Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (9) : 104    https://doi.org/10.1007/s11705-024-2455-8
Structural insight into palladium-nickel clusters over mordenite zeolite for carbene-insertion reaction
Guangchao Li1,2, Ping-Luen Baron Ho2, Bryan Kit Yue Ng2, Tai-Sing Wu3, Pawel Rymarz2, Shik Chi Edman Tsang2()
1. Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
2. Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK
3. Synchrotron Radiation Research Center, Hsinchu 30076, China
 Download: PDF(1175 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The advancement of heterogeneous catalysts incorporating metal clusters in the nanometric size range has garnered significant attention due to their extraordinary catalytic activity and selectivity. The detailed characterization and understanding of the atomic structure of these metal clusters within catalysts is crucial for elucidating the underlying reaction mechanisms. In the present study, a distinctive three-atom PdNi cluster, characterized by two Pd atoms at terminal positions and a central Ni atom, was synthesized over mordenite zeolite. The presence of atomic PdNi clusters within the eight-membered ring side pocket area was confirmed by multiple advanced analytical techniques, including magic-angle spinning nuclear magnetic resonance spectroscopy, synchrotron X-ray powder diffraction, extended X-ray absorption fine structure spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy. The catalytic activity of the confined active species was examined by the carbene-mediated reactions of ethyl-2-diazoacetate to ethyl-2-methoxyacetate as a model reaction. Compared to the Pd-mordenite and Ni-mordenite, the PdNi-mordenite catalyst incorporates a PdNi cluster, which demonstrates a superior performance, achieving 100% conversion and high selectivity under the same reaction conditions. Our study elucidates the potential of constructing bimetallic clusters in zeolites, providing valuable insights for developing new heterogeneous catalysts applicable to a wide range of catalytic processes.

Keywords zeolite      metal cluster      synchrotron X-ray diffraction      carbene-mediated reaction     
Corresponding Author(s): Shik Chi Edman Tsang   
About author: Chunqi Yang contributed equally to this work.
Just Accepted Date: 19 April 2024   Issue Date: 31 July 2024
 Cite this article:   
Guangchao Li,Ping-Luen Baron Ho,Bryan Kit Yue Ng, et al. Structural insight into palladium-nickel clusters over mordenite zeolite for carbene-insertion reaction[J]. Front. Chem. Sci. Eng., 2024, 18(9): 104.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2455-8
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I9/104
Fig.1  (a) XRD patterns, (b) 27Al, (c) 29Si MAS SSNMR spectra, and (d) nitrogen adsorption-desorption isotherms of pristine MOR, Pd-MOR, Ni-MOR, and PdNi-MOR.
SampleSBETa/(m2·g?1)Smicro/(m2·g?1)Vmicrob/(cm3·g?1)Pore diameterc/?Theoretical valuedExperimental valuee
Pd/wt %Ni/wt %Pd/wt %Ni/wt %
Pristine MOR352.1274.40.826.2\\\\
Pd-MOR310.0256.30.715.94\3.50\
Ni-MOR315.8258.40.725.9\4\3.20
PdNi-MOR324.5260.40.756.0221.790.86
Tab.1  Texture results of the samples from N2 adsorption experiments and ICP-MS
Fig.2  Bright-field-TEM images of (a) Pd-MOR, (b) Ni-MOR, and HAADF-STEM of (c) PdNi/MOR, (d) with FFT along the [001] zone axis.
SampleScattering pathBond length /?Coordination numberDebye-Waller factor/?2ΔE/eVR-factor/%
Pd foilPd?Pd2.74 ± 0.01120.005 ± 0.001?0.63 ± 0.441.14
PdNi-MORPd?Ni2.59 ± 0.014.9 ± 1.50.007 ± 0.001?0.27 ± 0.640.65
Pd?Pd2.69 ± 0.015.6 ± 1.20.007 ± 0.001
Pd?O(framework)2.73 ± 0.191.5 ± 0.40.007 ± 0.001
Tab.2  Structural parameters of PdNi-MOR were extracted from the EXAFS fitting for the Pd-centered scattering path with amplitude reduction factor at 0.65 and R-range at 1.35–3 ?
Fig.3  (a) XPS survey spectrum, (b) H2-TPR patterns of Pd-MOR, Ni-MOR, and PdNi-MOR, (c) normalized X-ray absorption near edge structure spectra at Pd K-edge of Pd foil, Pd-MOR, and PdNi-MOR, and (d) EXAFS fitting of PdNi-MOR with k2-weighted q-space with R-range at 1.35–3 ?.
Fig.4  (a) Original and fitted SXRD patterns of PdNi-MOR sample, (b) distribution of PdNi cluster inside the 8MR side pocket of MOR based on the refined structure, the enlarged part of PdNi cluster is plotted both in (c) and (d) from different view directions.
Entry Catalyst Conversion/% EMA abundance/% Side products/%
1 Ni-MOR 58.6 54.0 4.6
2 Pd-MOR 100 41.4 58.6
3 PdNi-MOR 100 74.7 25.3
4 PdSm-MOR 100 43.8 55.3
5 PdCu-MOR 100 45.8 53.1
6 PdPb-MOR 100 11.3 88.1
Tab.3  Catalytic activities of different catalystsa)
  Scheme1 Proposed mechanism carbene-mediated reaction over Pd?Ni cluster in MOR.
1 H Arakawa , M Aresta , J N Armor , M A Barteau , E J Beckman , A T Bell , J E Bercaw , C Creutz , E Dinjus , D A Dixon . et al.. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 2001, 101(4): 953–996
https://doi.org/10.1021/cr000018s
2 Y Xia , D Qiu , J Wang . Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chemical Reviews, 2017, 117(23): 13810–13889
https://doi.org/10.1021/acs.chemrev.7b00382
3 H L Su , L M Pérez , S J Lee , J H Reibenspies , H S Bazzi , D E Bergbreiter . Studies of ligand exchange in N-heterocyclic carbene silver(I) complexes. Organometallics, 2012, 31(10): 4063–4071
https://doi.org/10.1021/om300340w
4 C LiY Liu. Bridging Heterogeneous and Homogeneous Catalysis: Concepts, Strategies, and Applications. New Jersey: John Wiley & Sons, 2014
5 N Wang , Q Sun , J Yu . Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Advanced Materials, 2019, 31(1): e1803966
https://doi.org/10.1002/adma.201803966
6 Y Chai , W Shang , W Li , G Wu , W Dai , N Guan , L Li . Noble metal particles confined in zeolites: synthesis, characterization, and applications. Advanced Science, 2019, 6(16): 1900299
https://doi.org/10.1002/advs.201900299
7 C T Campbell , S C Parker , D E Starr . The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814
https://doi.org/10.1126/science.1075094
8 Q Sun , N Wang , R Bai , Y Hui , T Zhang , D A Do , P Zhang , L Song , S Miao , J Yu . Synergetic effect of ultrasmall metal clusters and zeolites promoting hydrogen generation. Advanced Science, 2019, 6(10): 1802350
https://doi.org/10.1002/advs.201802350
9 J Zhang , L Wang , Y Shao , Y Wang , B C Gates , F S A Xiao . Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angewandte Chemie International Edition, 2017, 56(33): 9747–9751
https://doi.org/10.1002/anie.201703938
10 Q Sun , N Wang , Q Bing , R Si , J Liu , R Bai , P Zhang , M Jia , J Yu . Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem, 2017, 3(3): 477–493
https://doi.org/10.1016/j.chempr.2017.07.001
11 C K T Wun , H K Mok , T Chen , T S Wu , K Taniya , K Nakagawa , S Day , C C Tang , Z Huang , H Su . et al.. Atomically dispersed 3d metal bimetallic dual-atom catalysts and classification of the structural descriptors. Chem Catalysis, 2022, 2(9): 2346–2363
https://doi.org/10.1016/j.checat.2022.07.027
12 T Chen , W Yu , C K T Wun , T S Wu , M Sun , S Day , Z Li , B Yuan , Y Wang , M Li . et al.. Cu−Co dual-atom catalysts supported on hierarchical USY zeolites for an efficient cross-dehydrogenative C(sp2)-N coupling reaction. Journal of the American Chemical Society, 2023, 145(15): 8464–8473
13 Z Yu , A Zheng , Q Wang , L Chen , J Xu , J P Amoureux , F Deng . Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angewandte Chemie International Edition, 2010, 49(46): 8657–8661
https://doi.org/10.1002/anie.201004007
14 J XuQ WangS LiF Deng. Solid-State NMR in Zeolite Catalysis. Berlin: Springer, 2019
15 A Satsuma , Y Sahashi , J Shibata , K Nishi , S Satokawa , K Itabashi , S Komai , H Yoshida , T Hattori . Stability of Pd(II) ion in side pockets of mordenite under hydrothermal conditions. Microporous and Mesoporous Materials, 2005, 81(1-3): 135–138
https://doi.org/10.1016/j.micromeso.2005.01.027
16 A Quindimil , U De-La-Torre , B Pereda-Ayo , J A González-Marcos , J R González-Velasco . Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 2018, 238: 393–403
https://doi.org/10.1016/j.apcatb.2018.07.034
17 L Guczi , G Boskovic , E Kiss . Bimetallic cobalt based catalysts. Catalysis Reviews. Science and Engineering, 2010, 52(2): 133–203
https://doi.org/10.1080/01614941003720134
18 K C Leung , S Hong , G Li , Y Xing , B K Y Ng , P L Ho , D Ye , P Zhao , E Tan , O Safonova . et al.. Confined Ru sites in a 13X zeolite for ultrahigh H2 production from NH3 decomposition. Journal of the American Chemical Society, 2023, 145(26): 14548–14561
https://doi.org/10.1021/jacs.3c05092
19 G Li , T Yoskamtorn , W Chen , C Foo , J Zheng , C Tang , S Day , A Zheng , M M Li , S C E Tsang . Thermal alteration in adsorption sites over SAPO-34 zeolite. Angewandte Chemie International Edition, 2022, 61(27): e202204500
https://doi.org/10.1002/anie.202204500
20 G Li , C Foo , X Yi , W Chen , P Zhao , P Gao , T Yoskamtorn , Y Xiao , S Day , C C Tang . et al.. Induced active sites by adsorbate in zeotype materials. Journal of the American Chemical Society, 2021, 143(23): 8761–8771
https://doi.org/10.1021/jacs.1c03166
21 M Boronat , C Martínez-Sánchez , D Law , A Corma . Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. Journal of the American Chemical Society, 2008, 130(48): 16316–16323
https://doi.org/10.1021/ja805607m
22 R Liu , B Fan , W Zhang , L Wang , L Qi , Y Wang , S Xu , Z Yu , Y Wei , Z Liu . Increasing the number of aluminum atoms in T3 sites of a mordenite zeolite by low-pressure SiCl4 treatment to catalyze dimethyl ether carbonylation. Angewandte Chemie International Edition, 2022, 61(18): e202116990
https://doi.org/10.1002/anie.202116990
23 Z Liu , X Yi , G Wang , X Tang , G Li , L Huang , A Zheng . Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion. Journal of Catalysis, 2019, 369: 335–344
https://doi.org/10.1016/j.jcat.2018.11.024
24 Z Liu , X Yang , L Cui , Z Shi , B Lu , X Guo , J Zhang , L Xu , Y Tang , Y Xiang . High-performance oxygen reduction electrocatalysis enabled by 3D PdNi nanocorals with hierarchical porosity. Particle & Particle Systems Characterization, 2018, 35(5): 1700366
https://doi.org/10.1002/ppsc.201700366
25 L Sahoo , R Garg , K Kaur , C Vinod , U K Gautam . Ultrathin twisty PdNi alloy nanowires as highly active ORR electrocatalysts exhibiting morphology-induced durability over 200 K cycles. Nano Letters, 2022, 22(1): 246–254
https://doi.org/10.1021/acs.nanolett.1c03704
26 T Wang , A Chutia , D J Brett , P R Shearing , G He , G Chai , I P Parkin . Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy & Environmental Science, 2021, 14(5): 2639–2669
https://doi.org/10.1039/D0EE03915B
27 F R Fortea-Pérez , M Mon , J Ferrando-Soria , M Boronat , A Leyva-Perez , A Corma , J M Herrera , D Osadchii , J Gascon , D Armentano . et al.. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 2017, 16(7): 760–766
https://doi.org/10.1038/nmat4910
28 A Padwa , M D Weingarten . Cascade processes of metallo carbenoids. Chemical Reviews, 1996, 96(1): 223–270
https://doi.org/10.1021/cr950022h
29 E Nakamura , N Yoshikai , M Yamanaka . Mechanism of C–H bond activation/C–C bond formation reaction between diazo compound and alkane catalyzed by dirhodium tetracarboxylate. Journal of the American Chemical Society, 2002, 124(24): 7181–7192
https://doi.org/10.1021/ja017823o
[1] FCE-24009-OF-LG_suppl_1 Download
[1] Binyu Wang, Qiang Li, Haoyang Zhang, Jia-Nan Zhang, Qinhe Pan, Wenfu Yan. Zeolites for the separation of ethylene, ethane, and ethyne[J]. Front. Chem. Sci. Eng., 2024, 18(9): 108-.
[2] Hyungmin Jeon, Susung Lee, Jeong-Chul Kim, Minkee Choi. Nanocrystalline low-silica X zeolite as an efficient ion-exchanger enabling fast radioactive strontium capture[J]. Front. Chem. Sci. Eng., 2024, 18(9): 98-.
[3] Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Front. Chem. Sci. Eng., 2024, 18(8): 93-.
[4] Weijie Li, Mingyang Gao, Bin Qin, Xin Deng, Landong Li. Zeolite-encaged gold catalysts for the oxidative condensation of furfural[J]. Front. Chem. Sci. Eng., 2024, 18(8): 90-.
[5] Zhao Ma, Dezhi Shi, Sen Wang, Mei Dong, Weibin Fan. Control of aluminum distribution in ZSM-5 zeolite for enhancement of its catalytic performance for propane aromatization[J]. Front. Chem. Sci. Eng., 2024, 18(8): 86-.
[6] Stoyan P. Gramatikov, Petko St. Petkov, Zhendong Wang, Weimin Yang, Georgi N. Vayssilov. The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate[J]. Front. Chem. Sci. Eng., 2024, 18(5): 58-.
[7] Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Front. Chem. Sci. Eng., 2024, 18(4): 45-.
[8] Hassan Alhassawi, Edidiong Asuquo, Shima Zainal, Yuxin Zhang, Abdullah Alhelali, Zhipeng Qie, Christopher M. A. Parlett, Carmine D’Agostino, Xiaolei Fan, Arthur A. Garforth. Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking[J]. Front. Chem. Sci. Eng., 2024, 18(11): 133-.
[9] Russell F Howe. New approaches to vibrational spectroscopy of zeolite catalysts: a perspective[J]. Front. Chem. Sci. Eng., 2024, 18(11): 123-.
[10] Xiangxiang Ren, Zhong-Pan Hu, Jingfeng Han, Yingxu Wei, Zhongmin Liu. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1801-1808.
[11] Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Multifunctional heteroatom zeolites: construction and applications[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1462-1486.
[12] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
[13] Yixin Zhang, Lu Zhou, Liqing Chen, Yang Guo, Fanhui Guo, Jianjun Wu, Baiqian Dai. Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent for removal of Cr(VI) from water[J]. Front. Chem. Sci. Eng., 2021, 15(3): 518-527.
[14] Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(2): 269-278.
[15] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed