Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (8) : 93    https://doi.org/10.1007/s11705-024-2446-9
Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction
Weilong Chun1, Chenbiao Yang1, Xu Wang1, Xin Yang1, Huiyong Chen1,2()
1. School of Chemical Engineering, Northwest University, Xi’an 710069, China
2. International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, China
 Download: PDF(1294 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A facile synthesis of hierarchical ZSM-5 with the three-dimensionally ordered mesoporosity (3DOm ZSM-5) was achieved by solid conversion (SC) of SiO2 colloidal crystals to high-crystalline ZSM-5. The products of 3DZ5_S/C and 3DZ5_S, which were severally transformed from the carbon-padded SiO2 colloidal crystals and the initial SiO2 colloidal crystals, exhibited not only a similar ordered structure and acidity but also higher crystallinity and more balanced meso-/micropore combination in comparison with 3DZ5_C obtained by the conventional confined space crystallization approach. All three synthesized 3DZ5 catalysts showed improved methanol-to-propylene performance than the commercially microporous ZSM-5 (CZ5), embodied in five times longer lifetime, higher propylene selectivity and Spropylene/Sethylene ratio (P/E), and superior coke toleration with lower formation rate of coke (Rcoke). Moreover, the 3DZ5_S catalyst in situ converted from SiO2 colloidal crystals presented the highest selectivities of propylene (42.51%) and light olefins (74.6%) among all three 3DZ5 catalysts. The high efficiency in synthesis and in situ utilization of SiO2 colloidal crystals demonstrate the proposed SC strategy to be more efficiently and eco-friendly for the high-yield production of not only 3DOm ZSM-5 but also other types of hierarchical zeolites.

Keywords hierarchical zeolite      three-dimensionally ordered mesoporosity      ZSM-5      solid conversion      methanol-to-propylene     
Corresponding Author(s): Huiyong Chen   
Just Accepted Date: 09 April 2024   Issue Date: 27 May 2024
 Cite this article:   
Weilong Chun,Chenbiao Yang,Xu Wang, et al. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Front. Chem. Sci. Eng., 2024, 18(8): 93.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2446-9
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I8/93
Fig.1  XRD patterns of various ZSM-5 samples. The relative crystallinity (RC) value calculated according to the diffraction peaks based on the standard test method ASTM D5758-01 (2015) and the sample of CZ5 was used as a benchmark of RC = 100%.
Fig.2  SEM images of (a, e) CZ5, (b, f) 3DZ5_C, (c, g) 3DZ5_S/C, and (d, h) 3DZ5_S.
Fig.3  TEM images of (a, d) 3DZ5_C, (b, e) 3DZ5_S/C, and (c, f) 3DZ5_S; (g–i) high-magnification TEM images of the selected areas in (d–f), respectively. Inset: electron diffraction patterns of the demonstrated particles.
Fig.4  (a) N2 adsorption-desorption isotherms and (b) BJH pore-size distributions of CZ5, 3DZ5_C, 3DZ5_S/C, and 3DZ5_S.
SampleTextural propertya)Sext/SBETb)Vmic/Vtotalb)HFc)
SBET/(m2·g–1)Smic/(m2·g–1)Sext/(m2·g–1)Vmic/(m3·g–1)Vmeso/(m3·g–1)Vtotal/(m3·g–1)
CZ5447426210.210.010.220.050.950.05
3DZ5_C4692291600.100.370.470.340.210.07
3DZ5_S/C4272881390.130.290.420.330.310.10
3DZ5_S4563211350.150.270.430.300.350.11
Tab.1  Textual properties of various synthesized 3DZ5 and the commercial CZ5 zeolites
SampleAl contenta)/(μmmol·g–1)Number of acid siteb)/(μmol·g–1)
WeakStrongTotal
CZ520879103182
3DZ5_C1737090160
3DZ5_S/C1857191162
3DZ5_S1716691157
Tab.2  Al contents and acid properties of various synthesized 3DZ5 and the commercial CZ5 zeolites
Fig.5  27Al NMR spectra of various synthesized 3DZ5 and the commercial CZ5 zeolites.
Fig.6  NH3-TPD profiles of various synthesized 3DZ5 and the commercial CZ5 zeolites.
Fig.7  Catalytic performance of 3DZ5 and CZ5 catalysts in the MTP reaction: (a) conversion of methanol and selectivities of propylene and total light olefins (C2=–C4=) as a function of time on stream and (b) average selectivity of each product during lifetime P/E refer to Spropylene/Sethylene. Reaction conditions: t = 723 K, P = 1 atm, WHSV = 1.7?1.
SampleLifetimea)/hSelectivityb)/%P/ERcoke/(mg·gcat–1·h–1)
C1?C4c)C2=C3=C4=C5+d)C2=?C4=
CZ59.50.477.4839.1224.0028.4570.615.232.02
3DZ5_C53.00.276.7140.3925.1126.8272.216.021.49
3DZ5_S/C50.50.266.9341.3525.1026.0773.385.971.61
3DZ5_S50.00.286.7942.5125.0725.4974.606.261.73
Tab.3  Catalytic performances of 3DZ5 and CZ5 catalysts in the MTP reaction
  Scheme1 Synthetic routes of 3DZ5 zeolites by CSC and SC approaches.
Fig.8  Comparison in (a) synthesis efficiency and (b) product property by CSC and SC approaches.
1 M E Davis . Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821
https://doi.org/10.1038/nature00785
2 M Shamzhy , M Opanasenko , P Concepción , A Martínez . New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
https://doi.org/10.1039/C8CS00887F
3 Q M Sun , N Wang , J H Yu . Advances in catalytic applications of zeolite-supported metal catalysts. Advanced Materials, 2021, 33(51): 2104442
https://doi.org/10.1002/adma.202104442
4 X L Liu , C M Wang , J Zhou , C Liu , Z C Liu , J Shi , Y D Wang , J W Teng , Z K Xie . Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Chemical Society Reviews, 2022, 51(19): 8174–8200
https://doi.org/10.1039/D2CS00079B
5 A J Mallette , S Seo , J D Rimer . Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nature Synthesis, 2022, 1(7): 521–534
https://doi.org/10.1038/s44160-022-00091-8
6 J Pérez-Ramírez , C H Christensen , K Egeblad , C H Christensen , J C Groen . Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542
https://doi.org/10.1039/b809030k
7 S Xu , X Zhang , D G Cheng , F Chen , X Ren . Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
https://doi.org/10.1007/s11705-018-1733-8
8 S Mintova , M Jaber , V Valtchev . Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233
https://doi.org/10.1039/C5CS00210A
9 L H Chen , M H Sun , Z Wang , W Yang , B L Su . Hierarchically structured zeolites: from design to application. Chemical Reviews, 2020, 120(20): 11194–11294
https://doi.org/10.1021/acs.chemrev.0c00016
10 H Y Chen , M F Yang , W J Shang , Y Tong , B Y Liu , X L Han , J B Zhang , Q Q Hao , M Sun , X X Ma . Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966
https://doi.org/10.1021/acs.iecr.8b00849
11 M J Mendoza-castro , E D O Jardim , C A Trujillo , N Linares , J Garciamartinez . Hierarchical catalysts prepared by interzeolite transformation. Journal of the American Chemical Society, 2022, 144(11): 5163–5171
https://doi.org/10.1021/jacs.2c00665
12 C T Wang , W Fang , Z Q Liu , L Wang , Z W Liao , Y R Yang , H J Li , L Liu , H Zhou , X D Qin . et al.. Fischer-tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nature Nanotechnology, 2022, 17(7): 714–720
https://doi.org/10.1038/s41565-022-01154-9
13 D Verboekend , M Milina , S Mitchell , J Pérez-Ramírez . Hierarchical zeolites by desilication: occurrence and catalytic impact of recrystallization and restructuring. Crystal Growth & Design, 2013, 13(11): 5025–5035
https://doi.org/10.1021/cg4010483
14 J J Li , M Liu , X W Guo , S T Xu , Y X Wei , Z M Liu , C S Song . Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination-realumination process: a superior MTP catalyst. ACS Applied Materials & Interfaces, 2017, 9(31): 26096–26106
https://doi.org/10.1021/acsami.7b07806
15 I I Ivanova , E E Knyazeva . Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chemical Society Reviews, 2013, 42(9): 3671–3688
https://doi.org/10.1039/C2CS35341E
16 Z P Wang , C Li , H J Cho , S C Kung , M A Snyder , W Fan . Direct, single-step synthesis of hierarchical zeolites without secondary templating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(3): 1298–1305
https://doi.org/10.1039/C4TA05031B
17 M Choi , H S Cho , R Srivastava , C Venkatesan , D H Choi , R Ryoo . Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
https://doi.org/10.1038/nmat1705
18 M Choi , K Na , J Kim , Y Sakamoto , R Ryoo . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
https://doi.org/10.1038/nature08288
19 M Hartmann . Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882
https://doi.org/10.1002/anie.200460644
20 H Dai , Y F Shen , T M Yang , C S Lee , D L Fu , A Agarwal , T T Le , M Tsapatsis , J C Palmer , B M Weckhuysen . et al.. Finned zeolite catalysts. Nature Materials, 2020, 19(10): 1074–1080
https://doi.org/10.1038/s41563-020-0753-1
21 X Y Zhang , D X Liu , D D Xu , S Asahina , K A Cychosz , K V Agrawal , Y Al Wahedi , A Bhan , S Al Hashimi , O Terasaki . et al.. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687
https://doi.org/10.1126/science.1221111
22 W Fan , M A Snyder , S Kumar , P S Lee , W C Yoo , A V Mccormick , R L Penn , A Stein , M Tsapatsis . Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991
https://doi.org/10.1038/nmat2302
23 V Valtchev , G Majano , S Mintova , J Pérez-Ramírez . Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42(1): 263–290
https://doi.org/10.1039/C2CS35196J
24 H Y Chen , W J Shang , C B Yang , B Y Liu , C Y Dai , J B Zhang , Q Q Hao , M Sun , X X Ma . Epitaxial growth of layered-bulky ZSM-5 hybrid catalysts for the methanol-to-propylene process. Industrial & Engineering Chemistry Research, 2019, 58(4): 1580–1589
https://doi.org/10.1021/acs.iecr.8b05472
25 S Kim , G Park , M H Woo , G Kwak , S K Kim . Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catalysis, 2019, 9(4): 2880–2892
https://doi.org/10.1021/acscatal.8b04493
26 H O Mohamed , R K Parsapur , I Hita , A Ramírez , K W Huang , J Gascon , P Castaño . Stable and reusable hierarchical ZSM-5 zeolite with superior performance for olefin oligomerization when partially coked. Applied Catalysis B: Environmental, 2022, 316: 121582
https://doi.org/10.1016/j.apcatb.2022.121582
27 H Y Chen , J Wydra , X Y Zhang , P S Lee , Z P Wang , W Fan , M Tsapatsis . Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393
https://doi.org/10.1021/ja2046815
28 J Wang , M F Yang , W J Shang , X P Su , Q Q Hao , H Y Chen , X X Ma . Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous and Mesoporous Materials, 2017, 252: 10–16
https://doi.org/10.1016/j.micromeso.2017.06.012
29 H J Cho , P Dornath , W Fan . Synthesis of hierarchical Sn-MFI as lewis acid catalysts for isomerization of cellulosic sugars. ACS Catalysis, 2014, 4(6): 2029–2037
https://doi.org/10.1021/cs500295u
30 Q You , X Wang , Y S Wu , C Y Bi , X Yang , M Sun , J B Zhang , Q Q Hao , H Y Chen , X X Ma . Hierarchical Ti-beta with a three-dimensional ordered mesoporosity for catalytic epoxidation of bulky cyclic olefins. New Journal of Chemistry, 2021, 45(23): 10303–10314
https://doi.org/10.1039/D1NJ00736J
31 H Y Chen , P S Lee , X Y Zhang , D Lu . Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28(10): 1356–1364
https://doi.org/10.1557/jmr.2013.106
32 Z P Wang , P Dornath , C C Chang , H Y Chen , W Fan . Confined synthesis of three-dimensionally ordered mesoporous-imprinted zeolites with tunable morphology and Si/Al ratio. Microporous and Mesoporous Materials, 2013, 181: 8–16
https://doi.org/10.1016/j.micromeso.2013.07.010
33 R Khare , A Bhan . Mechanistic studies of methanol-to-hydrocarbons conversion on diffusion-free MFI samples. Journal of Catalysis, 2015, 329: 218–228
https://doi.org/10.1016/j.jcat.2015.05.012
34 B Fernández-Reyes , S Morales-Jiménez , G Sánchez-Marrero , J C Muñoz-Senmache , A J Hernández-Maldonado . Hierarchical three-dimensionally ordered mesoporous carbon (3DOm) zeolite composites for the adsorption of contaminants of emerging concern. Journal of Hazardous Materials Letters, 2021, 2: 100017
https://doi.org/10.1016/j.hazl.2021.100017
35 P S Lee , X Y Zhang , J A Stoeger , A Malek , W Fan , S Kumar , W C Yoo , S Al Hashimi , R L Penn , A Stein . et al.. Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society, 2011, 133(3): 493–502
https://doi.org/10.1021/ja107942n
36 S Mintova , M Hölzl , V Valtchev , B Mihailova , Y Bouizi , T Bein . Closely packed zeolite nanocrystals obtained via transformation of porous amorphous silica. Chemistry of Materials, 2004, 16(25): 5452–5459
https://doi.org/10.1021/cm030640b
37 D Z Han , D Y Yang , C Y Bi , G Q Zhang , F Yang , Q Q Hao , J B Zhang , H Y Chen , X X Ma . Dry-gel conversion synthesis of SAPO-14 zeolites for the selective conversion of methanol to propylene. Inorganic Chemistry Frontiers, 2023, 10(21): 6193–6203
https://doi.org/10.1039/D3QI00990D
38 T M Davis , M A Snyder , J E Krohn , M Tsapatsis . Nanoparticles in lysine-silica sols. Chemistry of Materials, 2006, 18(25): 5814–5816
https://doi.org/10.1021/cm061982v
39 J Pérez-Ramírez , D Verboekend , A Bonilla , S Abelló . Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979
https://doi.org/10.1002/adfm.200901394
40 X B Zhao , Y Hong , L Y Wang , D Fan , N N Yan , X N Liu , P Tian , X W Guo , Z M Liu . External surface modification of as-made ZSM-5 and their catalytic performance in the methanol to propylene reaction. Chinese Journal of Catalysis, 2018, 39(8): 1418–1426
https://doi.org/10.1016/S1872-2067(18)63117-1
41 K Ramesh , C Jie , Y F Han , A Borgna . Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Industrial & Engineering Chemistry Research, 2010, 49(9): 4080–4090
https://doi.org/10.1021/ie901666f
42 J X Zhang , A Zhou , K Gawande , G X Li , S J Shang , C Y Dai , W Fan , Y Han , C S Song , L M Ren . et al.. B-axis-oriented ZSM-5 nanosheets for efficient alkylation of benzene with methanol: synergy of acid sites and diffusion. ACS Catalysis, 2023, 13(6): 3794–3805
https://doi.org/10.1021/acscatal.2c06384
43 J H Li , Y N Wang , W Z Jia , Z W Xi , H H Chen , Z R Zhu , Z H Hu . Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons. Journal of Energy Chemistry, 2014, 23(6): 771–780
https://doi.org/10.1016/S2095-4956(14)60211-4
44 C C Chang , A R Teixeira , C Li , P J Dauenhauer , W Fan . Enhanced molecular transport in hierarchical silicalite-1. Langmuir, 2013, 29(45): 13943–13950
https://doi.org/10.1021/la403706r
45 M H Sun , J Zhou , Z Y Hu , L H Chen , L Y Li , Y D Wang , Z K Xie , S Turner , G Van Tendeloo , T Hasan . et al.. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Matter, 2020, 3(4): 1226–1245
https://doi.org/10.1016/j.matt.2020.07.016
46 M S Beheshti , M Behzad , J Ahmadpour , H Arabi . Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous and Mesoporous Materials, 2020, 291: 109699
https://doi.org/10.1016/j.micromeso.2019.109699
47 Y P Zhang , M G Li , E H Xing , Y B Luo , X T Shu . Protective desilication of highly siliceous H-ZSM-5 by sole tetraethylammonium hydroxide for the methanol to propylene (MTP) reaction. RSC Advances, 2018, 8(66): 37842–37854
https://doi.org/10.1039/C8RA06786D
48 X Q Wu , Y X Wei , Z M Liu . Dynamic catalytic mechanism of the methanol-to-hydrocarbons reaction over zeolites. Accounts of Chemical Research, 2023, 56(14): 2001–2014
https://doi.org/10.1021/acs.accounts.3c00187
49 M Z Zhang , S T Xu , Y X Wei , J Z Li , J B Wang , W N Zhang , S S Gao , Z M Liu . Changing the balance of the MTO reaction dual-cycle mechanism: reactions over ZSM-5 with varying contact times. Chinese Journal of Catalysis, 2016, 37(8): 1413–1422
https://doi.org/10.1016/S1872-2067(16)62466-X
[1] FCE-24004-OF-CW_suppl_1 Download
[1] Ning Yang, Tingjun Fu, Chuntao Cao, Xueqing Wu, Huiling Zheng, Zhong Li. Constructing hierarchical ZSM-5 coated with small ZSM-5 crystals via oriented-attachment and in situ assembly for methanol-to-aromatics reaction[J]. Front. Chem. Sci. Eng., 2024, 18(7): 76-.
[2] Huaping Lin, Likai Zhu, Ye Liu, Vasilevich Sergey Vladimirovich, Bilainu Oboirien, Yefeng Zhou. Plastic upgrading via catalytic pyrolysis with combined metal-modified gallium-based HZSM-5 and MCM-41[J]. Front. Chem. Sci. Eng., 2024, 18(11): 125-.
[3] Xiangxiang Ren, Zhong-Pan Hu, Jingfeng Han, Yingxu Wei, Zhongmin Liu. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1801-1808.
[4] Yufeng Yang, Lihong Zhang, Tao Song, Yixing Huang, Xianglan Xu, Junwei Xu, Xiuzhong Fang, Qing Wang, Haiming Liu, Xiang Wang. On the monolayer dispersion behavior of Co3O4 on HZSM-5 support: designing applicable catalysts for selective catalytic reduction of nitrogen oxides by ammonia[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1741-1754.
[5] Reyila Abuduwayiti, Feng-Yun Ma, Xing Fan. Catalytic hydrogenation of insoluble organic matter of CS2/Acetone from coal over mesoporous HZSM-5 supported Ni and Ru[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1505-1513.
[6] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
[7] Zhenheng Diao, Lushi Cheng, Wen Guo, Xu Hou, Pengfei Zheng, Qiuyueming Zhou. Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation[J]. Front. Chem. Sci. Eng., 2021, 15(3): 643-653.
[8] Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(2): 269-278.
[9] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[10] Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat. Layer-like FAU-type zeolites: A comparative view on different preparation routes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 127-142.
[11] Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Front. Chem. Sci. Eng., 2020, 14(2): 258-266.
[12] Darui Wang, Hongmin Sun, Wei Liu, Zhenhao Shen, Weimin Yang. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation[J]. Front. Chem. Sci. Eng., 2020, 14(2): 248-257.
[13] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
[14] Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Front. Chem. Sci. Eng., 2018, 12(4): 780-789.
[15] Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction[J]. Front. Chem. Sci. Eng., 2017, 11(4): 564-574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed