Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (9) : 108    https://doi.org/10.1007/s11705-024-2459-4
Zeolites for the separation of ethylene, ethane, and ethyne
Binyu Wang1, Qiang Li1, Haoyang Zhang1, Jia-Nan Zhang2, Qinhe Pan3, Wenfu Yan1()
1. State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
2. Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450012, China
3. Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education), School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
 Download: PDF(957 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The cost-effective separation of ethylene (C2H4), ethyne (C2H2), and ethane (C2H6) poses a significant challenge in the contemporary chemical industry. In contrast to the energy-intensive high-pressure cryogenic distillation process, zeolite-based adsorptive separation offers a low-energy alternative. This review provides a concise overview of recent advancements in the adsorptive separation of C2H4, C2H2, and C2H6 using zeolites or zeolite-based adsorbents. It commences with an examination of the industrial significance of these compounds and the associated separation challenges. Subsequently, it systematically examines the utilization of various types of zeolites with diverse cationic species in such separation processes. And then it explores how different zeolitic structures impact adsorption and separation capabilities, considering principles such as cation-π interaction, π-complexation, and steric separation concerning C2H4, C2H2, and C2H6 molecules. Furthermore, it discusses methods to enhance the separation performance of zeolites and zeolite-based adsorbents, encompassing structural design, modifications, and ion exchange processes. Finally, it summarizes current research trends and future directions, highlighting the potential application value of zeolitic materials in the field of C2H4, C2H2, and C2H6 separation and offering recommendations for further investigation.

Keywords zeolite      ethylene      ethane      cation-π      interaction      π-complexation     
Corresponding Author(s): Wenfu Yan   
Just Accepted Date: 19 April 2024   Issue Date: 19 June 2024
 Cite this article:   
Binyu Wang,Qiang Li,Haoyang Zhang, et al. Zeolites for the separation of ethylene, ethane, and ethyne[J]. Front. Chem. Sci. Eng., 2024, 18(9): 108.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2459-4
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I9/108
Adsorbate Normal boiling point (NBP)/K Liquid Vmol at NBP/ (cm3·mol–1) Tc/K Vc/(cm3·mol–1) Pc/bar Kinetic diameter/Å Polarizability × 1025/ cm3
C2H2 188.40 42.7 308.30 112.20 61.14 3.3 33.3–39.3
C2H4 169.42 49.4 282.34 131.10 50.41 4.163 42.52
C2H6 184.55 55.0 305.32 145.50 48.72 4.443 44.3–44.7
Tab.1  The physical properties of C2H2, C2H4, and C2H6
Fig.1  Structure of C2H6, C2H4, and C2H2. Reprinted with permission from Ref. [44], copyright 2023, Springer.
Fig.2  Description of the zeolitic structure of ITQ-55. (a) A 48T heart-shaped cage. (b) Dimeric 48T cages. The yellow ring indicates the interconnecting 8-ring (8MR). (c) Projection along the b axis of the ITQ- 55 structure (oxygen atoms omitted for clarity; T atoms in gray; two of the heart-shaped cavities highlighted in blue and red, respectively, for clarity). (d) ITQ-55 window sizes. Distributions of the minimal 8MR window size for the empty structure of ITQ-55 (left) and the ITQ-55 structure with C2H4 molecules constrained to the center of the 8MR window (right), as calculated from the density functional theory (DFT) molecular dynamics simulations at 300 K. Reprinted with permission from Ref. [50], copyright 2017, the American Association for the Advancement of Science.
Fig.3  Structure of zeolite A (LTA) (left) and zeolite X (FAU) (right). Reprinted with permission from Ref. [44], copyright 2023, Springer.
Fig.4  Schematic presentation of the cation location and site definition for Ag-modified LTA zeolites. (a) Composition A (|Na4Ca13Ag66|[Al12Si12O48]8). (b) Composition B (|Na4Ca13Ag84|[Al12Si12O48]8). (c) Illustration of the cation position in an α-cage. (d) Illustration of the Ag2O position in two α-cages. Atoms: purple, Na+; green, Ca2+; and blue, Ag+. Reprinted with permission from Ref. [56], copyright 2023, ACS Publications.
Fig.5  (a) The adsorption energy of C2H4 and C2H6 on Cu (I)Y, Cu (II)Y, and NaY zeolites. (b) π-complex bonding diagram of C2H4–Cu(I). (c) Charge density difference of C2H4 adsorbed on Cu(I) and Cu(II). (d) FAU structure with cationic sites. Reprinted with permission from Ref. [64], copyright 2023, RSC Publishing.
1 E V Miller. The story of ethylene. Scientific Monthly, 1947, 65(4): 335–342
2 A Bakshi, J M Shemansky, C Chang, B M Binder. History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 2015, 34(4): 809–827
https://doi.org/10.1007/s00344-015-9522-9
3 M Garside. Production capacity of ethylene worldwide from 2018 to 2022. Available at statista website
4 D S Sholl, R P Lively. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
5 R Chauhan, R Sartape, N Minocha, I Goyal, M R Singh. Advancements in environmentally sustainable technologies for ethylene production. Energy & Fuels, 2023, 37(17): 12589–12622
https://doi.org/10.1021/acs.energyfuels.3c01777
6 S M Sadrameli. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review. Fuel, 2016, 173: 285–297
https://doi.org/10.1016/j.fuel.2016.01.047
7 X Cui, K Chen, H Xing, Q Yang, R Krishna, Z Bao, H Wu, W Zhou, X Dong, Y Han. et al.. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353(6295): 141–144
https://doi.org/10.1126/science.aaf2458
8 Y Zhou, J Zhang, L Wang, X Cui, X Liu, S Wong, H An, N Yan, J Xie, C Yu. et al.. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373(6552): 315–320
https://doi.org/10.1126/science.aax5776
9 Z Chen, P Li, R Anderson, X Wang, X Zhang, L Robison, L R Redfern, S Moribe, T Islamoglu, D A Gomezgualdron. et al.. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368(6488): 297–303
https://doi.org/10.1126/science.aaz8881
10 L Li, R B Lin, R Krishna, H Li, S Xiang, H Wu, J Li, W Zhou, B Chen. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362(6413): 443–446
https://doi.org/10.1126/science.aat0586
11 B Zhu, J W Cao, S Mukherjee, T Pham, T Zhang, T Wang, X Jiang, K A Forrest, M J Zaworotko, K J Chen. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. Journal of the American Chemical Society, 2021, 143(3): 1485–1492
https://doi.org/10.1021/jacs.0c11247
12 R Bai, X Song, W Yan, J Yu. Low-energy adsorptive separation by zeolites. National Science Review, 2022, 9(9): nwac064
https://doi.org/10.1093/nsr/nwac064
13 R Yang. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003
14 Y Li, J Shen, S Peng, J Zhang, J Wu, X Liu, L Sun. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11(1): 3206
https://doi.org/10.1038/s41467-020-17042-6
15 R T Yang, E S Kikkinides. New sorbents for olefin/paraffin separations by adsorption via π-complexation. AIChE Journal. American Institute of Chemical Engineers, 1995, 41(3): 509–517
https://doi.org/10.1002/aic.690410309
16 J Padin, R Yang, C Munson. New sorbents for olefin/paraffin separations and olefin purification for C4 hydrocarbons. Industrial & Engineering Chemistry Research, 1999, 38(10): 3614–3621
https://doi.org/10.1021/ie980779+
17 S Aguado, G Bergeret, C Daniel, D Farrusseng. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. Journal of the American Chemical Society, 2012, 134(36): 14635–14637
https://doi.org/10.1021/ja305663k
18 A V MiltenburgW ZhuF Kapteijn J A Moulijn. Adsorptive separation of light olefin/paraffin mixtures. Chemical Engineering Research & Design, 2006, 84(5 A5): 350–354
19 P L Cen. Adsorption uptake curves of ethylene on Cu(I)-NaY zeolite. AIChE Journal. American Institute of Chemical Engineers, 1990, 36(5): 789–793
https://doi.org/10.1002/aic.690360518
20 E Pérez-Botella, S Valencia, F Rey. Zeolites in adsorption processes: state of the art and future prospects. Chemical Reviews, 2022, 122(24): 17647–17695
https://doi.org/10.1021/acs.chemrev.2c00140
21 J Liang, W Fu, C Liu, X Li, Y Wang, D Ma, Y Li, Z Wang, W Yang. Synthesis of FER zeolite using 4-(aminomethyl) pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249
https://doi.org/10.1007/s40242-021-1404-z
22 C BaerlocherL B Mccusker. Database of Zeolite Structures. Available at iza-structure website
23 R XuW Pang J YuQ Huo J Chen. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons (Asia) Pte Ltd., 2007
24 J CejkaA CormaS I Zones. Zeolites and Catalysis—Synthesis, Reactions and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
25 S Kulprathipanja. Zeolites in Industrial Separation and Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
26 F XiaoX Meng. Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications. Heidelberg: Springer, 2016
27 Y Li, A O Simon, C Jiao, M Zhang, W Yan, H Rao, J Liu, J Zhang. Rapid removal of Sr2+, Cs+ and UO22+ from solution with surfactant and amino acid modified zeolite Y. Microporous and Mesoporous Materials, 2020, 302: 110244
https://doi.org/10.1016/j.micromeso.2020.110244
28 R Bai, Y Song, G Tian, F Wang, A Corma, J Yu. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy & Environment, 2023, 8(1): 163–172
https://doi.org/10.1016/j.gee.2021.03.006
29 H Pang, G Yang, L Li, J Yu. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy & Environment, 2020, 5(4): 405–413
https://doi.org/10.1016/j.gee.2020.10.024
30 R Wu, J Han, Y Wang, M Chen, P Tian, X Zhou, J Xu, J N Zhang, W Yan. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. Inorganic Chemistry Frontiers, 2022, 9(22): 5766–5773
https://doi.org/10.1039/D2QI01544G
31 X Wang, N Yan, M Xie, P Liu, P Bai, H Su, B Wang, Y Wang, L Li, T Cheng. et al.. The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation. Chemical Science, 2021, 12(25): 8803–8810
https://doi.org/10.1039/D1SC00619C
32 F Liebau. Structural Chemistry of Silicates: Structure, Bonding and Classification. Berlin: Springer-Verlag, 1985
33 B Wang, L Li, J Li, K Jin, S Zhang, J Zhang, W Yan. Recent progresses on the synthesis of zeolites from the industrial solid wastes. Chemical Journal of Chinese Universities, 2021, 42(1): 40–59
34 B Wang, J Li, X Zhou, W Hao, S Zhang, C Lan, X Wang, Z Wang, J Xu, J N Zhang. et al.. Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive 90Sr. Inorganic Chemistry Frontiers, 2022, 9(3): 468–477
https://doi.org/10.1039/D1QI01492G
35 D Wragg, R Morris, A Burton. Pure silica zeolite-type frameworks: a structural analysis. Chemistry of Materials, 2008, 20(4): 1561–1570
https://doi.org/10.1021/cm071824j
36 F G Kerry. Industrial Gas Handbook: Gas Separation and Purification. Boca Raton: CRC Press, 2007
37 J Li, R J Kuppler, H Zhou. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
https://doi.org/10.1039/b802426j
38 S Sircar. Pressure swing adsorption. Industrial & Engineering Chemistry Research, 2002, 41(6): 1389–1392
https://doi.org/10.1021/ie0109758
39 X P Fu, Y L Wang, Q Y Liu. Metal-organic frameworks for C2H2/CO2 separation. Dalton Transactions, 2020, 49(46): 16598–16607
https://doi.org/10.1039/D0DT03349A
40 Q Ding, S Zhang. Recent advances in the development of metal-organic frameworks for propylene and propane separation. Energy & Fuels, 2022, 36(14): 7337–7361
https://doi.org/10.1021/acs.energyfuels.2c01427
41 X Lin, Y Yang, X Wang, S Lin, Z Bao, Z Zhang, S Xiang. Functionalized metal-organic and hydrogen-bonded organic frameworks for C2H4/C2H6 separation. Separation and Purification Technology, 2024, 330: 125252
https://doi.org/10.1016/j.seppur.2023.125252
42 S SircarA L Myers. Gas Separation by Zeolites in Handbook of Zeolite Science and Technology. Boca Raton: CRC Press, 2003
43 D R Lide. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2016
44 C BläkerV MauerC Pasel F DreisbachD Bathen. Adsorption mechanisms of ethane, ethene and ethyne on calcium exchanged LTA and FAU zeolites. Adsorption, July 11, 2023. https://doi.org/10.1007/s10450-023-00392-0
45 K Chung, D Park, K M Kim, C H Lee. Adsorption equilibria and kinetics of ethane and ethylene on zeolite 13X pellets. Microporous and Mesoporous Materials, 2022, 343: 112199
https://doi.org/10.1016/j.micromeso.2022.112199
46 S Liu, Y Chen, B Yue, Y Nie, Y Chai, G Wu, J Li, X Han, S J Day, S P Thompson. et al.. Cascade adsorptive separation of light hydrocarbons by commercial zeolites. Journal of Energy Chemistry, 2022, 72: 299–305
https://doi.org/10.1016/j.jechem.2022.05.023
47 R Seabra, V F D Martins, A M Ribeiro, A E Rodrigues, A P Ferreira. Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths. Chemical Engineering Science, 2021, 229: 116006
https://doi.org/10.1016/j.ces.2020.116006
48 A Romero-Perez, G Aguilar-Armenta. Adsorption kinetics and equilibria of carbon dioxide, ethylene, and ethane on 4A(CECA) zeolite. Journal of Chemical & Engineering Data, 2010, 55(9): 3625–3630
https://doi.org/10.1021/je100215c
49 Z Mi, T Lu, J N Zhang, R Xu, W Yan. Synthesis of pure silica zeolites. Chemical Research in Chinese Universities, 2022, 38(1): 9–17
https://doi.org/10.1007/s40242-021-1383-0
50 P J Bereciartua, Á Cantín, A Corma, J L Jordá, M Palomino, F Rey, S Valencia, E W Jr Corcoran, P Kortunov, P I Ravikovitch. et al.. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 2017, 358(6366): 1068–1071
https://doi.org/10.1126/science.aao0092
51 J Park, K H Cho, J C Kim, R Ryoo, J Park, Y Lee, M Choi. Design of olefin-phobic zeolites for efficient ethane and ethylene separation. Chemistry of Materials, 2023, 35(5): 2078–2087
https://doi.org/10.1021/acs.chemmater.2c03645
52 I V Karetina, G J Zemljanova, S S Khvoshchev. Calorimetric study of C2H4 adsorption on synthetic zeolites with Na+ and Ca2+ cations. Studies in Surface Science and Catalysis, 2002, 142: 1627–1630
https://doi.org/10.1016/S0167-2991(02)80333-0
53 G M Nam, B M Jeong, S H Kang, B K Lee, D K Choi. Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method. Journal of Chemical & Engineering Data, 2005, 50(1): 72–76
https://doi.org/10.1021/je0498309
54 Q Bian, M Xin, G Xu, S Chen, K Zou, Y Shi. Effect of zeolite 5A particle size on its performance for adsorptive separation of ethylene/ethane. China Petroleum Processing and Petrochemical Technology, 2019, 21(4): 36–41
55 M Roehnert, C Pasel, C Bläker, D Bathen. Influence of temperature on the binary adsorption of ethane and ethene on FAU zeolites. Journal of Chemical & Engineering Data, 2023, 68(4): 1031–1042
https://doi.org/10.1021/acs.jced.2c00650
56 C Liu, M Xin, C Wang, W Zhao, Y Xiang, X Zhang, L Qiu, G Xu. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane. ACS Applied Nano Materials, 2023, 6(7): 5374–5383
https://doi.org/10.1021/acsanm.2c05296
57 J D Monzón, A M Pereyra, M R Gonzalez, M S Legnoverde, M S Moreno, N Gargiulo, A Peluso, P Aprea, D Caputo, E I Basaldella. Ethylene adsorption onto thermally treated AgA-Zeolite. Applied Surface Science, 2021, 542: 148748
https://doi.org/10.1016/j.apsusc.2020.148748
58 Y Liu, Y Wu, W Liang, J Peng, Z Li, H Wang, M J Janik, J Xiao. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220: 115636
https://doi.org/10.1016/j.ces.2020.115636
59 M Sakai, Y Sasaki, T Tomono, M Seshimo, M Matsukata. Olefin selective Ag-exchanged X-type zeolite membrane for propylene/propane and ethylene/ethane separation. ACS Applied Materials & Interfaces, 2019, 11(4): 4145–4151
https://doi.org/10.1021/acsami.8b20151
60 J G Min, K C Kemp, S B Hong. Silver ZK-5 zeolites for selective ethylene/ethane separation. Separation and Purification Technology, 2020, 250: 117146
https://doi.org/10.1016/j.seppur.2020.117146
61 J Zhou, Y Zhang, X Guo, A Zhang, X Fei. Removal of C2H4 from a CO2 stream by using AgNO3-modified Y-zeolites. Industrial & Engineering Chemistry Research, 2006, 45(18): 6236–6242
https://doi.org/10.1021/ie0605478
62 H Abdi, H Maghsoudi, V Akhoundi. Adsorption properties of ion-exchanged SSZ-13 zeolite for ethylene/ethane separation. Fluid Phase Equilibria, 2021, 546: 113171
https://doi.org/10.1016/j.fluid.2021.113171
63 H Golipour, B Mokhtarani, M Mafi, A Moradi, H R Godini. Experimental measurement for adsorption of ethylene and ethane gases on copper-exchanged zeolites 13X and 5A. Journal of Chemical & Engineering Data, 2020, 65(8): 3920–3932
https://doi.org/10.1021/acs.jced.0c00251
64 G Li, H Wang, Q Li, X Zhang, Y Qin, Y Bi, L Song. Regulation of the nature and sites of copper species in CuNaY zeolites for ethylene and ethane separation. New Journal of Chemistry, 2023, 47(12): 5650–5658
https://doi.org/10.1039/D3NJ00168G
65 S Liu, X Han, Y Chai, G Wu, W Li, J Li, I Da Silva, P Manuel, Y Cheng, L L Daemen. et al.. Efficient separation of acetylene and carbon dioxide in a decorated zeolite. Angewandte Chemie International Edition, 2021, 60(12): 6526–6532
https://doi.org/10.1002/anie.202014680
66 Y Chai, X Han, W Li, S Liu, S Yao, C Wang, W Shi, I Da-Silva, P Manuel, Y Cheng. et al.. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368(6494): 1002–1006
https://doi.org/10.1126/science.aay8447
[1] Guangchao Li, Ping-Luen Baron Ho, Bryan Kit Yue Ng, Tai-Sing Wu, Pawel Rymarz, Shik Chi Edman Tsang. Structural insight into palladium-nickel clusters over mordenite zeolite for carbene-insertion reaction[J]. Front. Chem. Sci. Eng., 2024, 18(9): 104-.
[2] Hyungmin Jeon, Susung Lee, Jeong-Chul Kim, Minkee Choi. Nanocrystalline low-silica X zeolite as an efficient ion-exchanger enabling fast radioactive strontium capture[J]. Front. Chem. Sci. Eng., 2024, 18(9): 98-.
[3] Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Front. Chem. Sci. Eng., 2024, 18(8): 93-.
[4] Weijie Li, Mingyang Gao, Bin Qin, Xin Deng, Landong Li. Zeolite-encaged gold catalysts for the oxidative condensation of furfural[J]. Front. Chem. Sci. Eng., 2024, 18(8): 90-.
[5] Zhao Ma, Dezhi Shi, Sen Wang, Mei Dong, Weibin Fan. Control of aluminum distribution in ZSM-5 zeolite for enhancement of its catalytic performance for propane aromatization[J]. Front. Chem. Sci. Eng., 2024, 18(8): 86-.
[6] Emmanuel Busillo, Benedetta de Caprariis, Maria Paola Bracciale, Vittoria Cosentino, Martina Damizia, Gaetano Iaquaniello, Emma Palo, Paolo De Filippis. Methane cracking in molten tin for hydrogen and carbon production—a comparison with homogeneous gas phase process[J]. Front. Chem. Sci. Eng., 2024, 18(7): 82-.
[7] Stoyan P. Gramatikov, Petko St. Petkov, Zhendong Wang, Weimin Yang, Georgi N. Vayssilov. The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate[J]. Front. Chem. Sci. Eng., 2024, 18(5): 58-.
[8] Chao Wang, Xiaogang Shi, Aijun Duan, Xingying Lan, Jinsen Gao, Qingang Xiong. Synergistic effects and kinetics analysis for co-pyrolysis of vacuum residue and plastics[J]. Front. Chem. Sci. Eng., 2024, 18(5): 55-.
[9] Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Front. Chem. Sci. Eng., 2024, 18(4): 45-.
[10] Rohan Ali, Yifei Zhang. Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases[J]. Front. Chem. Sci. Eng., 2024, 18(12): 149-.
[11] Mingyi Chen, Zeshan Wang, Yuelun Li, Yuxin Wang, Lei Jiang, Huicong Zuo, Linan Huang, Yuhao Wang, Dong Tian, Hua Wang, Kongzhai Li. DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface[J]. Front. Chem. Sci. Eng., 2024, 18(12): 162-.
[12] Yong-Shan Xiao, Min-Li Zhu, Han-Qing Ge, Zhong-Wen Liu. Breaking the Ni loading-reducibility-dispersion dependence achieved by solid-state co-grinding[J]. Front. Chem. Sci. Eng., 2024, 18(12): 148-.
[13] Hassan Alhassawi, Edidiong Asuquo, Shima Zainal, Yuxin Zhang, Abdullah Alhelali, Zhipeng Qie, Christopher M. A. Parlett, Carmine D’Agostino, Xiaolei Fan, Arthur A. Garforth. Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking[J]. Front. Chem. Sci. Eng., 2024, 18(11): 133-.
[14] Huaping Lin, Likai Zhu, Ye Liu, Vasilevich Sergey Vladimirovich, Bilainu Oboirien, Yefeng Zhou. Plastic upgrading via catalytic pyrolysis with combined metal-modified gallium-based HZSM-5 and MCM-41[J]. Front. Chem. Sci. Eng., 2024, 18(11): 125-.
[15] Russell F Howe. New approaches to vibrational spectroscopy of zeolite catalysts: a perspective[J]. Front. Chem. Sci. Eng., 2024, 18(11): 123-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed