Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (8) : 90    https://doi.org/10.1007/s11705-024-2443-z
Zeolite-encaged gold catalysts for the oxidative condensation of furfural
Weijie Li1,2, Mingyang Gao1, Bin Qin2(), Xin Deng2, Landong Li1,2,3()
1. School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
2. College of Chemistry, Nankai University, Tianjin 300071, China
3. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
 Download: PDF(1703 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The oxidative condensation between renewable furfural and fatty alcohols is a crucial avenue for producing high-quality liquid fuels and valuable furan derivatives. The selectivity control in this reaction process remains a significant challenge. Herein, we report the strategy of confining well dispersed gold species within ZSM-5 structure to construct highly active Au@ZSM-5 zeolite catalysts for the oxidative condensation of furfural. Characterization results and spectroscopy analyses demonstrate the efficient encapsulation of isolated and cationic Au clusters in zeolite structure. Au@ZSM-5(K) catalyst shows remarkable performance with 69.7% furfural conversion and 90.2% furan-2-acrolein selectivity as well as good recycle stability. It is revealed that the microstructure of ZSM-5 zeolite can significantly promote oxidative condensation activity through confinement effects. This work presents an explicit example of constructing zeolite encaged noble metal catalysts toward targeted chemical transformations.

Keywords zeolite      encapsulation      gold      oxidative condensation      furfural     
Corresponding Author(s): Bin Qin,Landong Li   
Just Accepted Date: 29 April 2024   Issue Date: 12 July 2024
 Cite this article:   
Weijie Li,Mingyang Gao,Bin Qin, et al. Zeolite-encaged gold catalysts for the oxidative condensation of furfural[J]. Front. Chem. Sci. Eng., 2024, 18(8): 90.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2443-z
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I8/90
Fig.1  (a) XRD patterns of Au-containing ZSM-5 samples; (b) Ar sorption isotherms of Au-containing ZSM-5 samples at 87 K.
SampleSBET/(m2·g–1 zeolite)a)Pore volume/(cm3·g–1 zeolite)b)
Au/ZSM-5(K)4160.20
Au@ZSM-5(H)3870.18
Au@ZSM-5(Na)3850.18
Au@ZSM-5(K)3790.19
Tab.1  Texture properties of Au-containing zeolite catalysts
Fig.2  (a) SEM image of Au@ZSM-5(K) sample; (b) TEM images of Au@ZSM-5(K) single-particle; (c) HAADF-STEM image and corresponding selected-area element mapping analyses of Au@ZSM-5(K) sample.
Fig.3  STEM image and corresponding element mapping analyses of the Au/ZSM-5(K) sample.
Fig.4  (a) H2-TPR profiles, (b) Au 4f XPS, (c) CO adsorbed FTIR spectra, and (d) UV-Vis spectra of Au-containing ZSM-5 samples.
Fig.5  (a) Hydrogenation of nitrocompounds over Au@ZSM-5(K) and (b) Au/ZSM-5(K) samples. Reaction conditions: 30 mg catalyst, 0.3 mmol nitrobenzene/1-nitronaphthalene, 1 mmol NaBH4, 5 mL H2O, t = 298 K.
Entry Catalyst Au content/% b Conversion/% c Selectivity/% c
A B + C
1 Au@ZSM-5(K) 0.65 69.7 90.2 9.8
2 Au@ZSM-5(Na) 0.66 59.4 88.7 11.3
3 Au@ZSM-5(H) 0.65 46.5 83.4 16.6
4 Au/ZSM-5(K) 0.73 36.2 59.3 40.7
5 Au/ZSM-5(Na) 0.72 33.6 55.4 44.6
6 Au@ZSM-5(K)d 0.65 15.7 88.3 11.7
7 Au/ZSM-5(K)d 0.73 13.4 5.0 95.0
8 No catalyst / 0 / /
Tab.2  Furfural oxidative condensation over various Au-containing catalysts a
Fig.6  Reaction condition screening for the oxidative condensation reaction. (a) Temperature-dependent behaviors on the oxidative condensation of furfural over Au@ZSM-5(K) catalyst. Reaction conditions: 0.5 mmol furfural, 0.4 mmol K2CO3, 5 mL ethanol, 30 mg catalyst, 40 μL dodecane, 6 h, 0.3 MPa O2; (b) effect of base additive on the oxidative condensation of furfural over Au@ZSM-5(K) catalyst. Reaction conditions: 0.5 mmol furfural, 0.4 mmol base, 5 mL ethanol, 30 mg catalyst, 40 μL dodecane, 393 K, 6 h, 0.3 MPa O2; (c) effect of K2CO3 amount on the oxidative condensation of furfural over Au@ZSM-5(K). Reaction conditions: 0.5 mmol furfural, 5 mL ethanol, 30 mg catalyst, 40 μL dodecane, 393 K, 6 h, 0.3 MPa O2.
Fig.7  Furfural conversion and production selectivity in oxidative condensation reaction over (a) Au@ZSM-5(K) and (b) Au/ZSM-5(K) catalysts. Reaction conditions: 0.5 mmol furfural, 5 mL ethanol, 0.4 mmol K2CO3, 30 mg catalyst, 393 K, 0.3 MPa O2.
Fig.8  Recycling of Au@ZSM-5(K) and Au/ZSM-5(K) samples for the oxidative condensation reaction. Reaction conditions: 0.5 mmol furfural, 5 mL ethanol, 0.4 mmol K2CO3, 30 mg catalyst, 393 K, 6 h, 0.3 MPa O2.
Fig.9  (a) HAADF-STEM images and corresponding element mapping analyses of Au@ZSM-5(K) sample after oxidative condensation reaction; (b) TEM images of Au/ZSM-5(K) sample after oxidative condensation reaction.
1 J J Bozell , G R Petersen . Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chemistry, 2010, 12(4): 539–554
https://doi.org/10.1039/b922014c
2 M Fatih Demirbas . Current technologies for biomass conversion into chemicals and fuels. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2006, 28(13): 1181–1188
https://doi.org/10.1080/00908310500434556
3 S Suttibak , K Sriprateep , A Pattiya . Production of bio-oil via fast pyrolysis of cassava rhizome in a fluidised-bed reactor. Energy Procedia, 2012, 14: 668–673
https://doi.org/10.1016/j.egypro.2011.12.993
4 D M Alonso , J Q Bond , J A Dumesic . Catalytic conversion of biomass to biofuels. Green Chemistry, 2010, 12(9): 1493–1513
https://doi.org/10.1039/c004654j
5 M J Taylor , L J Durndell , M A Isaacs , C M A Parlett , K Wilson , A F Lee , G Kyriakou . Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Applied Catalysis B: Environmental, 2016, 180: 580–585
https://doi.org/10.1016/j.apcatb.2015.07.006
6 F MenegazzoM SignorettoF PinnaM ManzoliV AinaG CerratoF Boccuzzi. Oxidative esterification of renewable furfural on gold-based catalysts: which is the best support? Journal of Catalysis, 2014, 309: 241–247
7 A Brandolese , D Ragno , G Di Carmine , T Bernardi , O Bortolini , P P Giovannini , O G Pandoli , A Altomare , A Massi . Aerobic oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid and its derivatives by heterogeneous NHC-catalysis. Organic & Biomolecular Chemistry, 2018, 16(46): 8955–8964
https://doi.org/10.1039/C8OB02425A
8 H Choudhary , S Nishimura , K Ebitani . Highly efficient aqueous oxidation of furfural to succinic acid using reusable heterogeneous acid catalyst with hydrogen peroxide. Chemistry Letters, 2012, 41(4): 409–411
https://doi.org/10.1246/cl.2012.409
9 Thanh D Nguyen , O Kikhtyanin , R Ramos , M Kothari , P Ulbrich , T Munshi , D Kubička . Nanosized TiO2—A promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading. Catalysis Today, 2016, 277: 97–107
https://doi.org/10.1016/j.cattod.2015.11.027
10 E Taarning , I S Nielsen , K Egeblad , R Madsen , C H Christensen . Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem, 2008, 1(1): 75–78
https://doi.org/10.1002/cssc.200700033
11 H Li , A Riisager , S Saravanamurugan , A Pandey , R S Sangwan , S Yang , R Luque . Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catalysis, 2018, 8(1): 148–187
https://doi.org/10.1021/acscatal.7b02577
12 X Zhang , S Xu , Q Li , G Zhou , H Xia . Recent advances in the conversion of furfural into bio-chemicals through chemo- and bio-catalysis. RSC Advances, 2021, 11(43): 27042–27058
https://doi.org/10.1039/D1RA04633K
13 X Li , P Jia , T Wang . Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catalysis, 2016, 6(11): 7621–7640
https://doi.org/10.1021/acscatal.6b01838
14 Y Luo , Z Li , X Li , A Pandey , R S Sangwan , S Yang , R Luque . The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catalysis Today, 2019, 319: 14–24
https://doi.org/10.1016/j.cattod.2018.06.042
15 H Xia , S Xu , H Hu , J An , C Li . Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Advances, 2018, 8(54): 30875–30886
https://doi.org/10.1039/C8RA05308A
16 Q Fang , Z X Qin , Y Shi , F Liu , S Barkaoui , H Abroshan , G Li , Z Qin , Y Shi , F Liu . et al.. Au/NiO composite: a catalyst for one-pot cascade conversion of furfural. ACS Applied Energy Materials, 2019, 2(4): 2654–2661
https://doi.org/10.1021/acsaem.9b00001
17 X Tong , Z Liu , L Yu , Y Li . A tunable process: catalytic transformation of renewable furfural with aliphatic alcohols in the presence of molecular oxygen. Chemical Communications, 2015, 51(17): 3674–3677
https://doi.org/10.1039/C4CC09562F
18 X Tong , Z Liu , J Hu , S Liao . Au-catalyzed oxidative condensation of renewable furfural and ethanol to produce furan-2-acrolein in the presence of molecular oxygen. Applied Catalysis A, General, 2016, 510: 196–203
https://doi.org/10.1016/j.apcata.2015.11.025
19 Y Gao , X Tong , H Zhang . A selective oxidative valorization of biomass-derived furfural and ethanol with the supported gold catalysts. Catalysis Today, 2020, 355: 238–245
https://doi.org/10.1016/j.cattod.2019.05.002
20 E Monti , A Ventimiglia , C A G Soto , F Martelli , E Rodríguez-Aguado , J A Cecilia , P Maireles-Torres , F Ospitali , T Tabanelli , S Albonetti . et al.. Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. Molecular Catalysis, 2022, 528: 112438
https://doi.org/10.1016/j.mcat.2022.112438
21 M Sankar , Q He , R V Engel , M A Sainna , A J Logsdail , A Roldan , D J Willock , N Agarwal , C J Kiely , G J Hutchings . Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews, 2020, 120(8): 3890–3938
https://doi.org/10.1021/acs.chemrev.9b00662
22 Y Zhang , X Cui , F Shi , Y Deng . Nano-gold catalysis in fine chemical synthesis. Chemical Reviews, 2012, 112(4): 2467–2505
https://doi.org/10.1021/cr200260m
23 T Ishida , A Taketoshi , M Haruta . Gold nanoparticles for oxidation reactions: critical role of supports and Au particle size. Topics in Organometallic Chemistry, 2020, 66: 1–48
https://doi.org/10.1007/3418_2020_42
24 L Liu , A Corma . Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nature Reviews. Materials, 2021, 6(3): 244–263
https://doi.org/10.1038/s41578-020-00250-3
25 S Schauermann , N Nilius , S Shaikhutdinov , H J Freund . Nanoparticles for heterogeneous catalysis: new mechanistic insights. Accounts of Chemical Research, 2013, 46(8): 1673–1681
https://doi.org/10.1021/ar300225s
26 M S Chen , D W Goodman . The structure of catalytically active gold on titania. Science, 2004, 306(5694): 252–255
https://doi.org/10.1126/science.1102420
27 J Majimel , M Lamirand-Majimel , I Moog , C Feral-Martin , M Tréguer-Delapierre . Size-dependent stability of supported gold nanostructures onto ceria: an HRTEM study. Journal of Physical Chemistry C, 2009, 113(21): 9275–9283
https://doi.org/10.1021/jp9001115
28 S Yusuf , F Jiao . Effect of the support on the photocatalytic water oxidation activity of cobalt oxide nanoclusters. ACS Catalysis, 2012, 2(12): 2753–2760
https://doi.org/10.1021/cs300581k
29 L Prati , A Villa . Gold colloids: from quasi-homogeneous to heterogeneous catalytic systems. Accounts of Chemical Research, 2014, 47(3): 855–863
https://doi.org/10.1021/ar400170j
30 Y Chai , S Liu , Z Zhao , J Gong , W Dai , G Wu , N Guan , L Li . Selectivity modulation of encapsulated palladium nanoparticles by zeolite microenvironment for biomass catalytic upgrading. ACS Catalysis, 2018, 8(9): 8578–8589
https://doi.org/10.1021/acscatal.8b02276
31 M Gao , Z Gong , X Weng , W Shang , Y Chai , W Dai , G Wu , N Guan , L Li . Methane combustion over palladium catalyst within the confined space of MFI zeolite. Chinese Journal of Catalysis, 2021, 42(10): 1689–1699
https://doi.org/10.1016/S1872-2067(20)63775-5
32 W Shang , M Gao , Y Chai , G Wu , N Guan , L Li . Stabilizing isolated rhodium cations by MFI zeolite for heterogeneous methanol carbonylation. ACS Catalysis, 2021, 11(12): 7249–7256
https://doi.org/10.1021/acscatal.1c00950
33 A Farshi , F Shaiyegh , S H Burogerdi , A Dehgan . FCC process role in propylene demands. Petroleum Science and Technology, 2011, 29(9): 875–885
https://doi.org/10.1080/10916460903451985
34 H T Yan , R Le Van Mao . Hybrid catalysts used in the catalytic steam cracking process (CSC): influence of the pore characteristics and the surface acidity properties of the ZSM-5 zeolite-based component on the overall catalytic performance. Applied Catalysis A, General, 2010, 375(1): 63–69
https://doi.org/10.1016/j.apcata.2009.12.018
35 A Farshi , H R Abri . The addition of ZSM-5 to a fluid catalytic cracking catalyst for increasing olefins in fluid catalytic cracking light gas. Petroleum Science and Technology, 2012, 30(12): 1285–1295
https://doi.org/10.1080/10916466.2010.497789
36 F Ying , S Wang , C T Au , S Y Lai . Effect of the oxidation state of gold on the complete oxidation of isobutane on Au/CeO2 catalysts. Gold Bulletin, 2010, 43(4): 241–251
https://doi.org/10.1007/BF03214994
37 M Zhang , Q Liu , H Long , L Sun , T Murayama , C Qi . Insights into Au nanoparticle size and chemical state of Au/ZSM-5 catalyst for catalytic cracking of n-octane to increase propylene production. Journal of Physical Chemistry C, 2021, 125(29): 16013–16023
https://doi.org/10.1021/acs.jpcc.1c04608
38 H Huang , W Ye , C Song , Y Liu , X Zhang , Y Shan , Y Ge , S Zhang , R Lu . Confinement of Au3+-rich clusters by using silicalite-1 for selective solvent-free oxidation of toluene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(26): 14710–14721
https://doi.org/10.1039/D1TA02347K
39 F Boccuzzi , A Chiorino . FTIR study of carbon monoxide oxidation and scrambling at room temperature over copper supported on ZnO and TiO2. Journal of Physical Chemistry, 1996, 100(9): 3617–3624
https://doi.org/10.1021/jp950542g
40 F Boccuzzi , A Chiorino , M Manzoli . FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania. Surface Science, 2000, 454(1): 942–946
https://doi.org/10.1016/S0039-6028(00)00160-6
41 F Boccuzzi , A Chiorino . FTIR study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers. Journal of Physical Chemistry B, 2000, 104(23): 5414–5416
https://doi.org/10.1021/jp000749w
42 S Minicò , S Scirè , C Crisafulli , A M Visco , S Galvagno . Galvagno S. FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature. Catalysis Letters, 1997, 47(3): 273–276
https://doi.org/10.1023/A:1019081727173
43 H Chen , Z Li , Z Qin , H J Kim , H Abroshan , G Li . Silica-encapsulated gold nanoclusters for efficient acetylene hydrogenation to ethylene. ACS Applied Nano Materials, 2019, 2(5): 2999–3006
https://doi.org/10.1021/acsanm.9b00384
44 A Simakov , I Tuzovskaya , A Pestryakov , N Bogdanchikova , V Gurin , M Avalos , M H Farías . On the nature of active gold species in zeolites in CO oxidation. Applied Catalysis A, General, 2007, 331(1): 121–128
https://doi.org/10.1016/j.apcata.2007.07.039
45 N Yang , S Pattisson , M Douthwaite , G Zeng , H Zhang , J Ma , G J Hutchings . Influence of stabilizers on the performance of Au/TiO2 catalysts for CO oxidation. ACS Catalysis, 2021, 11(18): 11607–11615
https://doi.org/10.1021/acscatal.1c02820
[1] Binyu Wang, Qiang Li, Haoyang Zhang, Jia-Nan Zhang, Qinhe Pan, Wenfu Yan. Zeolites for the separation of ethylene, ethane, and ethyne[J]. Front. Chem. Sci. Eng., 2024, 18(9): 108-.
[2] Guangchao Li, Ping-Luen Baron Ho, Bryan Kit Yue Ng, Tai-Sing Wu, Pawel Rymarz, Shik Chi Edman Tsang. Structural insight into palladium-nickel clusters over mordenite zeolite for carbene-insertion reaction[J]. Front. Chem. Sci. Eng., 2024, 18(9): 104-.
[3] Hyungmin Jeon, Susung Lee, Jeong-Chul Kim, Minkee Choi. Nanocrystalline low-silica X zeolite as an efficient ion-exchanger enabling fast radioactive strontium capture[J]. Front. Chem. Sci. Eng., 2024, 18(9): 98-.
[4] Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Front. Chem. Sci. Eng., 2024, 18(8): 93-.
[5] Zhao Ma, Dezhi Shi, Sen Wang, Mei Dong, Weibin Fan. Control of aluminum distribution in ZSM-5 zeolite for enhancement of its catalytic performance for propane aromatization[J]. Front. Chem. Sci. Eng., 2024, 18(8): 86-.
[6] Stoyan P. Gramatikov, Petko St. Petkov, Zhendong Wang, Weimin Yang, Georgi N. Vayssilov. The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate[J]. Front. Chem. Sci. Eng., 2024, 18(5): 58-.
[7] Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Front. Chem. Sci. Eng., 2024, 18(4): 45-.
[8] Hassan Alhassawi, Edidiong Asuquo, Shima Zainal, Yuxin Zhang, Abdullah Alhelali, Zhipeng Qie, Christopher M. A. Parlett, Carmine D’Agostino, Xiaolei Fan, Arthur A. Garforth. Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking[J]. Front. Chem. Sci. Eng., 2024, 18(11): 133-.
[9] Russell F Howe. New approaches to vibrational spectroscopy of zeolite catalysts: a perspective[J]. Front. Chem. Sci. Eng., 2024, 18(11): 123-.
[10] Junyang Xu, Guanhua Liu, Ying He, Liya Zhou, Li Ma, Yunting Liu, Xiaobing Zheng, Jing Gao, Yanjun Jiang. Enzyme@bismuth-ellagic acid: a versatile platform for enzyme immobilization with enhanced acid-base stability[J]. Front. Chem. Sci. Eng., 2023, 17(6): 784-794.
[11] Zexing Huang, Zhijuan Zeng, Xiaoting Zhu, Wenguang Zhao, Jing Lei, Qiong Xu, Yongjun Yang, Xianxiang Liu. Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan[J]. Front. Chem. Sci. Eng., 2023, 17(4): 415-424.
[12] Xiangxiang Ren, Zhong-Pan Hu, Jingfeng Han, Yingxu Wei, Zhongmin Liu. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1801-1808.
[13] Huaxin Qu, Jie Deng, Bei Wang, Lezi Ouyang, Yong Tang, Kai Yu, Lan-Lan Lou, Shuangxi Liu. Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1514-1523.
[14] Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Multifunctional heteroatom zeolites: construction and applications[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1462-1486.
[15] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed