Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (6) : 1380-1407    https://doi.org/10.1007/s11705-021-2097-z
REVIEW ARTICLE
Hollow carbon spheres and their noble metal-free hybrids in catalysis
Xiang-Hui Yu1, Jin-Long Yi1, Ru-Liang Zhang1, Feng-Yun Wang2, Lei Liu1()
1. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, China
 Download: PDF(5074 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hollow carbon spheres have garnered great interest owing to their high surface area, large surface-to-volume ratio and reduced transmission lengths. Herein, we overview hollow carbon sphere-based materials and their noble metal-free hybrids in catalysis. Firstly, we summarize the key fabrication techniques for various kinds of hollow carbon spheres, with a particular emphasis on controlling pore structure and surface morphology, and then heterogeneous doping as well as their metal-free/containing hybrids are presented; next, possible applications for non-noble metal/hollow carbon sphere hybrids in the area of energy-related catalysis, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, water splitting, rechargeable Zn-air batteries and pollutant degradation are discussed; finally, we introduce the various challenges and opportunities offered by hollow carbon spheres from the perspective of synthesis and catalysis.

Keywords hollow carbon spheres      functionalization      noble metal-free      catalysis     
Corresponding Author(s): Lei Liu   
Online First Date: 12 October 2021    Issue Date: 09 November 2021
 Cite this article:   
Xiang-Hui Yu,Jin-Long Yi,Ru-Liang Zhang, et al. Hollow carbon spheres and their noble metal-free hybrids in catalysis[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1380-1407.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2097-z
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I6/1380
Fig.1  (a) Schematic illustration of the DHCS and SHCS preparation procedures; (b, d) TEM and (c, e) high resolution TEM (HRTEM) images of the SHCSs and DHCSs. Reprinted with permission from ref. [29], copyright 2021 Elsevier.
Fig.2  Formation mechanism of mesoporous carbon microspheres with different interior-structures: (a) Interfacial polymerization of phenolic resol and F127; (b) evolution illustration of the inner structures. Reprinted with permission from ref. [47], copyright 2018 Wiley-VCH. (c) Schematic illustration of HCSs in the presence of organosilane. Reprinted with permission from ref. [48], copyright 2020 Elsevier.
Fig.3  (a) Schematic illustration for the synthesis of hollow-structured polyacrylonitrile spheres; photograph of (b) hollow polyacrylonitrile spheres, and (c) CNT-enhanced hollow polyacrylonitrile spheres. Reprinted with permission from ref. [54], copyright 2016 Wiley-VCH.
Fig.4  (a) Schematic illustration for the preparation of walnut-shaped PDA; (b–k) field emission scanning electron microscope (SEM, top) and TEM (bottom) images of PDA prepared by P123 to F123 mass ratio tuning. Reprinted with permission from ref. [55], copyright 2018 Wiley-VC. (l) Schematic illustration for the synthesis of NHCSs. SEM and TEM images of (m, n) NHCSs and (o, p) NHCSs without using GO. Reprinted with permission from ref. [34], copyright 2016 Royal Society of Chemistry.
Fig.5  The synthesized mechanism and controlled structure parameters of mesoporous HCSs, including hollow void size (group I), integrate size (group II), carbon shell thickness (group III) and mesopores in carbon shell (group IV). Reprinted with permission from ref. [63], copyright 2016 Elsevier.
Fig.6  (a) Illustration of the formation mechanism in NPHCMs; (b, c) SEM and (d, e, f) TEM images of NPHCMs. Reprinted with permission from ref. [64], copyright 2017 Royal Society of Chemistry.
Fig.7  Graphical illustration of the formation process for (a) NHCSs using g-C3N4 as the carbon precursor, and (b) for N, P co-doped hollow porous carbon spheres (NP-HPCS). Reprinted with permission from ref. [39], copyright 2020 Elsevier.
Sample Template Precursor Heteroatom doping Gas/temperature Ref.
N-doped yolk-shell HCSs SiO2 PDA N, S N2/800 °C [21]
HCSs Poly(vinyl alcohol) Melamine resin spheres N, O Ar/700 °C [22]
NHCSs Polystyrene spheres ZIF-67/NIL-101 N N2/700 °C [23]
NHCSs Polystyrene spheres Polyaniline N N2/800 °C [24]
NHCSs Polystyrene spheres Polypyrrole-polyaniline N N2/500 °C [25]
HCSs SiO2 Phenolic resin [26]
HCSs SiO2 spheres RF N2/800 °C [27]
NHCSs SiO2 spheres RF and PVP N N2/600 °C [28]
DHCS SiO2 spheres PDA N Ar/800 °C [29]
NHCSs Sulfonated polystyrene spheres Polyaniline N N2/600 °C [30]
HCSs Polystyrene spheres Glucose N2/800 °C [31]
Hierarchical porous HCSs PMMA RF N2/800 °C [32]
NHCSs Polystyrene spheres ZIF-8 N N2/800 °C [33]
NHCSs MF spheres Resorcinol and hexamethylenetetramine N N2/800 °C [34,35]
NHCSs CaCO3 PDA N N2/800 °C [36,37]
NHCSs Yeast cells Yeast cells N N2/850 °C [38]
NHCSs Zn powder g-C3N4 N Ar/800 °C [39]
NHCSs Cu2O solid spheres 3-aminophenol and formaldehyde N N2/1000 °C [40]
Hollow carbon nanoparticles F127 α-cyclodextrin Ar/900 °C [42]
N-doped mesoporous HCSs Pentane-1,5-bis(dimethylcetyl ammonium bromide) 3-aminophenol-formaldehyde resin N N2/850 °C [43]
NHCSs Poly(amic acid) and melamine N N2/800 °C [44]
Hollow mesoporous carbon microparticles SiO2 Poly(furfuryl alcohol) N2/850 °C [45]
HCSs P123 and sodium oleate Glucose N2/900 °C [46]
Mesoporous carbon microspheres SiO2 Phenolic resol N2/600 °C [47]
HCSs Volatile oils Organosilane N2/900 °C [48]
HCSs SiO2 spheres Polystyrene and divinylbenzene N N2/700 °C [49]
Sub-micron HCSs Soybean waste N2, H2O/850 °C [50]
N-doped hollow carbon nanospheres ZIF-8 N Ar/800 °C [51]
N, S doped HCSs Puffball spores N, S N2/800 °C [52]
HCSs Gas bubbles Polyacrylonitrile N2/900 °C [54]
NHCSs with macro-/mesoporous channels P123, F127, 1,3,5-trimethylbenzene PDA N N2/800 °C [55]
NHCS with large mesoporous shells Polystyrene-block-poly(ethylene oxide) PDA N N2/800 °C [59]
NPHCMs SiO2 spheres MF resin and HEDP N, P N2/800 °C [64]
N-doped mesoporus HCSs CaCO3 spheres PDA N, S Ar and H2S/800 °C [71]
NP-HPCS SiO2 spheres PDA and HCCP N, P N2/900 °C [74]
Tab.1  Related information on carbon spheres prepared via different methods
Fig.8  (a) Schematic illustration for the preparation of HCSs/RGO composites. SEM and TEM images of (b, d) MF spheres/GO and (c) HCSs/RGO-700. Reprinted with permission from ref. [22], copyright 2018 American Chemical Society. (f) Photo of resulting?aerogel?monolith?on a flower bud; (g) SEM image; (h) TEM image of polylithic aerogels. Reprinted with permission from ref. [79], copyright 2016 Elsevier.
Fig.9  (a) Schematic illustration of the fabrication process for Co-Fe alloy/NHCSs; (b, c) SEM images; (d, e, f) TEM images of Co-Fe/NC-700 HCSs. Reprinted with permission from ref. [23], copyright 2019 Wiley-VCH.
Fig.10  (a) Illustration of the synthesis process and (b, c) electron microscope images of Fe3C-Fe,N/C-900 hollow spheres; (d) HRTEM image of a typical Fe3C nanoparticle; (e, f) linear sweep voltammetry curves of N/C-900, Fe3C-Fe,N/C-900, and Pt/C at 1600 r·min–1. Reprinted with permission from ref. [110], copyright 2018 Wiley-VCH.
Fig.11  (a) Schematic presentation of MoP@NCHSs-900 synthesis; (b, c, d) TEM and HRTEM images of MoP@NCHSs-900; (e) structural model of (d); (f) LSV curves; (g) Tafel plots of different electrocatalysts in 1.0?mol·L–1 KOH (I: MoP@NCHSs-900; II: MoP@NCHSs-750; III: MoP@NCHSs-800; IV: MoP@NCHSs-960; V: MoP; VI: Pt/C). Reprinted with permission from ref. [116], copyright 2019 Royal Society of Chemistry.
Fig.12  (a) Schematic illustration of the Meso-NPC/Co2NiOx hybrid; (b) SEM images of meso-NPC; (c, d) TEM images; (e) linear sweep voltammetry curves; (f) Tafel plots of different samples in 1.0 mol·L–1 KOH solution. Reprinted with permission from ref. [89], copyright 2020 American Chemical Society.
1 J Ding, H Zhang, H Zhou, J Feng, X Zheng, C Zhong, E Paek, W Hu, D Mitlin. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Advanced Materials, 2019, 31(30): 1900429
https://doi.org/10.1002/adma.201900429
2 Y Zhang, Z He, H Wang, L Qi, G Liu, X Zhang. Applications of hollow nanomaterials in environmental remediation and monitoring: A review. Frontiers of Chemical Science and Engineering, 2015, 9(5): 770–783
3 Y Cheng, Z Li, Y Li, S Dai, G Ji, H Zhao, J Cao, Y Du. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon, 2018, 127: 643–652
https://doi.org/10.1016/j.carbon.2017.11.055
4 Y Han, Y G Wang, W Chen, R Xu, L Zheng, J Zhang, J Luo, R A Shen, Y Zhu, W C Cheong, et al.Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. Journal of the American Chemical Society, 2017, 139(48): 17269–17272
https://doi.org/10.1021/jacs.7b10194
5 M Xu, Y Liu, Q Yu, S Feng, L Zhou, L Mai. Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors. Chinese Chemical Letters, 2021, 32(1): 184–189
https://doi.org/10.1016/j.cclet.2020.11.004
6 C Yan, N Meng, W Lyu, Y Li, L Wang, Y Liao. Hierarchical porous hollow carbon spheres derived from spirofluorene-and aniline-linked conjugated microporous polymer for phase change energy storage. Carbon, 2021, 176: 178–187
https://doi.org/10.1016/j.carbon.2020.12.035
7 J Du, A Chen, L Liu, B Li, Y Zhang. N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage. Carbon, 2020, 160: 265–272
https://doi.org/10.1016/j.carbon.2020.01.018
8 F Pei, T An, J Zang, X Zhao, X Fang, M Zheng, Q Dong, N Zheng. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Advanced Energy Materials, 2016, 6(8): 1502539
https://doi.org/10.1002/aenm.201502539
9 C Ye, L Zhang, C Guo, D Li, A Vasileff, H Wang, S Z Qiao. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Advanced Functional Materials, 2017, 27(33): 1702524
https://doi.org/10.1002/adfm.201702524
10 H Niu, Y Zhang, Y Liu, B Luo, N Xin, W Shi. MOFs-derived Co9S8-embedded graphene/hollow carbon spheres film with macroporous frameworks for hybrid supercapacitors with superior volumetric energy density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(14): 8503–8509
https://doi.org/10.1039/C8TA11983J
11 W Zheng, J Yang, H Chen, Y Hou, Q Wang, M Gu, F He, Y Xia, Z Xia, Z Li, et al.Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Advanced Functional Materials, 2019, 30(4): 1907658
https://doi.org/10.1002/adfm.201907658
12 C Lei, Q Zheng, F Cheng, Y Hou, B Yang, Z Li, Z Wen, L Lei, G Chai, X Feng. High-performance metal-free nanosheets array electrocatalyst for oxygen evolution reaction in acid. Advanced Functional Materials, 2020, 30(31): 2003000
https://doi.org/10.1002/adfm.202003000
13 T Wang, X Sang, W Zheng, B Yang, S Yao, C Lei, Z Li, Q He, J Lu, L Lei, et al.Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Advanced Materials, 2020, 32(29): 2002430
https://doi.org/10.1002/adma.202002430
14 Y Li, J Li, J Huang, J Chen, Y Kong, B Yang, Z Li, L Lei, G Chai, Z Wen, et al.Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angewandte Chemie International Edition, 2021, 60(16): 9078–9085
https://doi.org/10.1002/anie.202100526
15 X Wang, Y Wang, X Sang, W Zheng, S Zhang, L Shuai, B Yang, Z Li, J Chen, L Lei, et al.Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angewandte Chemie International Edition, 2021, 60(8): 4192–4198
https://doi.org/10.1002/anie.202013427
16 W Zheng, Y Wang, L Shuai, X Wang, F He, C Lei, Z Li, B Yang, L Lei, C Yuan, et al.Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Advanced Functional Materials, 2021, 31(15): 2008146
https://doi.org/10.1002/adfm.202008146
17 S Li, A Pasc, V Fierro, A Celzard. Hollow carbon spheres, synthesis and applications—a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(33): 12686–12713
https://doi.org/10.1039/C6TA03802F
18 T Liu, L Zhang, B Cheng, J Yu. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Advanced Energy Materials, 2019, 9(17): 1803900
https://doi.org/10.1002/aenm.201803900
19 J Yang, H Han, H Repich, R Zhi, C Qu, L Kong, S Kaskel, H Wang, F Xu, H Li. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries. New Carbon Materials, 2020, 35(6): 630–645
https://doi.org/10.1016/S1872-5805(20)60519-4
20 J Jiang, G Nie, P Nie, Z Li, Z Pan, Z Kou, H Dou, X Zhang, J Wang. Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Letters, 2020, 12(1): 183
https://doi.org/10.1007/s40820-020-00521-2
21 Y Zhang, K Sun, L Zhan, Y Wang, L Ling. N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Applied Surface Science, 2018, 427: 823–829
https://doi.org/10.1016/j.apsusc.2017.06.288
22 Y Zhang, Q Ma, S Wang, X Liu, L Li. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS Nano, 2018, 12(5): 4824–4834
https://doi.org/10.1021/acsnano.8b01549
23 S L Zhang, B Y Guan, X W Lou. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction. Small, 2019, 15(13): 1805324
https://doi.org/10.1002/smll.201805324
24 J Du, L Liu, Y Yu, Z Hu, Y Zhang, B Liu, A Chen. Tuning confined nanospace for preparation of N-doped hollow carbon spheres for high performance supercapacitors. ChemSusChem, 2019, 12(1): 303–309
https://doi.org/10.1002/cssc.201802403
25 M Hassan, W Qiu, X Song, Q Mao, S Ren, C Hao. Supercapacitive and ORR performances of nitrogen-doped hollow carbon spheres pyrolyzed from polystyrene@polypyrrole-polyaniline. Journal of Alloys and Compounds, 2020, 818: 152890
https://doi.org/10.1016/j.jallcom.2019.152890
26 D Fan, B Wei, R Wu, J Zhou, C Zhou. Dielectric control of ultralight hollow porous carbon spheres and excellent microwave absorbing properties. Journal of Materials Science, 2021, 56(11): 6830–6844
https://doi.org/10.1007/s10853-021-05780-x
27 X Fang, S Liu, J Zang, C Xu, M S Zheng, Q F Dong, D Sun, N Zheng. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures. Nanoscale, 2013, 5(15): 6908–6916
https://doi.org/10.1039/c3nr01723k
28 M Liu, Y Yu, B Liu, L Liu, H Lv, A Chen. PVP-assisted synthesis of nitrogen-doped hollow carbon spheres for supercapacitors. Journal of Alloys and Compounds, 2018, 768: 42–48
https://doi.org/10.1016/j.jallcom.2018.07.234
29 L Bu, X Kuai, W Zhu, X Kai, T Lu, J Zhao, L Gao. Nitrogen-doped double-shell hollow carbon spheres for fast and stable sodium ion storage. Electrochimica Acta, 2020, 356: 136804
https://doi.org/10.1016/j.electacta.2020.136804
30 J Han, G Xu, B Ding, J Pan, H Dou, D R MacFarlane. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(15): 5352–5357
https://doi.org/10.1039/C3TA15271E
31 L K Gil-Herrera, Á Blanco, B H Juárez, C López. Seeded synthesis of monodisperse core-shell and hollow carbon spheres. Small, 2016, 12(32): 4357–4362
https://doi.org/10.1002/smll.201600902
32 X Yang, Y Li, P Zhang, L Sun, X Ren, H Mi. Hierarchical hollow carbon spheres: novel synthesis strategy, pore structure engineering and application for micro-supercapacitor. Carbon, 2020, 157: 70–79
https://doi.org/10.1016/j.carbon.2019.10.008
33 M He, J Jia, Q Sun, W Zhang. Hollow N-doped carbon sphere synthesized by MOF as superior oxygen electrocatalyst for Li-O2 batteries. International Journal of Energy Research, 2020, 45(5): 7120–7128
https://doi.org/10.1002/er.6297
34 L Liu, S D Xu, Q Yu, F Y Wang, H L Zhu, R L Zhang, X Liu. Nitrogen-doped hollow carbon spheres with a wrinkled surface: their one-pot carbonization synthesis and supercapacitor properties. Chemical Communications, 2016, 52(78): 11693–11696
https://doi.org/10.1039/C6CC06230J
35 F Liu, R L Yuan, N Zhang, C C Ke, S X Ma, R L Zhang, L Liu. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors. Applied Surface Science, 2018, 437: 271–280
https://doi.org/10.1016/j.apsusc.2017.12.174
36 X He, H Sun, M Zhu, M Yaseen, D Liao, X Cui, H Guan, Z Tong, Z Zhao. N-Doped porous graphitic carbon with multi-flaky shell hollow structure prepared using a green and ‘useful’ template of CaCO3 for VOC fast adsorption and small peptide enrichment. Chemical Communications, 2017, 53(24): 3442–3445
https://doi.org/10.1039/C7CC00242D
37 H Guo, B Ding, J Wang, Y Zhang, X Hao, L Wu, Y An, H Dou, X Zhang. Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon, 2018, 136: 204–210
https://doi.org/10.1016/j.carbon.2018.04.079
38 W Du, X Wang, J Zhan, X Sun, L Kang, F Jiang, X Zhang, Q Shao, M Dong, H Liu, et al.Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 296: 907–915
https://doi.org/10.1016/j.electacta.2018.11.074
39 Y Tang, X Wang, J Chen, X Wang, D Wang, Z Mao. Templated transformation of g-C3N4 nanosheets into nitrogen-doped hollow carbon sphere with tunable nitrogen-doping properties for application in Li-ions batteries. Carbon, 2020, 168: 458–467
https://doi.org/10.1016/j.carbon.2020.07.022
40 D Zhang, S Shen, X Xiao, D Mao, B Yan. Nitrogen-doped hollow carbon spheres with tunable shell thickness for high-performance supercapacitors. RSC Advances, 2020, 10(44): 26546–26552
https://doi.org/10.1039/D0RA02935A
41 T Xu, Q Wang, J Zhang, X Xie, B Xia. Green synthesis of dual carbon conductive network-encapsulated hollow SiOx spheres for superior lithium-ion batteries. ACS Applied Materials & Interfaces, 2019, 11(22): 19959–19967
https://doi.org/10.1021/acsami.9b03070
42 Z C Yang, Y Zhang, J H Kong, S Y Wong, X Li, J Wang. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers. Chemistry of Materials, 2013, 25(5): 704–710
https://doi.org/10.1021/cm303513y
43 W Li, B Li, M Shen, Q Gao, J Hou. Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors. Chemical Engineering Journal, 2020, 384: 123309
https://doi.org/10.1016/j.cej.2019.123309
44 H Sun, Y Zhu, B Yang, Y Wang, Y Wu, J Du. Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(31): 12088–12097
https://doi.org/10.1039/C6TA04330E
45 X Huang, T Zhang, T Asefa. Hollow mesoporous carbon microparticles and micromotors with single holes templated by colloidal silica-assisted gas bubbles. Small, 2017, 13(26): 1700256
https://doi.org/10.1002/smll.201700256
46 X Liu, P Song, J Hou, B Wang, F Xu, X Zhang. Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2797–2805
https://doi.org/10.1021/acssuschemeng.7b04634
47 D Liu, N Xue, L Wei, Y Zhang, Z Qin, X Li, B P Binks, H Yang. Surfactant assembly within pickering emulsion droplets for fabrication of interior-structured mesoporous carbon microspheres. Angewandte Chemie International Edition, 2018, 57(34): 10899–10904
https://doi.org/10.1002/anie.201805022
48 M Chen, Z Su, Y Liu, Y Pan, Y Zhang, M Hu, Q Ma, Q Zhou, D Long. Self-propelled nanoemulsion assembly of organosilane to the synthesis of high-surface-area hollow carbon spheres for enhanced energy storage. Chemical Engineering Journal, 2020, 400: 124973
https://doi.org/10.1016/j.cej.2020.124973
49 K Wang, L Huang, S Razzaque, S Jin, B Tan. Fabrication of hollow microporous carbon spheres from hyper-crosslinked microporous polymers. Small, 2016, 12(23): 3134–3142
https://doi.org/10.1002/smll.201600256
50 S Wang, W Sun, D S Yang, F Yang. Conversion of soybean waste to sub-micron porous-hollow carbon spheres for supercapacitor via a reagent and template-free route. Materials Today. Energy, 2019, 13: 50–55
https://doi.org/10.1016/j.mtener.2019.04.015
51 Y Yang, S Jin, Z Zhang, Z Du, H Liu, J Yang, H Xu, H Ji. Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(16): 14180–14186
https://doi.org/10.1021/acsami.6b14840
52 M Shang, J Zhang, X Liu, Y Liu, S Guo, S Yu, S Filatov, X N Yi. S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Applied Surface Science, 2021, 542: 148697
https://doi.org/10.1016/j.apsusc.2020.148697
53 L Zhang, L Liu, M Liu, Y Yu, Z Hu, B Liu, H Lv, A Chen. Controllable synthesis of N-doped hollow, yolk-shell and solid carbon spheres via template-free method. Journal of Alloys and Compounds, 2019, 778: 294–301
https://doi.org/10.1016/j.jallcom.2018.11.169
54 J Zhou, Z Sun, M Chen, J Wang, W Qiao, D Long, L Ling. Macroscopic and mechanically robust hollow carbon spheres with superior oil adsorption and light-to-heat evaporation properties. Advanced Functional Materials, 2016, 26(29): 5368–5375
https://doi.org/10.1002/adfm.201600564
55 B Y Guan, S L Zhang, X W D Lou. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angewandte Chemie International Edition, 2018, 57(21): 6176–6180
https://doi.org/10.1002/anie.201801876
56 J Du, L Liu, H Wu, H Lv, A Chen. Tunable N-doped hollow carbon spheres induced by an ionic liquid for energy storage applications. Materials Chemistry Frontiers, 2020, 5(2): 843–850
https://doi.org/10.1039/D0QM00839G
57 P Liu, W Liu, Y Huang, P Li, J Yan, K Liu. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Materials, 2020, 25: 858–865
https://doi.org/10.1016/j.ensm.2019.09.004
58 F Xu, Z Tang, S Huang, L Chen, Y Liang, W Mai, H Zhong, R Fu, D Wu. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nature Communications, 2015, 6(1): 7221
https://doi.org/10.1038/ncomms8221
59 J Tang, J Liu, R R Salunkhe, T Wang, Y Yamauchi. Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles. Chemical Communications, 2016, 52(3): 505–508
https://doi.org/10.1039/C5CC07610B
60 M Fang, Z Chen, Q Tian, Y Cao, C Wang, Y Liu, J Fu, J Zhang, L Zhu, C Yang, J Chen, Q Xu. Synthesis of uniform discrete cage-like nitrogen-doped hollow porous carbon spheres with tunable direct large mesoporous for ultrahigh supercapacitive performance. Applied Surface Science, 2017, 425: 69–76
https://doi.org/10.1016/j.apsusc.2017.06.279
61 Z A Qiao, B Guo, A J Binder, J Chen, G M Veith, S Dai. Controlled synthesis of mesoporous carbon nanostructures via a “silica-assisted” strategy. Nano Letters, 2013, 13(1): 207–212
https://doi.org/10.1021/nl303889h
62 H Zhang, O Noonan, X Huang, Y Yang, C Xu, L Zhou, C Yu. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano, 2016, 10(4): 4579–4586
https://doi.org/10.1021/acsnano.6b00723
63 Y Cheng, H Zhao, Y Zhao, J Cao, J Zheng, G Ji. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon, 2020, 161: 870–879
https://doi.org/10.1016/j.carbon.2020.02.011
64 N Zhang, F Liu, S D Xu, F Y Wang, Q Yu, L Liu. Nitrogen-phosphorus co-doped hollow carbon microspheres with hierarchical micro-meso-macroporous shells as efficient electrodes for supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(43): 22631–22640
https://doi.org/10.1039/C7TA07488C
65 J Du, Y Zhang, H Wu, S Hou, A Chen. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitors. Carbon, 2020, 156: 523–528
https://doi.org/10.1016/j.carbon.2019.09.091
66 Y Shang, X Hu, X Li, S Cai, G Liang, J Zhao, C Zheng, X Sun. A facile synthesis of nitrogen-doped hierarchical porous carbon with hollow sphere structure for high-performance supercapacitors. Journal of Materials Science, 2019, 54(19): 12747–12757
https://doi.org/10.1007/s10853-019-03744-w
67 C Wang, F Wang, Z Liu, Y Zhao, Y Liu, Q Yue, H Zhu, Y Deng, Y Wu, D Zhao. N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy, 2017, 41: 674–680
https://doi.org/10.1016/j.nanoen.2017.10.025
68 Z Tetana, S Mhlanga, N Coville. Chemical vapour deposition syntheses and characterization of boron-doped hollow carbon spheres. Diamond and Related Materials, 2017, 74: 70–80
https://doi.org/10.1016/j.diamond.2017.02.005
69 V Ravat, I Nongwe, R Meijboom, G Bepete, N J Coville. Pd on boron-doped hollow carbon spheres-PdO particle size and support effects. Journal of Catalysis, 2013, 305: 36–45
https://doi.org/10.1016/j.jcat.2013.04.018
70 J Wu, C Jin, Z Yang, J Tian, R Yang. Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon, 2015, 82: 562–571
https://doi.org/10.1016/j.carbon.2014.11.008
71 D Ni, W Sun, Z Wang, Y Bai, H Lei, X Lai, K Sun. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Advanced Energy Materials, 2019, 9(19): 1900036
https://doi.org/10.1002/aenm.201900036
72 C C Ke, N Zhang, F Liu, Q Yu, F Y Wang, L Liu, R L Zhang, X Liu, R C Zeng. Deflated balloon-like nitrogen-rich sulfur-containing hierarchical porous carbons for high-rate supercapacitors. Applied Surface Science, 2019, 484: 716–725
https://doi.org/10.1016/j.apsusc.2019.04.132
73 B Lv, P Li, Y Liu, S Lin, B Gao, B Lin. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes. Applied Surface Science, 2018, 437: 169–175
https://doi.org/10.1016/j.apsusc.2017.12.171
74 H Wang, J L Lan, H Yuan, S Luo, Y Huang, Y Yu, Q Cai, X Yang. Chemical grafting-derived N,P co-doped hollow microporous carbon spheres for high-performance sodium-ion battery anodes. Applied Surface Science, 2020, 518: 146221
https://doi.org/10.1016/j.apsusc.2020.146221
75 L Song, S Xin, D W Xu, H Q Li, H P Cong, S H Yu. Graphene-wrapped graphitic carbon hollow spheres: bioinspired synthesis and applications in batteries and supercapacitors. ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More, 2016, 2(6): 540–546
https://doi.org/10.1002/cnma.201600079
76 H Wang, L Shi, T Yan, J Zhang, Q Zhong, D Zhang. Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(13): 4739–4750
https://doi.org/10.1039/C3TA15152B
77 Z Shen, J Du, Y Mo, A Chen. Nanocomposites of reduced graphene oxide modified with mesoporous carbon layers anchored by hollow carbon spheres for energy storage. Carbon, 2021, 173: 22–30
https://doi.org/10.1016/j.carbon.2020.10.087
78 M Li, Y Zhang, L Yang, Y Liu, J Yao. Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochimica Acta, 2015, 166: 310–319
https://doi.org/10.1016/j.electacta.2015.03.078
79 D Dong, H Guo, G Li, L Yan, X Zhang, W Song. Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. Nano Energy, 2017, 39: 470–477
https://doi.org/10.1016/j.nanoen.2017.07.029
80 Q Wang, J Yan, Y Wang, G Ning, Z Fan, T Wei, J Cheng, M Zhang, X Jing. Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon, 2013, 52: 209–218
https://doi.org/10.1016/j.carbon.2012.09.022
81 Z Chen, S Ye, S D Evans, Y Ge, Z Zhu, Y Tu, X Yang. Confined assembly of hollow carbon spheres in carbonaceous nanotube: a spheres-in-tube carbon nanostructure with hierarchical porosity for high-performance supercapacitor. Small, 2018, 14(19): 1704015
https://doi.org/10.1002/smll.201704015
82 Z Peng, H Wang, L Zhou, Y Wang, J Gao, G Liu, S A Redfern, X Feng, S Lu, B Li, Z Liu. Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(12): 6676–6685
https://doi.org/10.1039/C8TA09136F
83 J Shen, H Wu, W Sun, J Qiao, H Cai, Z Wang, K Sun. In-situ nitrogen-doped hierarchical porous hollow carbon spheres anchored with iridium nanoparticles as efficient cathode catalysts for reversible lithium-oxygen batteries. Chemical Engineering Journal, 2019, 358: 340–350
https://doi.org/10.1016/j.cej.2018.10.038
84 S Ma, L Wang, Y Wang, P Zuo, M He, H Zhang, L Ma, T Wu, G Yin. Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. Carbon, 2019, 143: 878–889
https://doi.org/10.1016/j.carbon.2018.11.086
85 G Yang, Y Kuwahara, S Masuda, K Mori, C Louis, H Yamashita. PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO2 to formate. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(8): 4437–4446
https://doi.org/10.1039/C9TA13389E
86 G Yang, Y Kuwahara, K Mori, C Louis, H Yamashita. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Applied Catalysis B: Environmental, 2021, 283: 119628
https://doi.org/10.1016/j.apcatb.2020.119628
87 Y Ma, S Luo, M Tian, J Lu, Y Peng, C Desmond, Q Liu, Q Li, Y Min, Q Xu, S Chen. Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2020, 450: 227659
https://doi.org/10.1016/j.jpowsour.2019.227659
88 L Qin, R Ru, J Mao, Q Meng, Z Fan, X Li, G Zhang. Assembly of MOFs/polymer hydrogel derived Fe3O4-CuO@hollow carbon spheres for photochemical oxidation: freezing replacement for structural adjustment. Applied Catalysis B: Environmental, 2020, 269: 118754
https://doi.org/10.1016/j.apcatb.2020.118754
89 J Wang, H C Zeng. Hybrid OER electrocatalyst combining mesoporous hollow spheres of N, P-doped carbon with ultrafine Co2NiOx. ACS Applied Materials & Interfaces, 2020, 12(45): 50324–50332
https://doi.org/10.1021/acsami.0c12305
90 T Liu, L Zhang, W You, J Yu. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small, 2018, 14(12): 1702407
https://doi.org/10.1002/smll.201702407
91 Y Li, H Huang, S Chen, X Yu, C Wang, T Ma. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Research, 2019, 12(11): 2774–2780
https://doi.org/10.1007/s12274-019-2512-7
92 R Hao, J T Ren, X W Lv, W Li, Y P Liu, Z Y Yuan. N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery. Journal of Energy Chemistry, 2020, 49: 14–21
https://doi.org/10.1016/j.jechem.2020.01.007
93 B Wang, Y Ye, L Xu, Y Quan, W Wei, W Zhu, H Li, J Xia. Space-confined yolk-shell construction of Fe3O4 nanoparticles inside N-Doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable Zinc-air batteries. Advanced Functional Materials, 2020, 30(51): 2005834
https://doi.org/10.1002/adfm.202005834
94 Y Pang, K Wang, H Xie, Y Sun, M M Titirici, G L Chai. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes. ACS Catalysis, 2020, 10(14): 7434–7442
https://doi.org/10.1021/acscatal.0c00584
95 H Zhao, Y P Zhu, L Ge, Z Y Yuan. Nitrogen and sulfur co-doped mesoporous hollow carbon microspheres for highly efficient oxygen reduction electrocatalysts. International Journal of Hydrogen Energy, 2017, 42(30): 19010–19018
https://doi.org/10.1016/j.ijhydene.2017.06.172
96 C Lei, Y Wang, Y Hou, P Liu, J Yang, T Zhang, X Zhuang, M Chen, B Yang, L Lei. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy & Environmental Science, 2019, 12(1): 149–156
https://doi.org/10.1039/C8EE01841C
97 H Zhao, Z Y Yuan. Design strategies of non-noble metal-based electrocatalysts for two-electron oxygen reduction to hydrogen peroxide. ChemSusChem, 2021, 14(7): 1616–1633
https://doi.org/10.1002/cssc.202100055
98 H Zhao, C C Weng, J T Ren, L Ge, Y P Liu, Z Y Yuan. Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts. Chinese Journal of Catalysis, 2020, 41(2): 259–267
https://doi.org/10.1016/S1872-2067(19)63455-8
99 C Zhang, C Lu, S Bi, Y Hou, F Zhang, M Cai, Y He, S Paasch, X Feng, E Brunner, et al.S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Frontiers of Chemical Science and Engineering, 2018, 12(3): 346–357
https://doi.org/10.1007/s11705-018-1727-6
100 K Zeng, X Zheng, C Li, J Yan, J H Tian, C Jin, P Strasser, R Yang. Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production. Advanced Functional Materials, 2020, 30(27): 2000503
https://doi.org/10.1002/adfm.202000503
101 W Xiong, H Li, R Cao. Nitrogen and sulfur dual-doped hollow mesoporous carbon spheres as efficient metal-free catalyst for oxygen reduction reaction. Inorganic Chemistry Communications, 2020, 114: 107848
https://doi.org/10.1016/j.inoche.2020.107848
102 G Chen, J Liu, Q Li, P Guan, X Yu, L Xing, J Zhang, R Che. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Research, 2019, 12(10): 2614–2622
https://doi.org/10.1007/s12274-019-2496-3
103 N Jia, T Yang, S Shi, X Chen, Z An, Y Chen, S Yin, P N Chen. F-codoped carbon nanocages: an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2883–2891
https://doi.org/10.1021/acssuschemeng.9b07047
104 X Dang, R Yang, Z Wang, S Wu, H Zhao. Efficient visible-light activation of molecular oxygen to produce hydrogen peroxide using P doped g-C3N4 hollow spheres. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(43): 22720–22727
https://doi.org/10.1039/D0TA07794A
105 S Hu, X Qu, P Li, F Wang, Q Li, L Song, Y Zhao, X Kang. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: the effect of Cu(I)-N active sites. Chemical Engineering Journal, 2018, 334: 410–418
https://doi.org/10.1016/j.cej.2017.10.016
106 V Duraisamy, R Krishnan, S M Senthil Kumar. N-doped hollow mesoporous carbon nanospheres for oxygen reduction reaction in alkaline media. ACS Applied Nano Materials, 2020, 3(9): 8875–8887
https://doi.org/10.1021/acsanm.0c01639
107 R Song, X Cao, J Xu, X Zhou, X Wang, N Yuan, J O Ding. N-codoped 3D graphene hollow sphere derived from metal-organic frameworks as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nanoscale, 2021, 13(12): 6174–6183
https://doi.org/10.1039/D0NR09174J
108 Y Liu, X Wang, B Zhao, X Shao, M Huang. Fe/Fe3C nanoparticles encapsulated in N-doped hollow carbon spheres as efficient electrocatalysts for the oxygen reduction reaction over a wide pH range. Chemistry, 2019, 25(41): 9650–9657
https://doi.org/10.1002/chem.201806111
109 Q Wang, Y Lei, Z Chen, N Wu, Y Wang, B Wang, Y Wang. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 516–526
https://doi.org/10.1039/C7TA08423D
110 H Tan, Y Li, J Kim, T Takei, Z Wang, X Xu, J Wang, Y Bando, Y M Kang, J Tang, et al.Sub-50 nm iron-nitrogen-doped hollow carbon sphere-encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts. Advancement of Science, 2018, 5(7): 1800120
https://doi.org/10.1002/advs.201800120
111 Y Zhong, X Xia, F Shi, J Zhan, J Tu, H J Fan. Transition metal carbides and nitrides in energy storage and conversion. Advancement of Science, 2016, 3(5): 1500286
https://doi.org/10.1002/advs.201500286
112 J S Li, Y W Zhou, M J Huang. Engineering MoxC nanoparticles confined in N, P-codoped porous carbon hollow spheres for enhanced hydrogen evolution reaction. Dalton Transactions (Cambridge, England), 2021, 50(2): 499–503
https://doi.org/10.1039/D0DT04188B
113 J Q Chi, W K Gao, J H Lin, B Dong, K L Yan, J F Qin, B Liu, Y M Chai, C G N Liu. P dual-doped hollow carbon spheres supported MoS2 hybrid electrocatalyst for enhanced hydrogen evolution reaction. Catalysis Today, 2019, 330: 259–267
https://doi.org/10.1016/j.cattod.2018.03.003
114 Z S Cai, Y Shi, S S Bao, Y Shen, X H Xia, L M Zheng. Bioinspired engineering of cobalt-phosphonate nanosheets for robust hydrogen evolution reaction. ACS Catalysis, 2018, 8(5): 3895–3902
https://doi.org/10.1021/acscatal.7b04276
115 S Huang, Y Meng, Y Cao, S He, X Li, S Tong, M. Wu N-, O- and P-doped hollow carbons: metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Applied Catalysis B: Environmental, 2019, 248: 239–248
https://doi.org/10.1016/j.apcatb.2019.01.080
116 D Zhao, K A Sun, W C Cheong, L R Zheng, C Zhang, S J Liu, X Cao, K L Wu, Y Pan, Z W Zhuang, et al.Synergistically interactive pyridinic-N-MoP sites: identified active centers for enhanced hydrogen evolution in alkaline solution. Angewandte Chemie International Edition, 2020, 59(23): 8982–8990
https://doi.org/10.1002/anie.201908760
117 B Wang, Z Wang, X Wang, B Zheng, W Zhang, Y Chen. Scalable synthesis of porous hollow CoSe2-MoSe2/carbon microspheres for highly efficient hydrogen evolution reaction in acidic and alkaline media. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(26): 12701–12707
https://doi.org/10.1039/C8TA03523G
118 W Chen, R Qiao, C Song, L Zhao, Z J Jiang, T Maiyalagan, Z Jiang. Tailoring the thickness of MoSe2 layer of the hierarchical double-shelled N-doped carbon@MoSe2 hollow nanoboxes for efficient and stable hydrogen evolution reaction. Journal of Catalysis, 2020, 381: 363–373
https://doi.org/10.1016/j.jcat.2019.11.013
119 Y Wei, X Zhang, Z Zhao, H S Chen, K Matras-Postolek, B Wang, P Yang. Controllable synthesis of P-doped MoS2 nanopetals decorated N-doped hollow carbon spheres towards enhanced hydrogen evolution. Electrochimica Acta, 2019, 297: 553–563
https://doi.org/10.1016/j.electacta.2018.12.019
120 M Yi, B Lu, X Zhang, Y Tan, Z Zhu, Z Pan, J Zhang. Ionic liquid-assisted synthesis of nickel cobalt phosphide embedded in N, P codoped-carbon with hollow and folded structures for efficient hydrogen evolution reaction and supercapacitor. Applied Catalysis B: Environmental, 2021, 283: 119635
https://doi.org/10.1016/j.apcatb.2020.119635
121 F Wang, L Xiao, J Chen, L Chen, R Fang, Y Li. Regulating the electronic structure and water adsorption capability by constructing carbon-doped CuO hollow spheres for efficient photocatalytic hydrogen evolution. ChemSusChem, 2020, 13(21): 5711–5721
https://doi.org/10.1002/cssc.202001884
122 Y Li, D Zhang, J Fan, Q Xiang. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chinese Journal of Catalysis, 2021, 42(4): 627–636
https://doi.org/10.1016/S1872-2067(20)63684-1
123 J Kang, S Byun, S Kim, J Lee, M Jung, H Hwang, T W Kim, S H Song, D Lee. Design of three-dimensional hollow-sphere architecture of Ti3C2Tx MXene with graphitic carbon nitride nanoshells for efficient photocatalytic hydrogen evolution. ACS Applied Energy Materials, 2020, 3(9): 9226–9233
https://doi.org/10.1021/acsaem.0c01590
124 J W Zhang, H Zhang, T Z Ren, Z Y Yuan, T J Bandosz. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287
https://doi.org/10.1007/s11705-020-1965-2
125 L Chen, J T Ren, Y S Wang, W W Tian, L J Gao, Z Y Yuan. Organic-inorganic cobalt-phosphonate-derived hollow cobalt phosphate spherical hybrids for highly efficient oxygen evolution. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13559–13568
https://doi.org/10.1021/acssuschemeng.9b03217
126 Z Dong, W Zhang, Y Xiao, Y Wang, C Luan, C Qin, Y Dong, M Li, X Dai, X Zhang. One-pot-synthesized cofe-glycerate hollow spheres with rich oxyhydroxides for efficient oxygen evolution reaction. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5464–5477
https://doi.org/10.1021/acssuschemeng.9b06579
127 B Q Li, C X Zhao, S Chen, J N Liu, X Chen, L Song, Q Zhang. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Advanced Materials, 2019, 31(19): 1900592
https://doi.org/10.1002/adma.201900592
128 X Sun, S Sun, S Gu, Z Liang, J Zhang, Y Yang, Z Deng, P Wei, J Peng, Y Xu, et al.High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy, 2019, 61: 245–250
https://doi.org/10.1016/j.nanoen.2019.04.076
129 H Zhang, Y Liu, T Chen, J Zhang, J Zhang, X W Lou. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated ni atoms supported on a N-doped carbon matrix. Advanced Materials, 2019, 31(48): 1904548
https://doi.org/10.1002/adma.201904548
130 J Tong, W Ma, L Bo, T Li, W Li, Y Li, Q Zhang. Nitrogen-doped hollow carbon spheres as highly effective multifunctional electrocatalysts for fuel cells, Zn-air batteries, and water-splitting electrolyzers. Journal of Power Sources, 2019, 441: 227166
https://doi.org/10.1016/j.jpowsour.2019.227166
131 S Sultan, J N Tiwari, A N Singh, S Zhumagali, M Ha, C W Myung, P Thangavel, K S Kim. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Advanced Energy Materials, 2019, 9(22): 1900624
https://doi.org/10.1002/aenm.201900624
132 H Jin, J Wang, D Su, Z Wei, Z Pang, Y Wang. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. Journal of the American Chemical Society, 2015, 137(7): 2688–2694
https://doi.org/10.1021/ja5127165
133 Z Pu, C Zhang, I S Amiinu, W Li, L Wu, S Mu. General strategy for the synthesis of transition-metal phosphide/N-doped carbon frameworks for hydrogen and oxygen evolution. ACS Applied Materials & Interfaces, 2017, 9(19): 16187–16193
https://doi.org/10.1021/acsami.7b02069
134 J Tong, Y Li, L Bo, W Li, T Li, Q Zhang, D Kong, H Wang, C Li. CoP/N-doped carbon hollow spheres anchored on electrospinning core–shell N-doped carbon nanofibers as efficient electrocatalysts for water splitting. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17432–17442
https://doi.org/10.1021/acssuschemeng.9b04643
135 Y Dong, M Zhou, W Tu, E Zhu, Y Chen, Y Zhao, S Liao, Y Huang, Q Chen, Y Li. Hollow loofah-like N, O-Co-doped carbon tube for electrocatalysis of oxygen reduction. Advanced Functional Materials, 2019, 29(18): 1900015
https://doi.org/10.1002/adfm.201900015
136 J Li, Y Kang, W Wei, X Li, Z Lei, P Liu. Well-dispersed ultrafine CoFe nanoalloy decorated N-doped hollow carbon microspheres for rechargeable/flexible Zn-air batteries. Chemical Engineering Journal, 2021, 407: 127961
https://doi.org/10.1016/j.cej.2020.127961
137 S Chen, J Cheng, L Ma, S Zhou, X Xu, C Zhi, W Zhang, L Zhi, J A Zapien. Light-weight 3D Co-N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries. Nanoscale, 2018, 10(22): 10412–10419
https://doi.org/10.1039/C8NR01140K
138 X Zhu, X Tan, K H Wu, C L Chiang, Y C Lin, Y G Lin, D W Wang, S Smith, X Lu, R N Amal. P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(24): 14732–14742
https://doi.org/10.1039/C9TA03011E
139 Z Li, H He, H Cao, S Sun, W Diao, D Gao, P Lu, S Zhang, Z Guo, M Li, et al.Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Applied Catalysis B: Environmental, 2019, 240: 112–121
https://doi.org/10.1016/j.apcatb.2018.08.074
140 V Jose, H Hu, E Edison, W Manalastas Jr, H Ren, P Kidkhunthod, S Sreejith, A Jayakumar, J M V Nsanzimana, M Srinivasan, et al.Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn-air batteries. Small Methods, 2020, 5(2): 2000751
https://doi.org/10.1002/smtd.202000751
141 J Wang, M Fan, W Tu, K Chen, Y Shen, H Zhang. In situ growth of Co3O4 on nitrogen-doped hollow carbon nanospheres as air electrode for lithium-air batteries. Journal of Alloys and Compounds, 2019, 777: 944–953
https://doi.org/10.1016/j.jallcom.2018.11.062
142 X Wu, Y Niu, B Feng, Y Yu, X Huang, C Zhong, W Hu, C M Li. Mesoporous hollow nitrogen-doped carbon nanospheres with embedded MnFe2O4/Fe hybrid nanoparticles as efficient bifunctional oxygen electrocatalysts in alkaline media. ACS Applied Materials & Interfaces, 2018, 10(24): 20440–20447
https://doi.org/10.1021/acsami.8b04012
143 D Zhang, X Ma, H Zhang, Y Liao, Q Xiang. Enhanced photocatalytic hydrogen evolution activity of carbon and nitrogen self-doped TiO2 hollow sphere with the creation of oxygen vacancy and Ti3+. Materials Today. Energy, 2018, 10: 132–140
https://doi.org/10.1016/j.mtener.2018.08.018
144 Y Zheng, Y Liu, X Guo, W Zhang, Y Wang, M Zhang, R Li, Z Peng, H Xie, Y S Huang. Na co-doped graphitic carbon nitride/reduced graphene oxide hollow mesoporous spheres for photoelectrochemical catalysis application. ACS Applied Nano Materials, 2020, 3(8): 7982–7991
https://doi.org/10.1021/acsanm.0c01444
145 B Shao, Z Liu, G Zeng, Z Wu, Y Liu, M Cheng, M Chen, Y Liu, W Zhang, H Feng. Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16424–16436
https://doi.org/10.1021/acssuschemeng.8b03480
146 B Shao, X Liu, Z Liu, G Zeng, W Zhang, Q Liang, Y Liu, Q He, X Yuan, D Wang, S Luo, S Gong. Synthesis and characterization of 2D/0D g-C3N4/CdS-nitrogen doped hollow carbon spheres (NHCs) composites with enhanced visible light photodegradation activity for antibiotic. Chemical Engineering Journal, 2019, 374: 479–493
https://doi.org/10.1016/j.cej.2019.05.202
147 X Li, X Yan, X Hu, R Feng, M Zhou, L Wang. Enhanced adsorption and catalytic peroxymonosulfate activation by metal-free N-doped carbon hollow spheres for water depollution. Journal of Colloid and Interface Science, 2021, 591: 184–192
https://doi.org/10.1016/j.jcis.2021.01.094
148 C Cheng, D Chen, N Li, Q Xu, H Li, J He, J Lu. ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: an advanced catalyst for Cr(VI) reduction. Journal of Hazardous Materials, 2020, 391: 122205
https://doi.org/10.1016/j.jhazmat.2020.122205
149 Y Zhang, F Wang, P Ou, H Zhu, Y Lai, Y Zhao, W Shi, Z Chen, S Li, T Wang. High efficiency and rapid degradation of bisphenol A by the synergy between adsorption and oxidization on the MnO2@ nano hollow carbon sphere. Journal of Hazardous Materials, 2018, 360: 223–232
https://doi.org/10.1016/j.jhazmat.2018.08.003
150 X Li, X Yan, X Hu, R Feng, M Zhou, L Wang. Hollow Cu-Co/N-doped carbon spheres derived from ZIFs as an efficient catalyst for peroxymonosulfate activation. Chemical Engineering Journal, 2020, 397: 125533
https://doi.org/10.1016/j.cej.2020.125533
[1] Wei Wang, Linlin Song, Huoli Zhang, Guanghui Zhang, Jianliang Cao. Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI)[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1537-1549.
[2] Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Multifunctional heteroatom zeolites: construction and applications[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1462-1486.
[3] Weihang Sun, Dongfang Liu, Minghui Zhang. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1427-1443.
[4] Giuseppe Sanzone, Jinlong Yin, Hailin Sun. Scaling up of cluster beam deposition technology for catalysis application[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1360-1379.
[5] Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
[6] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[7] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[8] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[9] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[10] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[11] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[12] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[13] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[14] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[15] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed