Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (6) : 1462-1486    https://doi.org/10.1007/s11705-021-2099-x
REVIEW ARTICLE
Multifunctional heteroatom zeolites: construction and applications
Qifeng Lei1, Chang Wang1, Weili Dai1(), Guangjun Wu1, Naijia Guan1,2, Landong Li1,2
1. School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
2. Key Laboratory of Advanced Energy Materials Chemistry of the Ministry of Education, Nankai University, Tianjin 300071, China
 Download: PDF(4616 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Multifunctional heteroatom zeolites have drawn broad attentions due to the possible synergistic effects in the catalytic reactions. Remarkable achievements have been made on the synthesis, characterization and catalytic applications of multifunctional heteroatom zeolite, while a review on this important topic is still missing. Herein, current research status of multifunctional heteroatom zeolites is briefly summarized, aiming to boost further researches. First, the synthesis strategies toward heteroatom zeolites are introduced, including the direct synthesis and postsynthesis routes; then, the spectroscopic techniques to identify the existing states of heteroatom sites and the corresponding physiochemical properties are shown and compared; finally, the catalytic applications of multifunctional heteroatom zeolites in various chemical reactions, especially in one-step tandem reactions, are discussed.

Keywords zeolite      multifunctional active sites      heteroatom      characterization      catalysis     
Corresponding Author(s): Weili Dai   
Online First Date: 11 October 2021    Issue Date: 09 November 2021
 Cite this article:   
Qifeng Lei,Chang Wang,Weili Dai, et al. Multifunctional heteroatom zeolites: construction and applications[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1462-1486.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2099-x
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I6/1462
Synthesis strategy Multifunctional heteroatom zeolites Selected applications Refs.
Hydrothermal synthesis [Al,Zr]-Y 1,3,5-Triisopropylbenzene cracking [24]
Sn-Al-MFI, Al-Sn-Beta, Zr-Al-TUD-1 Biomass conversion [2527]
Ga-Fe-MFI Methanol to olefin [28]
W-MFI, Sn-MFI Separation and detection of CO2 and NOx [29,30]
CrCoAPO-5, FeCoMnAPO-5 Cyclohexane oxidation [31,32]
W-TS-1 Oxidative desulfurization [33]
H-GaAlMFI Methane oxidation [34]
Post synthesis Sn-Al-zeolite, Zr-Al-zeolite, Sn-β-Ca, In-Sn-Beta, Zn-Sn-Beta, Mg-Sn-Beta Biomass conversion [3548]
Ag/ZrBEA, CuTaSiBEA, ZnHf-MFI Ethanol to butadiene [4951]
PtSn-Beta, Pt/Sn-Beta, PtSn/TS-1 Propane dehydrogenation [5254]
Pd/Ti-MCM-41, TiSn-Beta Olefin epoxidation [55,56]
Ir/Fe-USY (ultrastable Y zeolite) N2O decomposition [57]
CuMn-HBeta Soot oxidation [58]
SnAl-Beta Polyoxymethylene dimethyl ethers synthesis [59]
Tab.1  The synthesis and application of multifunctional heteroatom zeolites
Fig.1  Procedure for the synthesis of tin-containing zeolites by dry-gel conversion. Reprinted with permission from ref. [70], copyright 2015, Royal Society of Chemistry.
Fig.2  Schematic synthesis of (a) Zr-Al-BEA and (b) Zr-De-Al-BEA by post-synthesis method. Reprinted with permission from ref. [37], copyright 2019, Royal Society of Chemistry.
Fig.3  Illustration of the preparation of the Pt/Sn-Si-BEA catalysts. Reprinted with permission from ref. [52], copyright 2019, Royal Society of Chemistry.
Fig.4  Characterization techniques used for the heteroatom-containing zeolites and information obtained (UV Raman: UV resonance Raman spectroscopy; MAS-NMR: magic angle spinning NMR).
Fig.5  (A) 244 nm and (B) 325nm excited UV Raman spectra of (a) B-Ti-MWW, (b) B-Ti-MWW-C, (c) B-Ti-MWW-AT-C and (d) B-Ti-MWW-C-AT-C. (C) A possible schematic diagram for the evolution of titanium species in B-Ti-MWW during post-treatments. Reprinted with permission from ref. [102], copyright 2017, Elsevier Inc.
Fig.6  (A) 119Sn NMR spectra of Sn-BEA. Reprinted with permission from ref. [107], copyright 2019, American Chemical Society. (B) Hyperpolarization of Sn-BEA zeolite using DNP. Reprinted with permission from ref. [108], copyright 2014, American Chemical Society. (C) 119Sn DNP-SENS NMR spectra of various Sn loading Sn-BEA. (D) 119Sn 2D-CPMAT NMR spectra of Sn-BEA. Reprinted with permission from ref. [109], copyright 2014, Wiley-VCH. (E) 2D 1H-119Sn HMQC (heteronuclear multiple quantum correlation) MAS NMR spectra of 119Sn-BEA (a) without dehydration, (b) dehydrated at 298 K, (c) dehydrated at 393 K without 119Sn decoupling, and (d) dehydrated at 393 K with 119Sn decoupling. Reprinted with permission from ref. [110], copyright 2018, Springer Nature.
Fig.7  (a) XANES spectra of TS-1 (black line), after contact with H2O2/H2O solution (yellow line), after time elapse of 24 h (blue line) and subsequent H2O dosage (orange line); (b) as part a for the k3-weighted, |FT| of the EXAFS spectra (The insets in parts (a) and (b) report the UV-vis DRS spectra and the Raman spectra); (c) the model hypothesized base on (a) and (b). Reprinted with permission from ref. [116], copyright 2013, American Chemical Society.
Fig.8  (A) 1H and 31P MAS NMR spectroscopy of NH3 and TMPO adsorption on 2.5% Sn-MFI and 2.2% Sn-Al-MFI zeolites. Reprinted with permission from ref. [127], copyright 2018, Elsevier Inc. (B) 1H-decoupled 31P MAS NMR spectrum of TMPO-treated calcined and as-synthesized H-B-MFI, and Schematic sketches of possible interactions between TMPO and Brønsted/Lewis acid sites in H-B-MFI zeolite. Reprinted with permission from ref. [129], copyright 2014, Elsevier Inc.
Reactant Product Catalyst Conditions a) Creactanta)/% Yproducta)/% Refs.
Glucose 5-(Ethoxymethyl)furfural MFI-Sn/Al EtOH, 413 K, 9 h 100 44 [25]
Cortalcerone Furylglycolic acid Al-Sn-Beta H2O/MeOH,
358 K, 0.5 h
42 53 b) [26]
Glucose 5-Hydroxymethylfurfural Sn-Al-Beta DMSO, 433 K, 4 h 60 62 b) [36]
Furfural (FAL) Bio-products Sn-Al-Beta 2-BuOH, 393 K, 5 h 86 83 c) [39]
FAL γ-Valerolactone (GVL) Sn-Al-Beta 2-BuOH,453 K, 24 h 100 60 b) [40]
FAL Furanic ethers Sn-Al-Beta 2-BuOH, 393 K, 107 h on stream 100 75 b) [41]
Glucose Methyl levulinate Sn-Al-Beta MeOH, 453 K, 5 h 100 49 [42]
Glucose Methyl lactate Mg-Sn-Beta MeOH, 443 K, 5 h 100 50 [38]
Sn–Al-USY MeOH, 443 K, 6 h 100 40 [43]
Levoglucosan Lactic acid Sn-Beta–Ca H2O, 463 K, 2 h, 2 MPa N2 100 66 [44]
Glucose Lactic acid In–Sn-Beta H2O, 463 K, 2 h 100 53 [45]
Zn–Sn-Beta H2O, 463 K, 2 h >99 54 [46]
Dihydroxyacetone Methyl lactate Sn-Al-MFI MeOH, 363 K, 4 h 100 ~95 b) [127]
FAL Bio-products Zr-Al-TUD-1 2-BuOH, 393 K, 7 h 70 61c) [27]
Zr-Al-Beta 2-BuOH, 393 K, 7 h 85 76 c) [27]
Cinnamaldehyde 1-Cinnamyl-2-propyl ether Zr-Al-Beta i-PrOH, 355 K, 5 h 97 94 [37]
Gurfural Bio-products MP-ZrAl-Beta-m 2-BuOH, 423 K, 7 h 96 93 c) [48]
ZrAl-Beta/TUD-1 2-BuOH, 423 K, 5 h 99 95 c) [48]
Xylose GVL Zr-Al-Beta i-PrOH, 463 K, 48 h 100 mol 35 mol [47]
Zr-Al-SCM-1 i-PrOH, 443 K, 28 h 100 47 [131]
Zr-Al-Beta i-PrOH, 463 K, 10 h 100 34 [132]
FAL GVL Meso-Zr-Al-Beta i-PrOH, 393 K, 24 h 100 95 [133]
Triose Ethyl lactate Meso-Zr-Al-Beta EtOH, 363 K, 0.5 h 95 86 [133]
Glucose 5-Hydroemthylfurfural Meso-Zr-Al-Beta DMSO, 433 K, 4 h 100 49 [133]
Tab.2  Applications of multifunctional heteroatom zeolite for the biomass conversion
Fig.9  Converting biomass into high value chemicals. Reprinted with permission from ref. [131], copyright 2020, Elsevier Inc.
Fig.10  (a) NH3-TPD profiles and (b) adsorbed pyridine DRIFT spectra obtained for sample #7 mixed with aqueous solutions of alkali and alkaline-earth metal chlorides; (c) cumulative yield through different reaction pathways and Brønsted to Lewis acid ratios recorded for sample #7 and its ion-exchanged counterparts. Reprinted with permission from ref. [43], copyright 2019, Royal Society of Chemistry.
Fig.11  Synthesis of 5-(ethoxymethyl)furfural from glucose by hierarchical multi-functional MFI-Sn/Al catalyst. Reprinted with permission from ref. [25], copyright 2018, Royal Society of Chemistry.
Fig.12  (A) TEM images of Zr-Al-SCM-1; (B) xylose conversion and selectivity to products in 2-propamol over Zr-Al-SCM-1 zeolite (reaction conditions: 0.2 g xylose, 0.1 g catalyst, 10 mL isopropanol, 170 °C); (C) reaction pathway for (a) conversion of xylose and furfural into GVL through acid catalyzed (red) and MPV (blue) reactions, and (b) retro-aldol condensation of xylose into 2-propoxy glycol and 2-propyl lactate (X ethers, xylose ethers; IPL, isopropyl levulinate; LACT, α/β-angelica lactones). Reprinted with permission from ref. [131], copyright 2020, Elsevier Inc.
Fig.13  Proposed reaction pathways of ethanol conversion into butadiene. Reprinted with permission from ref. [50], copyright 2016, Elsevier Inc.
Fig.14  Routes for the conversion of alkenes to 1,2-diols. (a) Indirect route including two processes: alkene epoxidation and epoxide hydration; (b) tandem catalytic route. Reprinted with permission from ref. [56], copyright 2021, Elsevier Inc.
Fig.15  Suggested reaction mechanism for the synthesis of OME from dimethoxymethane and trioxanehe with Brønsted and Lewis sites. Reprinted with permission from ref. [59], copyright 2019, Wiley-VHC.
1 M Taramasso, G Perego, B Notari. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent, 4410501, 1983–10–18
2 A Wroblewska, J Wajzberg, A Fajdek, E Milchert. Epoxidation of 1-butene-3-ol over titanium silicalite TS-2 catalyst under autogenic pressure. Journal of Hazardous Materials, 2009, 163(2–3): 1303–1309
https://doi.org/10.1016/j.jhazmat.2008.07.100
3 R Gounder, M E Davis. Titanium-Beta zeolites catalyze the stereospecific isomerization of D-glucose to L-sorbose via intramolecular C5–C1 hydride shift. ACS Catalysis, 2013, 3(7): 1469–1476
https://doi.org/10.1021/cs400273c
4 H Song, J Wang, Z Wang, H Song, F Li, Z Jin. Effect of titanium content on dibenzothiophene HDS performance over Ni2P/Ti-MCM-41 catalyst. Journal of Catalysis, 2014, 311: 257–265
https://doi.org/10.1016/j.jcat.2013.11.021
5 N Igarashi, K Hashimoto, T Tatsumi. Catalytical studies on trimethylsilylated Ti-MCM-41 and Ti-MCM-48 materials. Microporous and Mesoporous Materials, 2007, 104(1–3): 269–280
https://doi.org/10.1016/j.micromeso.2007.02.041
6 S Song, W Zhao, L Wang, J Chu, J Qu, S Li, L Wang, T Qi. One-step synthesis of Ti-MSU and its catalytic performance on phenol hydroxylation. Journal of Colloid and Interface Science, 2011, 354(2): 686–690
https://doi.org/10.1016/j.jcis.2010.11.025
7 M A Deimund, L Harrison, J D Lunn, Y Liu, A Malek, R Shayib, M E Davis. Effect of heteroatom concentration in SSZ-13 on the methanol-to-olefins reaction. ACS Catalysis, 2015, 6(2): 542–550
https://doi.org/10.1021/acscatal.5b01450
8 A J Jones, R T Carr, S I Zones, E Iglesia. Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 2014, 312: 58–68
https://doi.org/10.1016/j.jcat.2014.01.007
9 P S Petkov, H A Aleksandrov, V Valtchev, G N Vayssilov. Framework stability of heteroatom-substituted forms of extra-large-pore Ge-silicate molecular sieves: the case of ITQ-44. Chemistry of Materials, 2012, 24(13): 2509–2518
https://doi.org/10.1021/cm300861e
10 X Su, G Wang, X Bai, W Wu, L Xiao, Y Fang, J Zhang. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chemical Engineering Journal, 2016, 293: 365–375
https://doi.org/10.1016/j.cej.2016.02.088
11 H Y Luo, L Bui, W R Gunther, E Min, Y Román-Leshkov. Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer-Villiger oxidation of cyclic ketones. ACS Catalysis, 2012, 2(12): 2695–2699
https://doi.org/10.1021/cs300543z
12 Z Sun, Y Yan, G Li, Y Zhang, Y Tang. Microwave influence on different M–O bonds during MFI-type heteroatom (M) zeolite preparation. Industrial & Engineering Chemistry Research, 2017, 56(39): 11167–11174
https://doi.org/10.1021/acs.iecr.7b03072
13 X Li, B Li, H Mao, A T Shah. Synthesis of mesoporous zeolite Ni-MFI with high nickel contents by using the ionic complex [(C4H9)4N]2+[Ni(EDTA)]2– as a template. Journal of Colloid and Interface Science, 2009, 332(2): 444–450
https://doi.org/10.1016/j.jcis.2009.01.006
14 L Meng, X Zhu, B Mezari, R Pestman, W Wannapakdee, E J M Hensen. On the role of acidity in bulk and nanosheet [T]MFI (T=Al3+, Ga3+, Fe3+, B3+) zeolites in the methanol-to-hydrocarbons reaction. ChemCatChem, 2017, 9(20): 3942–3954
https://doi.org/10.1002/cctc.201700916
15 D T Bregante, J Z Tan, A Sutrisno, D W Flaherty. Heteroatom substituted zeolite FAU with ultralow Al contents for liquid-phase oxidation catalysis. Catalysis Science & Technology, 2020, 10(3): 635–647
https://doi.org/10.1039/C9CY01886G
16 T Yan, L Yang, W Dai, G Wu, N Guan, M Hunger, L Li. Cascade conversion of acetic acid to isobutene over yttrium-modified siliceous Beta zeolites. ACS Catalysis, 2019, 9(11): 9726–9738
https://doi.org/10.1021/acscatal.9b02850
17 Y Wu, J Wang, P Liu, W Zhang, J Gu, X Wang. Framework-substituted lanthanide MCM-22 zeolite: synthesis and characterization. Journal of the American Chemical Society, 2010, 132(51): 17989–17991
https://doi.org/10.1021/ja107633j
18 J K Reddy, K Mantri, S Lad, J Das, G Raman, R Jasra. Synthesis of Ce-MCM-22 and its enhanced catalytic performance for the removal of olefins from aromatic stream. Journal of Porous Materials, 2020, 27(6): 1649–1658
https://doi.org/10.1007/s10934-020-00940-x
19 D W Fickel, E D’Addio, J A Lauterbach, R F Lobo. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 2011, 102(3–4): 441–448
https://doi.org/10.1016/j.apcatb.2010.12.022
20 J Jae, G A Tompsett, A J Foster, K D Hammond, S M Auerbach, R F Lobo, G W Huber. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 2011, 279(2): 257–268
https://doi.org/10.1016/j.jcat.2011.01.019
21 P Luo, Y Guan, H Xu, M He, P Wu. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions. Frontiers of Chemical Science and Engineering, 2020, 14(2): 258–266
https://doi.org/10.1007/s11705-019-1878-0
22 B Reiprich, T Weissenberger, W Schwieger, A Inayat. Layer-like FAU-type zeolites: a comparative view on different preparation routes. Frontiers of Chemical Science and Engineering, 2020, 14(2): 127–142
https://doi.org/10.1007/s11705-019-1883-3
23 T Pang, X Yang, C Yuan, A A Elzatahry, A Alghamdi, X He, X Cheng, Y Deng. Recent advance in synthesis and application of heteroatom zeolites. Chinese Chemical Letters, 2021, 32(1): 328–338
https://doi.org/10.1016/j.cclet.2020.04.018
24 B Meng, S Ren, Z Li, H Duan, X Gao, H Zhang, W Song, Q Guo, B Shen. Intra-crystalline mesoporous zeolite [Al,Zr]-Y for catalytic cracking. ACS Applied Nano Materials, 2020, 3(9): 9293–9302
https://doi.org/10.1021/acsanm.0c01925
25 Y Bai, L Wei, M Yang, H Chen, S Holdren, G Zhu, D T Tran, C Yao, R Sun, Y Pan, D Liu. Three-step cascade over a single catalyst: synthesis of 5-(ethoxymethyl)furfural from glucose over a hierarchical lamellar multi-functional zeolite catalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(17): 7693–7705
https://doi.org/10.1039/C8TA01242C
26 T J Schwartz, S M Goodman, C M Osmundsen, E Taarning, M D Mozuch, J Gaskell, D Cullen, P J Kersten, J A Dumesic. Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catalysis, 2013, 3(12): 2689–2693
https://doi.org/10.1021/cs400593p
27 M M Antunes, S Lima, P Neves, A L Magalhães, E Fazio, F Neri, M T Pereira, A F Silva, C M Silva, S M Rocha, et al.Integrated reduction and acid-catalysed conversion of furfural in alcohol medium using Zr, Al-containing ordered micro/mesoporous silicates. Applied Catalysis B: Environmental, 2016, 182: 485–503
https://doi.org/10.1016/j.apcatb.2015.09.053
28 Y Jin, S Asaoka, S Zhang, P Li, S Zhao. Reexamination on transition-metal substituted MFI zeolites for catalytic conversion of methanol into light olefins. Fuel Processing Technology, 2013, 115: 34–41
https://doi.org/10.1016/j.fuproc.2013.03.047
29 J Grand, S N Talapaneni, A Vicente, C Fernandez, E Dib, H A Aleksandrov, G N Vayssilov, R Retoux, P Boullay, J P Gilson, et al.One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Materials, 2017, 16(10): 1010–1015
https://doi.org/10.1038/nmat4941
30 S N Talapaneni, J Grand, S Thomas, H A Ahmad, S Mintova. Nanosized Sn-MFI zeolite for selective detection of exhaust gases. Materials & Design, 2016, 99: 574–580
https://doi.org/10.1016/j.matdes.2016.03.035
31 D Liu, B Zhang, X Liu, J Li. Cyclohexane oxidation over AFI molecular sieves: effects of Cr, Co incorporation and crystal size. Catalysis Science & Technology, 2015, 5(6): 3394–3402
https://doi.org/10.1039/C5CY00416K
32 L Zhou, J Xu, H Miao, X Li, F Wang. Synthesis of FeCoMnAPO-5 molecular sieve and catalytic activity in cyclohexane oxidation by oxygen. Catalysis Letters, 2005, 99(3–4): 231–234
https://doi.org/10.1007/s10562-005-2128-2
33 G Lv, S Deng, Z Yi, X Zhang, F Wang, H Li, Y Zhu. One-pot synthesis of framework W-doped TS-1 zeolite with robust Lewis acidity for effective oxidative desulfurization. Chemical Communications, 2019, 55(33): 4885–4888
https://doi.org/10.1039/C9CC00715F
34 V R Choudhary, A K Kinage, T V Choudhary. Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science, 1997, 275(5304): 1286–1288
https://doi.org/10.1126/science.275.5304.1286
35 J Dijkmans, M Dusselier, D Gabriëls, K Houthoofd, P C M M Magusin, S Huang, Y Pontikes, M Trekels, A Vantomme, L Giebeler, et al.Cooperative catalysis for multistep biomass conversion with Sn/Al Beta zeolite. ACS Catalysis, 2015, 5(2): 928–940
https://doi.org/10.1021/cs501388e
36 L Li, J Ding, J G Jiang, Z Zhu, P Wu. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts. Chinese Journal of Catalysis, 2015, 36(6): 820–828
https://doi.org/10.1016/S1872-2067(14)60287-4
37 G Li, L Gao, Z Sheng, Y Zhan, C Zhang, J Ju, Y Zhang, Y Tang. A Zr-Al-Beta zeolite with open Zr(IV) sites: an efficient bifunctional Lewis-Brønsted acid catalyst for a cascade reaction. Catalysis Science & Technology, 2019, 9(15): 4055–4065
https://doi.org/10.1039/C9CY00853E
38 X Yang, B Lv, T Lu, Y Su, L Zhou. Promotion effect of Mg on a post-synthesized Sn-Beta zeolite for the conversion of glucose to methyl lactate. Catalysis Science & Technology, 2020, 10(3): 700–709
https://doi.org/10.1039/C9CY02376C
39 M M Antunes, S Lima, P Neves, A L Magalhães, E Fazio, A Fernandes, F Neri, C M Silva, S M Rocha, M F Ribeiro, et al.One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes. Journal of Catalysis, 2015, 329: 522–537
https://doi.org/10.1016/j.jcat.2015.05.022
40 H P Winoto, B S Ahn, J Jae. Production of γ-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: optimizing the catalyst acid properties and process conditions. Journal of Industrial and Engineering Chemistry, 2016, 40: 62–71
https://doi.org/10.1016/j.jiec.2016.06.007
41 D Padovan, A Al-Nayili, C Hammond. Bifunctional Lewis and Brønsted acidic zeolites permit the continuous production of bio-renewable furanic ethers. Green Chemistry, 2017, 19(12): 2846–2854
https://doi.org/10.1039/C7GC00160F
42 X Yang, J Yang, B Gao, T Lu, L Zhou. Conversion of glucose to methyl levulinate over Sn-Al-β zeolite: role of Sn and mesoporosity. Catalysis Communications, 2019, 130: 105783
https://doi.org/10.1016/j.catcom.2019.105783
43 J Iglesias, J Moreno, G Morales, J A Melero, P Juárez, M López-Granados, R Mariscal, I Martínez-Salazar. Sn-Al-USY for the valorization of glucose to methyl lactate: switching from hydrolytic to retro-aldol activity by alkaline ion exchange. Green Chemistry, 2019, 21(21): 5876–5885
https://doi.org/10.1039/C9GC02609F
44 W Hu, Z Chi, Y Wan, S Wang, J Lin, S Wan, Y Wang. Synergetic effect of Lewis acid and base in modified Sn-β on the direct conversion of levoglucosan to lactic acid. Catalysis Science & Technology, 2020, 10(9): 2986–2993
https://doi.org/10.1039/D0CY00089B
45 M Xia, W Dong, Z Shen, S Xiao, W Chen, M Gu, Y Zhang. Efficient production of lactic acid from biomass-derived carbohydrates under synergistic effects of indium and tin in In-Sn-Beta zeolites. Sustainable Energy & Fuels, 2020, 4(10): 5327–5338
https://doi.org/10.1039/D0SE00798F
46 W Dong, Z Shen, B Peng, M Gu, X Zhou, B Xiang, Y Zhang. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta lewis acid-base catalyst. Scientific Reports, 2016, 6(1): 26713
https://doi.org/10.1038/srep26713
47 B Hernández, J Iglesias, G Morales, M Paniagua, C López-Aguado, J L García Fierro, P Wolf, I Hermans, J A Melero. One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional Brønsted-Lewis Zr-Al-beta zeolite. Green Chemistry, 2016, 18(21): 5777–5781
https://doi.org/10.1039/C6GC01888B
48 M M Antunes, P Neves, A Fernandes, S Lima, A F Silva, M F Ribeiro, C M Silva, M Pillinger, A A Valente. Bulk and composite catalysts combining BEA topology and mesoporosity for the valorisation of furfural. Catalysis Science & Technology, 2016, 6(21): 7812–7829
https://doi.org/10.1039/C6CY00223D
49 P I Kyriienko, O V Larina, S O Soloviev, S M Orlyk, C Calers, S Dzwigaj. Ethanol conversion into 1,3-butadiene by the lebedev method over MTaSiBEA zeolites (M= Ag, Cu, Zn). ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2075–2083
https://doi.org/10.1021/acssuschemeng.6b01728
50 V L Sushkevich, I I Ivanova. Ag-promoted ZrBEA zeolites obtained by post-synthetic modification for conversion of ethanol to butadiene. ChemSusChem, 2016, 9(16): 2216–2225
https://doi.org/10.1002/cssc.201600572
51 C Wang, M Zheng, X Li, X Li, T Zhang. Catalytic conversion of ethanol into butadiene over high performance LiZnHf-MFI zeolite nanosheets. Green Chemistry, 2019, 21(5): 1006–1010
https://doi.org/10.1039/C8GC03983F
52 Y Wang, Z P Hu, W Tian, L Gao, Z Wang, Z Y Yuan. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catalysis Science & Technology, 2019, 9(24): 6993–7002
https://doi.org/10.1039/C9CY01907C
53 Z Xu, Y Yue, X Bao, Z Xie, H Zhu. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework. ACS Catalysis, 2019, 10(1): 818–828
https://doi.org/10.1021/acscatal.9b03527
54 J Li, J Li, Z Zhao, X Fan, J Liu, Y Wei, A Duan, Z Xie, Q Liu. Size effect of TS-1 supports on the catalytic performance of PtSn/TS-1 catalysts for propane dehydrogenation. Journal of Catalysis, 2017, 352: 361–370
https://doi.org/10.1016/j.jcat.2017.05.024
55 J Liu, S Fang, R Jian, F Wu, P Jian. Silylated Pd/Ti-MCM-41 catalyst for the selective production of propylene oxide from the oxidation of propylene with cumene hydroperoxide. Powder Technology, 2018, 329: 19–24
https://doi.org/10.1016/j.powtec.2018.01.066
56 Q Lei, C Wang, W Dai, G Wu, N Guan, M Hunger, L Li. Tandem Lewis acid catalysis for the conversion of alkenes to 1,2-diols in the confined space of bifunctional TiSn-Beta zeolite. Chinese Journal of Catalysis, 2021, 42(7): 1176–1184
https://doi.org/10.1016/S1872-2067(20)63734-2
57 Q Shen, L Li, Z Hao, Z P Xu. Highly active and stable bimetallic Ir/Fe-USY catalysts for direct and NO-assisted N2O decomposition. Applied Catalysis B: Environmental, 2008, 84(3–4): 734–741
58 X Zhou, H Chen, G Zhang, J Wang, Z Xie, Z Hua, L Zhang, J Shi. Cu/Mn co-loaded hierarchically porous zeolite beta: a highly efficient synergetic catalyst for soot oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(18): 9745–9753
https://doi.org/10.1039/C5TA00094G
59 C J Baranowski, M Roger, A M Bahmanpour, O Krocher. Nature of synergy between Brønsted and Lewis acid sites in Sn-Beta zeolites for polyoxymethylene dimethyl ethers synthesis. ChemSusChem, 2019, 12(19): 4421–4431
https://doi.org/10.1002/cssc.201901814
60 H J Chae, S S Park, Y H Shin, M B Park. Synthesis and characterization of nanocrystalline TiAPSO-34 catalysts and their performance in the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 2018, 259: 60–66
https://doi.org/10.1016/j.micromeso.2017.09.035
61 A Wróblewska. Water as the solvent for the process of phenol hydroxylation over the Ti-MWW catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2012, 108(2): 491–505
https://doi.org/10.1007/s11144-012-0517-2
62 B Wang, X Peng, J Yang, M Lin, B Zhu, Y Zhang, C Xia, W Liao, X Shu. Nano-crystalline, hierarchical zeolite Ti-Beta: hydrothermal synthesis and catalytic performance in alkenes epoxidation reactions. Microporous and Mesoporous Materials, 2019, 278: 30–34
https://doi.org/10.1016/j.micromeso.2018.11.019
63 J Li, A Corma, J Yu. Synthesis of new zeolite structures. Chemical Society Reviews, 2015, 44(20): 7112–7127
https://doi.org/10.1039/C5CS00023H
64 M Moliner, F Rey, A Corma. Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. Angewandte Chemie International Edition, 2013, 52(52): 13880–13889
https://doi.org/10.1002/anie.201304713
65 M Moliner, A Corma. Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous and Mesoporous Materials, 2014, 189: 31–40
https://doi.org/10.1016/j.micromeso.2013.08.003
66 A Corma, M E Domine, L Nemeth, S Valencia. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Journal of the American Chemical Society, 2002, 124(13): 3194–3195
https://doi.org/10.1021/ja012297m
67 A Corma, L T Nemeth, M Renz, S Valencia. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature, 2001, 412(6845): 423–425
https://doi.org/10.1038/35086546
68 A Corma, F X Llabrés i Xamena, C Prestipino, M Renz, S Valencia. Water resistant, catalytically active Nb and Ta isolated lewis acid sites, homogeneously distributed by direct synthesis in a Beta zeolite. Journal of Physical Chemistry C, 2009, 113(26): 11306–11315
https://doi.org/10.1021/jp902375n
69 A Corma. Water-resistant solid lewis acid catalysts: Meerwein-Ponndorf-Verley and oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 2003, 215(2): 294–304
https://doi.org/10.1016/S0021-9517(03)00014-9
70 P Y Dapsens, C Mondelli, J Perez-Ramirez. Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chemical Society Reviews, 2015, 44(20): 7025–7043
https://doi.org/10.1039/C5CS00028A
71 P S Niphadkar, M S Kotwal, S S Deshpande, V V Bokade, P N Joshi. Tin-silicalite-1: synthesis by dry gel conversion, characterization and catalytic performance in phenol hydroxylation reaction. Materials Chemistry and Physics, 2009, 114(1): 344–349
https://doi.org/10.1016/j.matchemphys.2008.09.026
72 Z Kang, X Zhang, H Liu, J Qiu, K L Yeung. A rapid synthesis route for Sn-Beta zeolites by steam-assisted conversion and their catalytic performance in Baeyer-Villiger oxidation. Chemical Engineering Journal, 2013, 218: 425–432
https://doi.org/10.1016/j.cej.2012.12.019
73 P Li, G Liu, H Wu, Y Liu, J G Jiang, P Wu. Postsynthesis and selective oxidation properties of nanosized Sn-Beta zeolite. Journal of Physical Chemistry C, 2011, 115(9): 3663–3670
https://doi.org/10.1021/jp1076966
74 J Jin, X Ye, Y Li, Y Wang, L Li, J Gu, W Zhao, J Shi. Synthesis of mesoporous Beta and Sn-Beta zeolites and their catalytic performances. Dalton Transactions (Cambridge, England), 2014, 43(22): 8196–8204
https://doi.org/10.1039/C4DT00567H
75 S Dzwigaj, J P Nogier, M Che, M Saito, T Hosokawa, E Thouverez, M Matsuoka, M Anpo. Influence of the Ti content on the photocatalytic oxidation of 2-propanol and CO on TiSiBEA zeolites. Catalysis Communications, 2012, 19: 17–20
https://doi.org/10.1016/j.catcom.2011.12.010
76 J Dijkmans, D Gabriëls, M Dusselier, F de Clippel, P Vanelderen, K Houthoofd, A Malfliet, Y Pontikes, B F Sels. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chemistry, 2013, 15(10): 2777–2785
https://doi.org/10.1039/c3gc41239c
77 F Tielens, T Shishido, S Dzwigaj. What do tantalum framework sites look like in zeolites? A combined theoretical and experimental investigation. Journal of Physical Chemistry C, 2010, 114(21): 9923–9930
https://doi.org/10.1021/jp102181m
78 J P Nogier, Y Millot, P P Man, T Shishido, M Che, S Dzwigaj. Probing the incorporation of Ti(IV) into the BEA zeolite framework by XRD, FTIR, NMR, and DR UV. Journal of Physical Chemistry C, 2009, 113(12): 4885–4889
https://doi.org/10.1021/jp8099829
79 S Dzwigaj, Y Millot, C Méthivier, M Che. Incorporation of Nb(V) into BEA zeolite investigated by XRD, NMR, IR, DR UV-vis, and XPS. Microporous and Mesoporous Materials, 2010, 130(1–3): 162–166
https://doi.org/10.1016/j.micromeso.2009.10.027
80 J Janas, J Gurgul, R P Socha, T Shishido, M Che, S Dzwigaj. Selective catalytic reduction of NO by ethanol: speciation of iron and “structure-properties” relationship in FeSiBEA zeolite. Applied Catalysis B: Environmental, 2009, 91(1–2): 113–122
https://doi.org/10.1016/j.apcatb.2009.05.013
81 S Dzwigaj, M Che. Toward redox framework single site zeolite catalysts. Catalysis Today, 2011, 169(1): 232–241
https://doi.org/10.1016/j.cattod.2011.01.035
82 B Tang, W Dai, X Sun, G Wu, L Li, N Guan, M Hunger. Incorporation of cerium atoms into Al-free Beta zeolite framework for catalytic application. Chinese Journal of Catalysis, 2015, 36(6): 801–805
https://doi.org/10.1016/S1872-2067(14)60277-1
83 B Tang, W Dai, G Wu, N Guan, L Li, M Hunger. Improved postsynthesis strategy to Sn-Beta zeolites as lewis acid catalysts for the ring-opening hydration of epoxides. ACS Catalysis, 2014, 4(8): 2801–2810
https://doi.org/10.1021/cs500891s
84 B Tang, W Dai, X Sun, G Wu, N Guan, M Hunger, L Li. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chemistry, 2015, 17(3): 1744–1755
https://doi.org/10.1039/C4GC02116A
85 J Ding, L Xu, Y Yu, H Wu, S Huang, Y Yang, J Wu, P Wu. Clean synthesis of acetaldehyde oxime through ammoximation on titanosilicate catalysts. Catalysis Science & Technology, 2013, 3(10): 2587–2595
https://doi.org/10.1039/c3cy00471f
86 A Śrębowata, R Baran, D Łomot, D Lisovytskiy, T Onfroy, S Dzwigaj. Remarkable effect of postsynthesis preparation procedures on catalytic properties of Ni-loaded BEA zeolites in hydrodechlorination of 1,2-dichloroethane. Applied Catalysis B: Environmental, 2014, 147: 208–220
https://doi.org/10.1016/j.apcatb.2013.08.040
87 W Ren, Z Hua, T Ge, X Zhou, L Chen, Y Zhu, J Shi. Post-synthesis of hierarchically structured Ti-β zeolites and their epoxidation catalytic performance. Chinese Journal of Catalysis, 2015, 36(6): 906–912
https://doi.org/10.1016/S1872-2067(14)60267-9
88 W Dai, Q Lei, G Wu, N Guan, M Hunger, L Li. Spectroscopic signature of lewis acidic framework and extraframework Sn sites in Beta zeolites. ACS Catalysis, 2020, 10(23): 14135–14146
https://doi.org/10.1021/acscatal.0c02356
89 P S Niphadkar, D S Bhange, K Selvaraj, P N Joshi. Thermal expansion properties of stannosilicate molecular sieve with MFI type structure. Chemical Physics Letters, 2012, 548: 51–54
https://doi.org/10.1016/j.cplett.2012.08.023
90 R Kore, R Srivastava, B Satpati. Highly efficient nanocrystalline zirconosilicate catalysts for the aminolysis, alcoholysis, and hydroamination reactions. ACS Catalysis, 2013, 3(12): 2891–2904
https://doi.org/10.1021/cs400732f
91 Q Guo, Z Feng, G Li, F Fan, C Li. Finding the “missing components” during the synthesis of TS-1 zeolite by UV resonance Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(6): 2844–2848
https://doi.org/10.1021/jp310900a
92 M Yan, F Jin, Y Ding, G Wu, R Chen, L Wang, Y Yan. Synthesis of titanium-incorporated MWW zeolite by sequential deboronation and atom-planting treatment of ERB-1 as an epoxidation catalyst. Industrial & Engineering Chemistry Research, 2019, 58(12): 4764–4773
https://doi.org/10.1021/acs.iecr.8b05836
93 Y Yue, H Liu, P Yuan, C Yu, X Bao. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports, 2015, 5(1): 9270
https://doi.org/10.1038/srep09270
94 B Tang, W Dai, X Sun, N Guan, L Li, M Hunger. A procedure for the preparation of Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide. Green Chemistry, 2014, 16(4): 2281–2291
https://doi.org/10.1039/C3GC42534G
95 Y Chen, X Wang, L Zhang. Identifying the elusive framework niobium in NbS-1 zeolite by UV resonance raman spectroscopy. ChemPhysChem, 2017, 18(23): 3325–3328
https://doi.org/10.1002/cphc.201700873
96 X Ju, F Tian, Y Wang, F Fan, Z Feng, C Li. A novel synthetic strategy of Fe-ZSM-35 with pure framework Fe species and its formation mechanism. Inorganic Chemistry Frontiers, 2018, 5(8): 2031–2037
https://doi.org/10.1039/C8QI00432C
97 H Zhou, W Zhu, L Shi, H Liu, S Liu, S Xu, Y Ni, Y Liu, L Li, Z Liu. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate. Catalysis Science & Technology, 2015, 5(3): 1961–1968
https://doi.org/10.1039/C4CY01580K
98 G Xiong, Y Cao, Z Guo, Q Jia, F Tian, L Liu. The roles of different titanium species in TS-1 zeolite in propylene epoxidation studied by in situ UV Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18(1): 190–196
https://doi.org/10.1039/C5CP05268H
99 S Jin, Z Wang, G Tao, S Zhang, W Liu, W Fu, B Zhang, H Sun, Y Wang, W Yang. UV resonance Raman spectroscopic insight into titanium species and structure-performance relationship in boron-free Ti-MWW zeolite. Journal of Catalysis, 2017, 353: 305–314
https://doi.org/10.1016/j.jcat.2017.07.032
100 Q Guo, K Sun, Z Feng, G Li, M Guo, F Fan, C Li. A thorough investigation of the active titanium species in TS-1 zeolite by in situ UV resonance raman spectroscopy. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(43): 13854–13860
https://doi.org/10.1002/chem.201201319
101 F Fan, Z Feng, C U V Li. Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials. Accounts of Chemical Research, 2010, 43(3): 378–387
https://doi.org/10.1021/ar900210g
102 S Zhang, S Jin, G Tao, Z Wang, W Liu, Y Chen, J Luo, B Zhang, H Sun, Y Wang, W Yang. The evolution of titanium species in boron-containing Ti-MWW zeolite during post-treatment revealed by UV resonance Raman spectroscopy. Microporous and Mesoporous Materials, 2017, 253: 183–190
https://doi.org/10.1016/j.micromeso.2017.07.006
103 J Zhao, Y Zhang, S Zhang, Q Wang, M Chen, T Hu, C Meng. Synthesis and characterization of Mn-silicalite-1 by the hydrothermal conversion of Mn-magadiite under the neutral condition and its catalytic performance on selective oxidation of styrene. Microporous and Mesoporous Materials, 2018, 268: 16–24
https://doi.org/10.1016/j.micromeso.2018.04.009
104 C Xia, Y Liu, M Lin, X Peng, B Zhu, X Shu. Confirmation of the isomorphous substitution by Sn atoms in the framework positions of MFI-typed zeolite. Catalysis Today, 2018, 316: 193–198
https://doi.org/10.1016/j.cattod.2018.02.056
105 M Nakai, K Miyake, R Inoue, K Ono, H Al Jabri, Y Hirota, Y Uchida, S Tanaka, M Miyamoto, Y Oumi, et al.Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta). Catalysis Science & Technology, 2019, 9(22): 6234–6239
https://doi.org/10.1039/C9CY00691E
106 R Simancas, T Nishitoba, S Park, J N Kondo, F Rey, H Gies, T Yokoi. Versatile phosphorus-structure-directing agent for direct preparation of novel metallosilicate zeolites with IFW-topology. Microporous and Mesoporous Materials, 2021, 317: 111005
https://doi.org/10.1016/j.micromeso.2021.111005
107 V L Sushkevich, P A Kots, Y G Kolyagin, A V Yakimov, A V Marikutsa, I I Ivanova. Origin of water-induced Brønsted acid sites in Sn-BEA zeolites. Journal of Physical Chemistry C, 2019, 123(9): 5540–5548
https://doi.org/10.1021/acs.jpcc.8b12462
108 W R Gunther, V K Michaelis, M A Caporini, R G Griffin, Y Roman-Leshkov. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance 119Sn precursors. Journal of the American Chemical Society, 2014, 136(17): 6219–6222
https://doi.org/10.1021/ja502113d
109 P Wolf, M Valla, A J Rossini, A Comas-Vives, F Nunez-Zarur, B Malaman, A Lesage, L Emsley, C Coperet, I Hermans. NMR signatures of the active sites in Sn-beta zeolite. Angewandte Chemie International Edition, 2014, 53(38): 10179–10183
https://doi.org/10.1002/anie.201403905
110 G Qi, Q Wang, J Xu, Q Wu, C Wang, X Zhao, X Meng, F Xiao, F Deng. Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Communications Chemistry, 2018, 1(1): 22
https://doi.org/10.1038/s42004-018-0023-1
111 N Senamart, S Buttha, W Pantupho, I Z Koleva, S Loiha, H A Aleksandrov, J Wittayakun, G N Vayssilov. Characterization and temperature evolution of iron-containing species in HZSM-5 zeolite prepared from different iron sources. Journal of Porous Materials, 2019, 26(4): 1227–1240
https://doi.org/10.1007/s10934-019-00718-w
112 L Nemeth, J Moscoso, N Erdman, S R Bare, A Oroskar, S D Kelly, A Corma, S Valencia, M Renz. Synthesis and characterization of Sn-Beta as a selective oxidation catalyst. Studies in Surface Science and Catalysis, 2004, 154(4): 2626–2631
https://doi.org/10.1016/S0167-2991(04)80533-0
113 A A Gabrienko, S S Arzumanov, A V Toktarev, I G Danilova, I P Prosvirin, V V Kriventsov, V I Zaikovskii, D Freude, A G Stepanov. Different efficiency of Zn2+ and ZnO species for methane activation on Zn-modified zeolite. ACS Catalysis, 2017, 7(3): 1818–1830
https://doi.org/10.1021/acscatal.6b03036
114 J Qin, B S Li, D P Yan. Synthesis, characterization and catalytic performance of well-ordered crystalline heteroatom mesoporous MCM-41. Crystals, 2017, 7(4): 89–99
https://doi.org/10.3390/cryst7040089
115 G Berlier, M Pourny, S Bordiga, G Spoto, A Zecchina, C Lamberti. Coordination and oxidation changes undergone by iron species in Fe-MCM-22 upon template removal, activation and redox treatments: an in situ IR, EXAFS and XANES study. Journal of Catalysis, 2005, 229(1): 45–54
https://doi.org/10.1016/j.jcat.2004.10.007
116 S Bordiga, E Groppo, G Agostini, J A van Bokhoven, C Lamberti. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850
https://doi.org/10.1021/cr2000898
117 Y Aponte, H de Lasa. The Effect of Zn on offretite zeolite properties. Acidic characterizations and NH3-TPD desorption models. Industrial & Engineering Chemistry Research, 2017, 56(8): 1948–1960
https://doi.org/10.1021/acs.iecr.6b04474
118 D Srinivas, R Srivastava, P Ratnasamy. Transesterifications over titanosilicate molecular sieves. Catalysis Today, 2004, 96(3): 127–133
https://doi.org/10.1016/j.cattod.2004.06.113
119 V L Sushkevich, I I Ivanova, E Taarning. Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver. Green Chemistry, 2015, 17(4): 2552–2559
https://doi.org/10.1039/C4GC02202E
120 V L Sushkevich, A Vimont, A Travert, I I Ivanova. Spectroscopic evidence for open and closed Lewis acid sites in ZrBEA zeolites. Journal of Physical Chemistry C, 2015, 119(31): 17633–17639
https://doi.org/10.1021/acs.jpcc.5b02745
121 V L Sushkevich, D Palagin, I I Ivanova. With open arms: open sites of ZrBEA zeolite facilitate selective synthesis of butadiene from ethanol. ACS Catalysis, 2015, 5(8): 4833–4836
https://doi.org/10.1021/acscatal.5b01024
122 A Zheng, F Deng, S B Liu. Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus-containing probe molecules. Annual Reports on NMR Spectroscopy, 2014, 81: 47–108
https://doi.org/10.1016/B978-0-12-800185-1.00002-4
123 F Dubray, S Moldovan, C Kouvatas, J Grand, C Aquino, N Barrier, J P Gilson, N Nesterenko, D Minoux, S Mintova. Direct evidence for single molybdenum atoms incorporated in the framework of MFI zeolite nanocrystals. Journal of the American Chemical Society, 2019, 141(22): 8689–8693
https://doi.org/10.1021/jacs.9b02589
124 M Dyballa, C Rieg, D Dittmann, Z Li, M Buchmeiser, B Plietker, M Hunger. Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports. Microporous and Mesoporous Materials, 2020, 293: 109778
https://doi.org/10.1016/j.micromeso.2019.109778
125 X Yi, H H Ko, F Deng, S B Liu, A Zheng. Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nature Protocols, 2020, 15(10): 3527–3555
https://doi.org/10.1038/s41596-020-0385-6
126 A Zheng, S B Liu, F Deng. 31P NMR Chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts. Chemical Reviews, 2017, 117(19): 12475–12531
https://doi.org/10.1021/acs.chemrev.7b00289
127 E Yuan, W Dai, G Wu, N Guan, M Hunger, L Li. Facile synthesis of Sn-containing MFI zeolites as versatile solid acid catalysts. Microporous and Mesoporous Materials, 2018, 270: 265–273
https://doi.org/10.1016/j.micromeso.2018.05.032
128 R Zhao, Z Zhao, S Li, W Zhang. Insights into the correlation of aluminum distribution and Brønsted acidity in H-Beta zeolites from solid-state NMR spectroscopy and DFT calculations. Journal of Physical Chemistry Letters, 2017, 8(10): 2323–2327
https://doi.org/10.1021/acs.jpclett.7b00711
129 P V Wiper, J Amelse, L Mafra. Multinuclear solid-state NMR characterization of the Brønsted/Lewis acid properties in the BP HAMS-1B (H-[B]-ZSM-5) borosilicate molecular sieve using adsorbed TMPO and TBPO probe molecules. Journal of Catalysis, 2014, 316: 240–250
https://doi.org/10.1016/j.jcat.2014.05.017
130 T Ennaert, J Van Aelst, J Dijkmans, R De Clercq, W Schutyser, M Dusselier, D Verboekend, B F Sels. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 2016, 45(3): 584–611
https://doi.org/10.1039/C5CS00859J
131 X Li, X Yuan, G Xia, J Liang, C Liu, Z Wang, W Yang. Catalytic production of γ-valerolactone from xylose over delaminated Zr-Al-SCM-1 zeolite via a cascade process. Journal of Catalysis, 2020, 392: 175–185
https://doi.org/10.1016/j.jcat.2020.10.004
132 J A Melero, G Morales, J Iglesias, M Paniagua, C López-Aguado, K Wilson, A Osatiashtiani. Efficient one-pot production of γ-valerolactone from xylose over Zr-Al-Beta zeolite: rational optimization of catalyst synthesis and reaction conditions. Green Chemistry, 2017, 19(21): 5114–5121
https://doi.org/10.1039/C7GC01969F
133 S Song, L Di, G Wu, W Dai, N Guan, L Li. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization. Applied Catalysis B: Environmental, 2017, 205: 393–403
https://doi.org/10.1016/j.apcatb.2016.12.056
134 W N P van der Graaff, C H L Tempelman, E A Pidko, E J M Hensen. Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions. Catalysis Science & Technology, 2017, 7(14): 3151–3162
https://doi.org/10.1039/C7CY01052D
135 Z Diao, L Cheng, W Guo, X Hou, P Zheng, Q Zhou. Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation. Frontiers of Chemical Science and Engineering, 2020, 15(3): 643–653
https://doi.org/10.1007/s11705-020-1972-3
136 Y Hou, X Li, M Sun, C Li, B L Su, K Lei, S Yu, Z Wang, Z Hu, L Chen, et al.The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance. Frontiers of Chemical Science and Engineering, 2020, 15(2): 269–278
https://doi.org/10.1007/s11705-020-1948-3
137 D Wang, H Sun, W Liu, Z Shen, W Yang. Hierarchical ZSM-5 zeolite with radial mesopores: preparation, formation mechanism and application for benzene alkylation. Frontiers of Chemical Science and Engineering, 2019, 14(2): 248–257
https://doi.org/10.1007/s11705-019-1853-9
138 J Zhang, L Wang, G Wang, F Chen, J Zhu, C Wang, C Bian, S Pan, F S Xiao. Hierarchical Sn-Beta zeolite catalyst for the conversion of sugars to alkyl lactates. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3123–3131
https://doi.org/10.1021/acssuschemeng.6b02881
139 E V Makshina, M Dusselier, W Janssens, J Degreve, P A Jacobs, B F Sels. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chemical Society Reviews, 2014, 43(22): 7917–7953
https://doi.org/10.1039/C4CS00105B
140 J Sun, Y Wang. Recent advances in catalytic conversion of ethanol to chemicals. ACS Catalysis, 2014, 4(4): 1078–1090
https://doi.org/10.1021/cs4011343
141 P I Kyriienko, O V Larina, S O Soloviev, S M Orlyk, S Dzwigaj. High selectivity of TaSiBEA zeolite catalysts in 1,3-butadiene production from ethanol and acetaldehyde mixture. Catalysis Communications, 2016, 77: 123–126
https://doi.org/10.1016/j.catcom.2016.01.023
142 X Lu, H Xu, J Yan, W J Zhou, A Liebens, P Wu. One-pot synthesis of ethylene glycol by oxidative hydration of ethylene with hydrogen peroxide over titanosilicate catalysts. Journal of Catalysis, 2018, 358: 89–99
https://doi.org/10.1016/j.jcat.2017.12.002
143 J Ruan, P Wu, B Slater, O Terasaki. Structure elucidation of the highly active titanosilicate catalyst Ti-YNU-1. Angewandte Chemie International Edition, 2005, 117(41): 6877–6881
https://doi.org/10.1002/ange.200501939
144 W Jiao, Y He, J Li, J Wang, T Tatsumi, W Fan. Ti-rich TS-1: a highly active catalyst for epoxidation of methallyl chloride to 2-methyl epichlorohydrin. Applied Catalysis A, General, 2015, 491: 78–85
https://doi.org/10.1016/j.apcata.2014.11.030
145 D Y Ok, N Jiang, E A Prasetyanto, H Jin, S E Park. Epoxidation of cyclic-olefins over carbon template mesoporous TS-1. Microporous and Mesoporous Materials, 2011, 141(1–3): 2–7
https://doi.org/10.1016/j.micromeso.2010.12.031
146 J Tekla, K A Tarach, Z Olejniczak, V Girman, K Góra-Marek. Effective hierarchization of TS-1 and its catalytic performance in cyclohexene epoxidation. Microporous and Mesoporous Materials, 2016, 233: 16–25
https://doi.org/10.1016/j.micromeso.2016.06.031
147 B Wang, L Lu, B Ge, S Chen, J Zhu, D Wei. Hydrophobic and hierarchical modification of TS-1 and application for propylene epoxidation. Journal of Porous Materials, 2018, 26(1): 227–237
https://doi.org/10.1007/s10934-018-0647-7
148 L Dal Pozzo, G Fornasari, T Monti. TS-1, catalytic mechanism in cyclohexanone oxime production. Catalysis Communications, 2002, 3(8): 369–375
https://doi.org/10.1016/S1566-7367(02)00145-0
149 Z Li, R Chen, W Xing, W Jin, N Xu. Continuous acetone ammoximation over TS-1 in a tubular membrane reactor. Industrial & Engineering Chemistry Research, 2010, 49(14): 6309–6316
https://doi.org/10.1021/ie901912e
150 H Xin, J Zhao, S Xu, J Li, W Zhang, X Guo, E J M Hensen, Q Yang, C Li. Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite. Journal of Physical Chemistry C, 2010, 114(14): 6553–6559
https://doi.org/10.1021/jp912112h
151 F Maspero, U Romano. Oxidation of alcohols with H2O2 catalyzed by titanium silicalite-1. Journal of Catalysis, 1994, 146(2): 476–482
https://doi.org/10.1006/jcat.1994.1085
152 W Schuster, J P M Niederer, W F Hoelderich. The gas phase oxidative dehydrogenation of propane over TS-1. Applied Catalysis A, General, 2001, 209(1–2): 131–143
https://doi.org/10.1016/S0926-860X(00)00749-3
153 L Kong, G Li, X Wang. Mild oxidation of thiophene over TS-1/H2O2. Catalysis Today, 2004, 93: 341–345
https://doi.org/10.1016/j.cattod.2004.06.016
154 S E Dapurkar, A Sakthivel, P Selvam. Mesoporous VMCM-41: highly efficient and remarkable catalyst for selective oxidation of cyclohexane to cyclohexanol. Journal of Molecular Catalysis A Chemical, 2004, 223(1–2): 241–250
https://doi.org/10.1016/j.molcata.2003.10.067
155 W Fan, B Fan, M Song, T Chen, R Li, T Dou, T Tatsumi, B M Weckhuysen. Synthesis, characterization and catalysis of (Co, V)-, (Co, Cr)- and (Cr, V)APO-5 molecular sieves. Microporous and Mesoporous Materials, 2006, 94(1–3): 348–357
https://doi.org/10.1016/j.micromeso.2006.04.008
156 P Selvam, S E Dapurkar. Catalytic activity of highly ordered mesoporous VMCM-48. Applied Catalysis A, General, 2004, 276(1–2): 257–265
https://doi.org/10.1016/j.apcata.2004.08.012
[1] Wei Wang, Linlin Song, Huoli Zhang, Guanghui Zhang, Jianliang Cao. Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI)[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1537-1549.
[2] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
[3] Weihang Sun, Dongfang Liu, Minghui Zhang. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1427-1443.
[4] Xiang-Hui Yu, Jin-Long Yi, Ru-Liang Zhang, Feng-Yun Wang, Lei Liu. Hollow carbon spheres and their noble metal-free hybrids in catalysis[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1380-1407.
[5] Giuseppe Sanzone, Jinlong Yin, Hailin Sun. Scaling up of cluster beam deposition technology for catalysis application[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1360-1379.
[6] Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
[7] Yixin Zhang, Lu Zhou, Liqing Chen, Yang Guo, Fanhui Guo, Jianjun Wu, Baiqian Dai. Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent for removal of Cr(VI) from water[J]. Front. Chem. Sci. Eng., 2021, 15(3): 518-527.
[8] Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(2): 269-278.
[9] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[10] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[11] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[12] Jiang-Wei Shen, Xue Cai, Bao-Juan Dou, Feng-Yu Qi, Xiao-Jian Zhang, Zhi-Qiang Liu, Yu-Guo Zheng. Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis[J]. Front. Chem. Sci. Eng., 2020, 14(5): 868-879.
[13] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[14] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[15] Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat. Layer-like FAU-type zeolites: A comparative view on different preparation routes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 127-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed