|
|
Zeolites for the separation of ethylene, ethane, and ethyne |
Binyu Wang1, Qiang Li1, Haoyang Zhang1, Jia-Nan Zhang2, Qinhe Pan3, Wenfu Yan1( ) |
1. State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China 2. Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450012, China 3. Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education), School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China |
|
|
Abstract The cost-effective separation of ethylene (C2H4), ethyne (C2H2), and ethane (C2H6) poses a significant challenge in the contemporary chemical industry. In contrast to the energy-intensive high-pressure cryogenic distillation process, zeolite-based adsorptive separation offers a low-energy alternative. This review provides a concise overview of recent advancements in the adsorptive separation of C2H4, C2H2, and C2H6 using zeolites or zeolite-based adsorbents. It commences with an examination of the industrial significance of these compounds and the associated separation challenges. Subsequently, it systematically examines the utilization of various types of zeolites with diverse cationic species in such separation processes. And then it explores how different zeolitic structures impact adsorption and separation capabilities, considering principles such as cation-π interaction, π-complexation, and steric separation concerning C2H4, C2H2, and C2H6 molecules. Furthermore, it discusses methods to enhance the separation performance of zeolites and zeolite-based adsorbents, encompassing structural design, modifications, and ion exchange processes. Finally, it summarizes current research trends and future directions, highlighting the potential application value of zeolitic materials in the field of C2H4, C2H2, and C2H6 separation and offering recommendations for further investigation.
|
Keywords
zeolite
ethylene
ethane
cation-π
interaction
π-complexation
|
Corresponding Author(s):
Wenfu Yan
|
Just Accepted Date: 19 April 2024
Issue Date: 19 June 2024
|
|
1 |
E V Miller. The story of ethylene. Scientific Monthly, 1947, 65(4): 335–342
|
2 |
A Bakshi, J M Shemansky, C Chang, B M Binder. History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 2015, 34(4): 809–827
https://doi.org/10.1007/s00344-015-9522-9
|
3 |
M Garside. Production capacity of ethylene worldwide from 2018 to 2022. Available at statista website
|
4 |
D S Sholl, R P Lively. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
|
5 |
R Chauhan, R Sartape, N Minocha, I Goyal, M R Singh. Advancements in environmentally sustainable technologies for ethylene production. Energy & Fuels, 2023, 37(17): 12589–12622
https://doi.org/10.1021/acs.energyfuels.3c01777
|
6 |
S M Sadrameli. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review. Fuel, 2016, 173: 285–297
https://doi.org/10.1016/j.fuel.2016.01.047
|
7 |
X Cui, K Chen, H Xing, Q Yang, R Krishna, Z Bao, H Wu, W Zhou, X Dong, Y Han. et al.. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353(6295): 141–144
https://doi.org/10.1126/science.aaf2458
|
8 |
Y Zhou, J Zhang, L Wang, X Cui, X Liu, S Wong, H An, N Yan, J Xie, C Yu. et al.. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373(6552): 315–320
https://doi.org/10.1126/science.aax5776
|
9 |
Z Chen, P Li, R Anderson, X Wang, X Zhang, L Robison, L R Redfern, S Moribe, T Islamoglu, D A Gomezgualdron. et al.. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368(6488): 297–303
https://doi.org/10.1126/science.aaz8881
|
10 |
L Li, R B Lin, R Krishna, H Li, S Xiang, H Wu, J Li, W Zhou, B Chen. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362(6413): 443–446
https://doi.org/10.1126/science.aat0586
|
11 |
B Zhu, J W Cao, S Mukherjee, T Pham, T Zhang, T Wang, X Jiang, K A Forrest, M J Zaworotko, K J Chen. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture. Journal of the American Chemical Society, 2021, 143(3): 1485–1492
https://doi.org/10.1021/jacs.0c11247
|
12 |
R Bai, X Song, W Yan, J Yu. Low-energy adsorptive separation by zeolites. National Science Review, 2022, 9(9): nwac064
https://doi.org/10.1093/nsr/nwac064
|
13 |
R Yang. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003
|
14 |
Y Li, J Shen, S Peng, J Zhang, J Wu, X Liu, L Sun. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11(1): 3206
https://doi.org/10.1038/s41467-020-17042-6
|
15 |
R T Yang, E S Kikkinides. New sorbents for olefin/paraffin separations by adsorption via π-complexation. AIChE Journal. American Institute of Chemical Engineers, 1995, 41(3): 509–517
https://doi.org/10.1002/aic.690410309
|
16 |
J Padin, R Yang, C Munson. New sorbents for olefin/paraffin separations and olefin purification for C4 hydrocarbons. Industrial & Engineering Chemistry Research, 1999, 38(10): 3614–3621
https://doi.org/10.1021/ie980779+
|
17 |
S Aguado, G Bergeret, C Daniel, D Farrusseng. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. Journal of the American Chemical Society, 2012, 134(36): 14635–14637
https://doi.org/10.1021/ja305663k
|
18 |
A V MiltenburgW ZhuF Kapteijn J A Moulijn. Adsorptive separation of light olefin/paraffin mixtures. Chemical Engineering Research & Design, 2006, 84(5 A5): 350–354
|
19 |
P L Cen. Adsorption uptake curves of ethylene on Cu(I)-NaY zeolite. AIChE Journal. American Institute of Chemical Engineers, 1990, 36(5): 789–793
https://doi.org/10.1002/aic.690360518
|
20 |
E Pérez-Botella, S Valencia, F Rey. Zeolites in adsorption processes: state of the art and future prospects. Chemical Reviews, 2022, 122(24): 17647–17695
https://doi.org/10.1021/acs.chemrev.2c00140
|
21 |
J Liang, W Fu, C Liu, X Li, Y Wang, D Ma, Y Li, Z Wang, W Yang. Synthesis of FER zeolite using 4-(aminomethyl) pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249
https://doi.org/10.1007/s40242-021-1404-z
|
22 |
C BaerlocherL B Mccusker. Database of Zeolite Structures. Available at iza-structure website
|
23 |
R XuW Pang J YuQ Huo J Chen. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons (Asia) Pte Ltd., 2007
|
24 |
J CejkaA CormaS I Zones. Zeolites and Catalysis—Synthesis, Reactions and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
|
25 |
S Kulprathipanja. Zeolites in Industrial Separation and Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010
|
26 |
F XiaoX Meng. Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications. Heidelberg: Springer, 2016
|
27 |
Y Li, A O Simon, C Jiao, M Zhang, W Yan, H Rao, J Liu, J Zhang. Rapid removal of Sr2+, Cs+ and UO22+ from solution with surfactant and amino acid modified zeolite Y. Microporous and Mesoporous Materials, 2020, 302: 110244
https://doi.org/10.1016/j.micromeso.2020.110244
|
28 |
R Bai, Y Song, G Tian, F Wang, A Corma, J Yu. Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization. Green Energy & Environment, 2023, 8(1): 163–172
https://doi.org/10.1016/j.gee.2021.03.006
|
29 |
H Pang, G Yang, L Li, J Yu. Efficient transesterification over two-dimensional zeolites for sustainable biodiesel production. Green Energy & Environment, 2020, 5(4): 405–413
https://doi.org/10.1016/j.gee.2020.10.024
|
30 |
R Wu, J Han, Y Wang, M Chen, P Tian, X Zhou, J Xu, J N Zhang, W Yan. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. Inorganic Chemistry Frontiers, 2022, 9(22): 5766–5773
https://doi.org/10.1039/D2QI01544G
|
31 |
X Wang, N Yan, M Xie, P Liu, P Bai, H Su, B Wang, Y Wang, L Li, T Cheng. et al.. The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation. Chemical Science, 2021, 12(25): 8803–8810
https://doi.org/10.1039/D1SC00619C
|
32 |
F Liebau. Structural Chemistry of Silicates: Structure, Bonding and Classification. Berlin: Springer-Verlag, 1985
|
33 |
B Wang, L Li, J Li, K Jin, S Zhang, J Zhang, W Yan. Recent progresses on the synthesis of zeolites from the industrial solid wastes. Chemical Journal of Chinese Universities, 2021, 42(1): 40–59
|
34 |
B Wang, J Li, X Zhou, W Hao, S Zhang, C Lan, X Wang, Z Wang, J Xu, J N Zhang. et al.. Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive 90Sr. Inorganic Chemistry Frontiers, 2022, 9(3): 468–477
https://doi.org/10.1039/D1QI01492G
|
35 |
D Wragg, R Morris, A Burton. Pure silica zeolite-type frameworks: a structural analysis. Chemistry of Materials, 2008, 20(4): 1561–1570
https://doi.org/10.1021/cm071824j
|
36 |
F G Kerry. Industrial Gas Handbook: Gas Separation and Purification. Boca Raton: CRC Press, 2007
|
37 |
J Li, R J Kuppler, H Zhou. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504
https://doi.org/10.1039/b802426j
|
38 |
S Sircar. Pressure swing adsorption. Industrial & Engineering Chemistry Research, 2002, 41(6): 1389–1392
https://doi.org/10.1021/ie0109758
|
39 |
X P Fu, Y L Wang, Q Y Liu. Metal-organic frameworks for C2H2/CO2 separation. Dalton Transactions, 2020, 49(46): 16598–16607
https://doi.org/10.1039/D0DT03349A
|
40 |
Q Ding, S Zhang. Recent advances in the development of metal-organic frameworks for propylene and propane separation. Energy & Fuels, 2022, 36(14): 7337–7361
https://doi.org/10.1021/acs.energyfuels.2c01427
|
41 |
X Lin, Y Yang, X Wang, S Lin, Z Bao, Z Zhang, S Xiang. Functionalized metal-organic and hydrogen-bonded organic frameworks for C2H4/C2H6 separation. Separation and Purification Technology, 2024, 330: 125252
https://doi.org/10.1016/j.seppur.2023.125252
|
42 |
S SircarA L Myers. Gas Separation by Zeolites in Handbook of Zeolite Science and Technology. Boca Raton: CRC Press, 2003
|
43 |
D R Lide. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2016
|
44 |
C BläkerV MauerC Pasel F DreisbachD Bathen. Adsorption mechanisms of ethane, ethene and ethyne on calcium exchanged LTA and FAU zeolites. Adsorption, July 11, 2023. https://doi.org/10.1007/s10450-023-00392-0
|
45 |
K Chung, D Park, K M Kim, C H Lee. Adsorption equilibria and kinetics of ethane and ethylene on zeolite 13X pellets. Microporous and Mesoporous Materials, 2022, 343: 112199
https://doi.org/10.1016/j.micromeso.2022.112199
|
46 |
S Liu, Y Chen, B Yue, Y Nie, Y Chai, G Wu, J Li, X Han, S J Day, S P Thompson. et al.. Cascade adsorptive separation of light hydrocarbons by commercial zeolites. Journal of Energy Chemistry, 2022, 72: 299–305
https://doi.org/10.1016/j.jechem.2022.05.023
|
47 |
R Seabra, V F D Martins, A M Ribeiro, A E Rodrigues, A P Ferreira. Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths. Chemical Engineering Science, 2021, 229: 116006
https://doi.org/10.1016/j.ces.2020.116006
|
48 |
A Romero-Perez, G Aguilar-Armenta. Adsorption kinetics and equilibria of carbon dioxide, ethylene, and ethane on 4A(CECA) zeolite. Journal of Chemical & Engineering Data, 2010, 55(9): 3625–3630
https://doi.org/10.1021/je100215c
|
49 |
Z Mi, T Lu, J N Zhang, R Xu, W Yan. Synthesis of pure silica zeolites. Chemical Research in Chinese Universities, 2022, 38(1): 9–17
https://doi.org/10.1007/s40242-021-1383-0
|
50 |
P J Bereciartua, Á Cantín, A Corma, J L Jordá, M Palomino, F Rey, S Valencia, E W Jr Corcoran, P Kortunov, P I Ravikovitch. et al.. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 2017, 358(6366): 1068–1071
https://doi.org/10.1126/science.aao0092
|
51 |
J Park, K H Cho, J C Kim, R Ryoo, J Park, Y Lee, M Choi. Design of olefin-phobic zeolites for efficient ethane and ethylene separation. Chemistry of Materials, 2023, 35(5): 2078–2087
https://doi.org/10.1021/acs.chemmater.2c03645
|
52 |
I V Karetina, G J Zemljanova, S S Khvoshchev. Calorimetric study of C2H4 adsorption on synthetic zeolites with Na+ and Ca2+ cations. Studies in Surface Science and Catalysis, 2002, 142: 1627–1630
https://doi.org/10.1016/S0167-2991(02)80333-0
|
53 |
G M Nam, B M Jeong, S H Kang, B K Lee, D K Choi. Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method. Journal of Chemical & Engineering Data, 2005, 50(1): 72–76
https://doi.org/10.1021/je0498309
|
54 |
Q Bian, M Xin, G Xu, S Chen, K Zou, Y Shi. Effect of zeolite 5A particle size on its performance for adsorptive separation of ethylene/ethane. China Petroleum Processing and Petrochemical Technology, 2019, 21(4): 36–41
|
55 |
M Roehnert, C Pasel, C Bläker, D Bathen. Influence of temperature on the binary adsorption of ethane and ethene on FAU zeolites. Journal of Chemical & Engineering Data, 2023, 68(4): 1031–1042
https://doi.org/10.1021/acs.jced.2c00650
|
56 |
C Liu, M Xin, C Wang, W Zhao, Y Xiang, X Zhang, L Qiu, G Xu. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane. ACS Applied Nano Materials, 2023, 6(7): 5374–5383
https://doi.org/10.1021/acsanm.2c05296
|
57 |
J D Monzón, A M Pereyra, M R Gonzalez, M S Legnoverde, M S Moreno, N Gargiulo, A Peluso, P Aprea, D Caputo, E I Basaldella. Ethylene adsorption onto thermally treated AgA-Zeolite. Applied Surface Science, 2021, 542: 148748
https://doi.org/10.1016/j.apsusc.2020.148748
|
58 |
Y Liu, Y Wu, W Liang, J Peng, Z Li, H Wang, M J Janik, J Xiao. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane. Chemical Engineering Science, 2020, 220: 115636
https://doi.org/10.1016/j.ces.2020.115636
|
59 |
M Sakai, Y Sasaki, T Tomono, M Seshimo, M Matsukata. Olefin selective Ag-exchanged X-type zeolite membrane for propylene/propane and ethylene/ethane separation. ACS Applied Materials & Interfaces, 2019, 11(4): 4145–4151
https://doi.org/10.1021/acsami.8b20151
|
60 |
J G Min, K C Kemp, S B Hong. Silver ZK-5 zeolites for selective ethylene/ethane separation. Separation and Purification Technology, 2020, 250: 117146
https://doi.org/10.1016/j.seppur.2020.117146
|
61 |
J Zhou, Y Zhang, X Guo, A Zhang, X Fei. Removal of C2H4 from a CO2 stream by using AgNO3-modified Y-zeolites. Industrial & Engineering Chemistry Research, 2006, 45(18): 6236–6242
https://doi.org/10.1021/ie0605478
|
62 |
H Abdi, H Maghsoudi, V Akhoundi. Adsorption properties of ion-exchanged SSZ-13 zeolite for ethylene/ethane separation. Fluid Phase Equilibria, 2021, 546: 113171
https://doi.org/10.1016/j.fluid.2021.113171
|
63 |
H Golipour, B Mokhtarani, M Mafi, A Moradi, H R Godini. Experimental measurement for adsorption of ethylene and ethane gases on copper-exchanged zeolites 13X and 5A. Journal of Chemical & Engineering Data, 2020, 65(8): 3920–3932
https://doi.org/10.1021/acs.jced.0c00251
|
64 |
G Li, H Wang, Q Li, X Zhang, Y Qin, Y Bi, L Song. Regulation of the nature and sites of copper species in CuNaY zeolites for ethylene and ethane separation. New Journal of Chemistry, 2023, 47(12): 5650–5658
https://doi.org/10.1039/D3NJ00168G
|
65 |
S Liu, X Han, Y Chai, G Wu, W Li, J Li, I Da Silva, P Manuel, Y Cheng, L L Daemen. et al.. Efficient separation of acetylene and carbon dioxide in a decorated zeolite. Angewandte Chemie International Edition, 2021, 60(12): 6526–6532
https://doi.org/10.1002/anie.202014680
|
66 |
Y Chai, X Han, W Li, S Liu, S Yao, C Wang, W Shi, I Da-Silva, P Manuel, Y Cheng. et al.. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368(6494): 1002–1006
https://doi.org/10.1126/science.aay8447
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|