relative energies of the models with the same distribution of Ge without SDA in the zeolite channels. (b) Relative energies of the models with SDA from Series 1 versus the number of Ge–O–Ge contacts.
Fig.6  The relative energy of the models in Series 2 with different orientations of the SDA.
Fig.7  Calculated relative energy of the SCM-15 structures without SDA (blue circles) and the relative stabilization energy (brown circles) versus the number of completely silicon D4R(8Si) in the zeolite framework. Tentative trend lines are also shown.
ZeoliteSDAWater
GeSiOFCNHOH
S15a_1
Average1.681.85–0.92–0.72–0.05–0.100.12–0.740.40
Minimal1.641.78–0.98–0.79–0.24–0.170.08–0.760.40
Maximal1.771.91–0.81–0.650.24–0.030.30–0.730.40
Total–1.661.510.15
S15j_1
Average1.751.84–0.92–0.68–0.05–0.100.12–0.730.39
Minimal1.711.74–0.98–0.71–0.25–0.170.08–0.750.37
Maximal1.801.90–0.83–0.660.24–0.020.30–0.720.41
Total–1.971.790.18
Tab.4  Calculated atomic charges (in e) for the as-synthesized germanosilicate models S15a_1 and S15j_1 and total charges of the zeolite framework, SDA and water
1 J Čejka , M Opanasenko , M Shamzhy , Y Wang , W Yan , P Nachtigall . Synthesis and post-synthesis transformation of germanosilicate zeolites. Angewandte Chemie International Edition, 2020, 59(44): 19380–19389
https://doi.org/10.1002/anie.202005776
2 J Jiang , J L Jorda , M J Diaz-Cabanas , J Yu , A Corma . The synthesis of an extra-large-pore zeolite with double three-ring building units and a low framework density. Angewandte Chemie International Edition, 2010, 49(29): 4986–4988
https://doi.org/10.1002/anie.201001506
3 Y Li , J Yu . New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chemical Reviews, 2014, 114(14): 7268–7316
https://doi.org/10.1021/cr500010r
4 P St Petkov , H A Aleksandrov , V Valtchev , G N Vayssilov . Framework stability of heteroatom substituted forms of large pore Ge-silicate molecular sieves: the case of ITQ-44. Chemistry of Materials, 2012, 24(13): 2509–2518
https://doi.org/10.1021/cm300861e
5 C Zhang , E Kapaca , J Li , Y Liu , X Yi , A Zheng , X Zou , J Jiang , J Yu . An extra-large pore zeolite with 24 × 8 × 8-ring channels using a structure directing agent derived from traditional Chinese medicine. Angewandte Chemie International Edition, 2018, 57(22): 6486–6490
https://doi.org/10.1002/anie.201801386
6 Z R Gao , J Li , C Lin , A Mayoral , J Sun , M A Camblor . HPM-14: a new germanosilicate zeolite with interconnected extra-large pores plus odd-membered and small pores. Angewandte Chemie International Edition, 2020, 60(7): 3438–3442
https://doi.org/10.1002/anie.202011801
7 K C Kemp , W Choi , D Jo , S H Park , S B Hong . Synthesis and structure of the medium-pore zeolite PST-35 with two interconnected cages of unusual orthorhombic shape. Chemical Science, 2022, 13(35): 10455–10460
https://doi.org/10.1039/D2SC03628B
8 A Corma , M J Díaz-Cabañas , J L Jordá , C Martínez , M Moliner . High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 2006, 443(7113): 842–845
https://doi.org/10.1038/nature05238
9 P Chlubná-Eliášová , Y Tian , A B Pinar , M Kubů , J Čejka , R E Morris . The assembly-disassembly-organization-reassembly mechanism for 3d-2d-3d transformation of germanosilicate IWW Zeolite. Angewandte Chemie International Edition, 2014, 53(27): 7048–7052
https://doi.org/10.1002/anie.201400600
10 H Xu , J Jiang , B Yang , H Wu , P Wu . Effective Baeyer-Villiger oxidation of ketones over germanosilicates. Catalysis Communications, 2014, 55: 83–86
https://doi.org/10.1016/j.catcom.2014.06.019
11 Z Liu , J Yuan , J M van Baten , J Zhou , X Tang , C Zhao , W Chen , X Yi , R Krishna , G Sastre . et al.. Synergistically enhance confined diffusion by continuum intersecting channels in zeolites. Science Advances, 2021, 7(11): eabf0775
https://doi.org/10.1126/sciadv.abf0775
12 Y Ma , S Song , C Liu , L Liu , L Zhang , Y Zhao , X Wang , H Xu , Y Guan , J Jiang . et al.. Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation. Nature Catalysis, 2023, 6(6): 506–518
https://doi.org/10.1038/s41929-023-00968-7
13 V I Kasneryk , M V Shamzhy , M V Opanasenko , J Cejka . Tuning of textural properties of germanosilicate zeolites ITH and IWW by acidic leaching. Journal of Energy Chemistry, 2016, 25(2): 318–326
https://doi.org/10.1016/j.jechem.2015.12.003
14 J Li , A Corma , J Yu . Synthesis of new zeolite structures. Chemical Society Reviews, 2015, 44(20): 7112–7127
https://doi.org/10.1039/C5CS00023H
15 K Lu , J Huang , M Jiao , Y Zhao , Y Ma , J Jiang , H Xu , Y Ma , P Wu . Topotactic conversion of Ge-rich IWW zeolite into IPC-18 under mild condition. Microporous and Mesoporous Materials, 2021, 310: 110617
https://doi.org/10.1016/j.micromeso.2020.110617
16 C Luo , X Li , W Fu , Z Yuan , W Tao , Z Wang , W Yang . Hydrothermally stable ITH-type zeolite directed by a simple nonquaternary ammonium pyrrolidine derivative: synthesis, characterization and catalytic performance. Microporous and Mesoporous Materials, 2021, 319: 111058
https://doi.org/10.1016/j.micromeso.2021.111058
17 C Isaac , J Paillaud , T J Daou , A Ryzhikov . Synthesis of BEC-type germanosilicates with asymmetric diquaternary ammonium salts. Microporous and Mesoporous Materials, 2021, 312: 110804
https://doi.org/10.1016/j.micromeso.2020.110804
18 S O Odoh , M W Deem , L Gagliardi . Preferential location of germanium in the UTL and IPC-2a zeolites. Journal of Physical Chemistry C, 2014, 118(46): 26939–26946
https://doi.org/10.1021/jp510495w
19 N Kasian , A Tuel , E Verheyen , C E A Kirschhock , F Taulelle , J A Martens . NMR evidence for specific germanium siting in IM-12 zeolite. Chemistry of Materials, 2014, 26(19): 5556–5565
https://doi.org/10.1021/cm502525w
20 P Kamakoti , T A Barckholtz . Role of germanium in the formation of double four rings in zeolites. Journal of Physical Chemistry C, 2007, 111(9): 3575–3583
https://doi.org/10.1021/jp065092e
21 G Sastre , A Corma . Predicting structural feasibility of silica and germania zeolites. Journal of Physical Chemistry C, 2010, 114(3): 1667–1673
https://doi.org/10.1021/jp909348s
22 E Verheyen , L Joos , K Van Havenbergh , E Breynaert , N Kasian , E Gobechiya , K Houthoofd , C Martineau , M Hinterstein , F Taulelle . et al.. Design of zeolite by inverse sigma transformation. Nature Materials, 2012, 11(12): 1059–1064
https://doi.org/10.1038/nmat3455
23 S P Gramatikov , G N Vayssilov . Petkov P. The relative stability of SCM-14 germanosilicate with different distributions of germanium ions in the absence and presence of structure-directing agents. Inorganic Chemistry Frontiers, 2022, 9(15): 3747–3757
https://doi.org/10.1039/D2QI00697A
24 Y Luo , S Smeets , Z Wang , J Sun , W Yang . Synthesis and structure determination of SCM-15: a 3D large pore zeolite with interconnected straight 12 × 12 × 10-ring channels. Chemistry, 2019, 25(9): 2184–2188
https://doi.org/10.1002/chem.201805187
25 J P Perdew , K Burke , M Ernzerhof . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
26 S J Grimme . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, 27(15): 1787–1799
https://doi.org/10.1002/jcc.20495
27 G Kresse , J Hafner . Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review B: Condensed Matter, 1994, 49(20): 14251–14269
https://doi.org/10.1103/PhysRevB.49.14251
28 G Kresse , J Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
https://doi.org/10.1016/0927-0256(96)00008-0
29 P E Blöchl . Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979
https://doi.org/10.1103/PhysRevB.50.17953
30 G Kresse , J Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775
https://doi.org/10.1103/PhysRevB.59.1758
31 T A Manz , N Gabaldon Limas . Introducing DDEC6 atomic population analysis: Part 1. Charge partitioning theory and methodology. RSC Advances, 2016, 6(53): 47771–47801
https://doi.org/10.1039/C6RA04656H
32 N Gabaldon Limas , T A Manz . Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Advances, 2016, 6(51): 45727–45747
https://doi.org/10.1039/C6RA05507A
33 M Fischer , C Bornes , L Mafra , J Rocha . Elucidating the germanium distribution in itq-13 zeolites by density functional theory. Chemistry, 2022, 28(14): e202104298
https://doi.org/10.1002/chem.202104298
34 R C Deka , V A Nasluzov , Shor E I Ivanova , A M Shor , G N Vayssilov , N Rösch . Comparison of all sites for Ti substitution in zeolite TS-1 by an accurate embedded-cluster method. Journal of Physical Chemistry B, 2005, 109(51): 24304–24310
https://doi.org/10.1021/jp050056l
35 S Sklenak , J Dědeček , C Li , B Wichterlova , V Gabova , M Sierka , J Sauer . Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Physical Chemistry Chemical Physics, 2009, 11(8): 1237–1247
https://doi.org/10.1039/B807755J
36 S Nystrom , A Hoffman , D Hibbitts . Tuning Brønsted acid strength by altering site proximity in CHA framework zeolites. ACS Catalysis, 2018, 8(9): 7842–7860
https://doi.org/10.1021/acscatal.8b02049
37 M V Shamzhy , P Eliasova , D Vitvarova , M V Opanasenko , D S Firth , R E Morris . Post-synthesis stabilization of germanosilicate zeolites ITH, IWW, and UTL by substitution of Ge for Al. Chemistry, 2016, 22(48): 1–11
https://doi.org/10.1002/chem.201603434
38 P Lu , L Gomez-Hortiguela , Z Gaoa , M A Camblor . Synthesis of germanosilicate zeolite HPM-12 using a short imidazolium-based dication: structure-direction by charge-to-charge distance matching. Dalton Transactions, 2019, 48(48): 17752–17762
https://doi.org/10.1039/C9DT04089G
[1] FCE-23096-OF-GSP_suppl_1 Download
[1] Binyu Wang, Qiang Li, Haoyang Zhang, Jia-Nan Zhang, Qinhe Pan, Wenfu Yan. Zeolites for the separation of ethylene, ethane, and ethyne[J]. Front. Chem. Sci. Eng., 2024, 18(9): 108-.
[2] Weijie Li, Mingyang Gao, Bin Qin, Xin Deng, Landong Li. Zeolite-encaged gold catalysts for the oxidative condensation of furfural[J]. Front. Chem. Sci. Eng., 2024, 18(8): 90-.
[3] Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Front. Chem. Sci. Eng., 2024, 18(8): 93-.
[4] Zhao Ma, Dezhi Shi, Sen Wang, Mei Dong, Weibin Fan. Control of aluminum distribution in ZSM-5 zeolite for enhancement of its catalytic performance for propane aromatization[J]. Front. Chem. Sci. Eng., 2024, 18(8): 86-.
[5] Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Front. Chem. Sci. Eng., 2024, 18(4): 45-.
[6] Xin Chen, Liang Luo, Shihong Huang, Xingbo Ge, Xiuyun Zhao. Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study[J]. Front. Chem. Sci. Eng., 2023, 17(5): 570-580.
[7] Shengwang Su, Li Sun, Feng Xie, Jialong Qian, Yihe Zhang. Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor[J]. Front. Chem. Sci. Eng., 2023, 17(5): 491-503.
[8] Ji Liu, Shuang-Wei Yang, Wei Zhao, Yu-Long Wu, Bin Hu, Si-Han Hu, Shan-Wei Ma, Qiang Lu. Theoretical study on the mechanism of sulfur migration to gas in the pyrolysis of benzothiophene[J]. Front. Chem. Sci. Eng., 2023, 17(3): 334-346.
[9] Fei Wang, Jian Mao. Role of oxygen vacancy inducer for graphene in graphene-containing anodes[J]. Front. Chem. Sci. Eng., 2023, 17(3): 326-333.
[10] Xiangxiang Ren, Zhong-Pan Hu, Jingfeng Han, Yingxu Wei, Zhongmin Liu. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1801-1808.
[11] Wang Li, Wen-Ying Li, Xing-Bao Wang, Jie Feng. Regulation of radicals by hydrogen-donor solvent in direct coal liquefaction[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1689-1699.
[12] Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Multifunctional heteroatom zeolites: construction and applications[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1462-1486.
[13] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
[14] Fan Ge, Qingan Qiao, Xin Chen, You Wu. Probing the catalytic activity of M-N4xOx embedded graphene for the oxygen reduction reaction by density functional theory[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1206-1216.
[15] Yixin Zhang, Lu Zhou, Liqing Chen, Yang Guo, Fanhui Guo, Jianjun Wu, Baiqian Dai. Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent for removal of Cr(VI) from water[J]. Front. Chem. Sci. Eng., 2021, 15(3): 518-527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed