Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (8) : 86    https://doi.org/10.1007/s11705-024-2439-8
Control of aluminum distribution in ZSM-5 zeolite for enhancement of its catalytic performance for propane aromatization
Zhao Ma1,2, Dezhi Shi1,2, Sen Wang1(), Mei Dong1(), Weibin Fan1()
1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(1235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Regulation of aluminum distribution in zeolite framework is an effective method for improving its catalytic performance for propane aromatization. Herein, we found that recrystallization and post-realuminization of ZSM-5 cannot only create hollow structures to enhance the diffusion ability, but also adjust the content and position of paired aluminum species in its framework. Various characterizations results confirmed that increase of paired aluminum content and inducement of more aluminum atoms sited in the intersection cavity are beneficial to the formation of aromatic products in propane aromatization. As a result, the hollow-structured ZSM-5 zeolite with more paired aluminum (H-200-hollow) showed higher propane conversion and aromatics selectivity than other samples at the same conditions. The catalytic performance of H-200-hollow can be further improved by ion-exchanging with a small amount of Ga(III) species. The propane conversion and aromatics selectivity of Ga-200-hollow reached as high as 95% and 70%, respectively, at 540 °C and 1 atm.

Keywords propane aromatization      zeolite      aluminum distribution      recrystallization and post-realuminization     
Corresponding Author(s): Sen Wang,Mei Dong,Weibin Fan   
Just Accepted Date: 19 April 2024   Issue Date: 17 June 2024
 Cite this article:   
Zhao Ma,Dezhi Shi,Sen Wang, et al. Control of aluminum distribution in ZSM-5 zeolite for enhancement of its catalytic performance for propane aromatization[J]. Front. Chem. Sci. Eng., 2024, 18(8): 86.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2439-8
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I8/86
Fig.1  (a) XRD patterns and (b) N2 sorption isotherms of H-40-hol, H-100-hol, H-200-hol, and H-300-hol catalysts.
Fig.2  TEM images of (a) H-40-hol, (b) H-100-hol, (c) H-300-hol, and (d) H-200-hol; (e–i) STEM-EDX elemental mappings of Si, Al, O elements of H-200-hol obtained by line scanning and face scanning.
CatalystsSi/Ala) (before treatment)Si/Ala) (after treatment)Na/Ala)Stotalb)/(m2·g–1)Smicrob)/(m2·g–1)Vtotalb)/(m3·g–1)Vmicrob)/(m3·g–1)
H-40-hol39390.403592710.320.11
H-100-hol93370.433782650.360.11
H-200-hol184390.453812800.350.10
H-300-hol281400.423742850.340.10
Tab.1  Elemental compositions and textual properties of H-40-hol, H-100-hol, H-200-hol, and H-300-hol
CatalystsAcid sites from NH3-TPDa)/(mmol·g–1)Acid sites from Py-IRb)/(mmol·g–1)
TotalStrongWeakTotalBr?nstedLewis
H-40-hol0.470.240.230.180.140.043
H-100-hol0.480.250.230.170.140.032
H-200-hol0.490.260.230.180.150.033
H-300-hol0.490.250.240.190.160.034
Tab.2  Acidic properties of H-40-hol, H-100-hol, H-200-hol, and H-300-hol
Fig.3  (a) NH3-TPD profiles and (b) Py-IR spectra of H-40-hol, H-100-hol, H-200-hol, and H-300-hol.
CatalystsAlpairsa)/%Alsinglea)/%(2Co+Na)/Alb)/%Al distribution by DR UV-Vis/%Al(54)/%Al(56)/%
ɑβγ
H-40-hol3466991156335733
H-100-hol475398777166025
H-200-hol653598681136617
H-300-hol544699678166520
Tab.3  Distributions of Al atoms in the frameworks of H-40-hol, H-100-hol, H-200-hol, and H-300-hol
Fig.4  (a, b) Dependences of C3H8 conversion and aromatics selectivity on the time-on-stream over H-40-hol, H-100-hol, H-200-hol, and H-300-hol; (c) relationship between aromatics yield and Alpairs content; (d) the product distribution of H-200-hol with the time-on-stream.
Fig.5  In situ DR UV-Vis spectra for propane aromatization over (a) H-40-hol and (b) H-200-hol at 300 °C.
Fig.6  (a) Catalytic results of Ga-200-hol in propane aromatization at 540 °C, 1 atm and WHSV of 0.8 h?1; (b) XRD pattern of Ga-200-hol; (c) N2 sorption isotherm of Ga-200-hol; (d) SEM image of Ga-200-hol; (e) TEM image of Ga-200-hol; (f–l) STEM and EDX elemental mappings of Ga-200-hol.
1 J A Biscardi , E Iglesia . Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM-5. Catalysis Today, 1996, 31(3–4): 207–231
https://doi.org/10.1016/S0920-5861(96)00028-4
2 V O RodriguesJúnior A C Faro. On catalyst activation and reaction mechanisms in propane aromatization on Ga/H-ZSM-5 catalysts. Applied Catalysis A, General, 2012, 435–436: 68–77
3 V R Choudhary , P Devadas , S Banerjee , A K Kinage . Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts. Microporous and Mesoporous Materials, 2001, 47(2–3): 253–267
https://doi.org/10.1016/S1387-1811(01)00385-7
4 N M Phadke , E Mansoor , M Bondil , M Head-Gordon , A T Bell . Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. Journal of the American Chemical Society, 2018, 141(4): 1614–1627
https://doi.org/10.1021/jacs.8b11443
5 C Song , X J Li , X X Zhu , S L Liu , F C Chen , F Liu , L Y Xu . Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol. Applied Catalysis A: General, 2016, 519: 48–55
https://doi.org/10.1016/j.apcata.2016.03.023
6 C BaerlocherL B McCusker. Database of Zeolite Structures, 2013.
7 M J Xing , L Zhang , J Cao , Y L Han , F Wang , K Hao , L H Huang , Z C Tao , X D Wen , Y Yang . et al.. Impact of the aluminum species state on Al pairs formation in the ZSM-5 framework. Microporous and Mesoporous Materials, 2022, 334: 111769
https://doi.org/10.1016/j.micromeso.2022.111769
8 T Y Liang , J L Chen , Z F Qin , J F Li , P F Wang , S Wang , G F Wang , M Dong , W B Fan , J G Wang . Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting. ACS Catalysis, 2016, 6(11): 7311–7325
https://doi.org/10.1021/acscatal.6b01771
9 T Biligetu , Y Wang , T Nishitoba , R Otomo , S Park , H Mochizuki , J N Kondo , T Tatsumi , T Yokoi . Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols. Journal of Catalysis, 2017, 353: 1–10
https://doi.org/10.1016/j.jcat.2017.06.026
10 T Yokoi , S Mizuno , H Imai , T Tatsumi . Synthesis and structural characterization of Al-containing interlayer-expanded-MWW zeolite with high catalytic performance. Dalton Transactions, 2014, 43(27): 10584–10592
https://doi.org/10.1039/C4DT00352G
11 C G Li , A Vidal-Moya , P J Miguel , J K Dedecek , M Boronat , A Corma . Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications. ACS Catalysis, 2018, 8(8): 7688–7697
https://doi.org/10.1021/acscatal.8b02112
12 S Kim , G Park , M H Woo , G Kwak , S K Kim . Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catalysis, 2019, 9(4): 2880–2892
https://doi.org/10.1021/acscatal.8b04493
13 R Feng , B Liu , P Zhou , X L Yan , X Y Hu , M Zhou , Z F Yan . Influence of framework Al distribution in HZSM-5 channels on catalytic performance in the methanol to propylene reaction. Applied Catalysis A, General, 2022, 629: 118422
https://doi.org/10.1016/j.apcata.2021.118422
14 S Al-Nahari , E Dib , C Cammarano , E Saint-Germes , D Massiot , V Sarou-Kanian , B Alonso . Impact of mineralizing agents on aluminum distribution and acidity of ZSM-5 zeolites. Angewandte Chemie International Edition, 2023, 62(7): e202217992
https://doi.org/10.1002/anie.202217992
15 J L Li , M K Gao , W F Yan , J H Yu . Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chemical Science, 2023, 14(8): 1935–1959
https://doi.org/10.1039/D2SC06010H
16 S Wang , P F Wang , Z F Qin , Y Y Chen , M Dong , J F Li , K Zhang , P Liu , J G Wang , W B Fan . Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11. ACS Catalysis, 2018, 8(6): 5485–5505
https://doi.org/10.1021/acscatal.8b01054
17 P Sazama , J Dedecek , V Gabova , B Wichterlova , G Spoto , S Bordiga . Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene. Journal of Catalysis, 2008, 254(2): 180–189
https://doi.org/10.1016/j.jcat.2007.12.005
18 C Song , Y Chu , M Wang , H Shi , L Zhao , X Guo , W Yang , J Shen , N Xue , L Peng . et al.. Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes. Journal of Catalysis, 2017, 349: 163–174
https://doi.org/10.1016/j.jcat.2016.12.024
19 E Tabor , M Bernauer , B Wichterlová , J Dedecek . Enhancement of propene oligomerization and aromatization by proximate protons in zeolites; FT-IR study of the reaction pathway in ZSM-5. Catalysis Science & Technology, 2019, 9(16): 4262–4275
https://doi.org/10.1039/C9CY00929A
20 M J XingY L ChenJ CaoY L HanZ C TaoF WangK HaoL ZhangW T ZhengH W Xiang, et al.. Are olefin aromatization reactions structure sensitive over Al pairs and single Al in H-ZSM-5 Zeolite? Fuel, 2023, 333: 126541
21 D Z Shi , S Wang , H Wang , P F Wang , L Zhang , Z F Qin , J G Wang , H Q Zhu , W B Fan . Synthesis of HZSM-5 rich in paired Al and its catalytic performance for propane aromatization. Catalysts, 2020, 10(6): 622
https://doi.org/10.3390/catal10060622
22 J Dědeček , D Kaucky , B Wichterlova , O Gonsiorova . Co2+ ions as probes of Al distribution in the framework of zeolites. ZSM-5 study. Physical Chemistry Chemical Physics, 2002, 4(21): 5406–5413
https://doi.org/10.1039/B203966B
23 J C Groen , L A A Peffer , J A Moulijn , P R Javier . Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chemistry, 2005, 11: 4983–4994
24 Y N Zhou , H Y Liu , X R Rao , Y Y Yue , H B Zhu , X J Bao . Controlled synthesis of ZSM-5 zeolite with an unusual Al distribution in framework from natural aluminosilicate mineral. Microporous and Mesoporous Materials, 2020, 305: 110357
https://doi.org/10.1016/j.micromeso.2020.110357
25 J Dedecek , V Balgova , V Pashkova , P Klein , B Wichterlova . Synthesis of ZSM-5 zeolites with defined distribution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution. Chemistry of Materials, 2012, 24(16): 3231–3239
https://doi.org/10.1021/cm301629a
26 T Yokoi , H Mochizuki , S Namba , J N Kondo , T Tatsumi . Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties. Journal of Physical Chemistry C, 2015, 119(27): 15303–15315
https://doi.org/10.1021/acs.jpcc.5b03289
27 E Borodina , F Meirer , I Lezcano-González , M Mokhtar , A M Asiri , S A Al-Thabaiti , S N Basahel , J Ruiz-Martinez , B M Weckhuysen . Influence of the reaction temperature on the nature of the active and deactivating species during methanol to olefins conversion over H-SSZ-13. ACS Catalysis, 2015, 5(2): 992–1003
https://doi.org/10.1021/cs501345g
[1] FCE-23117-OF-MZ_suppl_1 Download
[1] Hyungmin Jeon, Susung Lee, Jeong-Chul Kim, Minkee Choi. Nanocrystalline low-silica X zeolite as an efficient ion-exchanger enabling fast radioactive strontium capture[J]. Front. Chem. Sci. Eng., 2024, 18(9): 98-.
[2] Binyu Wang, Qiang Li, Haoyang Zhang, Jia-Nan Zhang, Qinhe Pan, Wenfu Yan. Zeolites for the separation of ethylene, ethane, and ethyne[J]. Front. Chem. Sci. Eng., 2024, 18(9): 108-.
[3] Guangchao Li, Ping-Luen Baron Ho, Bryan Kit Yue Ng, Tai-Sing Wu, Pawel Rymarz, Shik Chi Edman Tsang. Structural insight into palladium-nickel clusters over mordenite zeolite for carbene-insertion reaction[J]. Front. Chem. Sci. Eng., 2024, 18(9): 104-.
[4] Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Front. Chem. Sci. Eng., 2024, 18(8): 93-.
[5] Weijie Li, Mingyang Gao, Bin Qin, Xin Deng, Landong Li. Zeolite-encaged gold catalysts for the oxidative condensation of furfural[J]. Front. Chem. Sci. Eng., 2024, 18(8): 90-.
[6] Stoyan P. Gramatikov, Petko St. Petkov, Zhendong Wang, Weimin Yang, Georgi N. Vayssilov. The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate[J]. Front. Chem. Sci. Eng., 2024, 18(5): 58-.
[7] Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Front. Chem. Sci. Eng., 2024, 18(4): 45-.
[8] Hassan Alhassawi, Edidiong Asuquo, Shima Zainal, Yuxin Zhang, Abdullah Alhelali, Zhipeng Qie, Christopher M. A. Parlett, Carmine D’Agostino, Xiaolei Fan, Arthur A. Garforth. Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking[J]. Front. Chem. Sci. Eng., 2024, 18(11): 133-.
[9] Russell F Howe. New approaches to vibrational spectroscopy of zeolite catalysts: a perspective[J]. Front. Chem. Sci. Eng., 2024, 18(11): 123-.
[10] Xiangxiang Ren, Zhong-Pan Hu, Jingfeng Han, Yingxu Wei, Zhongmin Liu. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1801-1808.
[11] Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Multifunctional heteroatom zeolites: construction and applications[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1462-1486.
[12] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
[13] Yixin Zhang, Lu Zhou, Liqing Chen, Yang Guo, Fanhui Guo, Jianjun Wu, Baiqian Dai. Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent for removal of Cr(VI) from water[J]. Front. Chem. Sci. Eng., 2021, 15(3): 518-527.
[14] Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(2): 269-278.
[15] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed