Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (4) : 415-424    https://doi.org/10.1007/s11705-022-2225-4
RESEARCH ARTICLE
Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan
Zexing Huang1, Zhijuan Zeng1, Xiaoting Zhu1, Wenguang Zhao1, Jing Lei2, Qiong Xu1, Yongjun Yang2, Xianxiang Liu1()
1. National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
2. Chenzhou Gao Xin Material Co., Ltd., Chenzhou 423000, China
 Download: PDF(6567 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

2,5-bis(hydroxymethyl)furan (BHMF) is an important monomer of polyester. Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with unique advantages for the prodution of the degradable bio-based polyester materials. Herein, we prepared a boehmite-supported copper-oxide catalyst for the selective hydrogenation of 5-hydroxymethylfurfural into BHMF via catalytic transfer hydrogenation (CTH). Further, ethanol successfully replaced conventional high-pressure hydrogen as the hydrogen donor, with up to 96.9% BHMF selectivity achieved under suitable conditions. Through characterization and factor investigations, it was noted that CuO is crucial for high BHMF selectivity. Furthermore, kinetic studies revealed a higher by-product activation energy compared to that of BHMF, which explained the influence of reaction temperature on product distribution. To establish the catalyst structure-activity correlation, a possible mechanism was proposed. The copper-oxide catalyst deactivated following CTH because ethanol reduced the CuO, which consequently decreased the active sites. Finally, calcination of the catalyst in air recovered its activity. These results will have a positive impact on hydrogenation processes in the biomass industry.

Keywords biomass      5-hydroxymethylfurfural      2,5-bis(hydroxymethyl)furan      transfer hydrogenation      catalysis     
Corresponding Author(s): Xianxiang Liu   
Online First Date: 10 January 2023    Issue Date: 24 March 2023
 Cite this article:   
Zexing Huang,Zhijuan Zeng,Xiaoting Zhu, et al. Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan[J]. Front. Chem. Sci. Eng., 2023, 17(4): 415-424.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2225-4
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I4/415
Fig.1  XRD patterns of the synthesized CuO/Bhm catalyst samples.
SampleBET/(m2·g–1)Vpore/(cm3·g–1)Dpore/nmAmount of acid sites/(μmol·g–1)a)
Bhm130.680.194.98472.15
10 wt % CuO/Bhm116.530.267.71344.98
20 wt % CuO/Bhm105.940.268.30506.65
30 wt % CuO/Bhm94.650.3010.79263.95
40 wt % CuO/Bhm80.660.177.35665.89
50 wt % CuO/Bhm65.890.168.24459.13
Tab.1  Main physicochemical properties of the CuO/Bhm catalysts
Fig.2  N2 adsorption?desorption isotherms and pore size distribution curves of (a) Bhm and (b) 40 wt % CuO/Bhm.
Fig.3  NH3-TPD profiles of Bhm and 40 wt % CuO/Bhm.
Fig.4  XPS profiles of 40 wt % CuO/Bhm. (a) C 1s; (b) Al 2p; (c) Cu 2p; (d) O 1s.
EntryCatalystHMF conversion/%Selectivity/%
BHMFHEMFOthers
1Blank36.200100
2CuO9.988.17.94.0
3Bhm72.159.725.115.2
4Bhm b)79.645.539.417.1
510 wt % CuO/Bhm72.787.811.71.5
620 wt % CuO/Bhm71.691.26.62.2
730 wt % CuO/Bhm72.590.77.32.0
840 wt % CuO/Bhm75.996.93.60.5
940 wt % CuO/Bhm c)37.286.77.25.9
1050 wt % CuO/Bhm38.500100
Tab.2  Effect of different catalyst samples on BHMF selectivity and HMF conversion a)
Fig.5  Effect of the hydrogen donor reaction (reaction conditions: 10 mL hydrogen donor, 1 mmol HMF, catalyst/HMF = 80%, time = 3 h, temperature = 433 K).
Fig.6  Effect of reaction temperature (reaction conditions: 10 mL ethanol, 1 mmol HMF, catalyst/HMF = 80%, time = 3 h).
Fig.7  Effect of catalyst loading (reaction conditions: 10 mL ethanol, 1 mmol HMF, time = 3 h, temperature = 433 K).
Fig.8  Effect of reaction time (reaction conditions: 10 mL ethanol, 1 mmol HMF, Catalyst/HMF = 80%, temperature = 433 K).
  Scheme1 Reaction route for hydrogenation of HMF to BHMF.
Rate constantReaction temperature/KActivity energy/ (kJ·mol–1)R2
433443453
k1/h–10.465310.599200.7373537.580.99615
k2/h–10.021720.040190.0629786.890.99643
Tab.3  Calculated kinetic parameters for the hydrogenation of HMF over the 40 wt % CuO/Bhm catalyst
Fig.9  (a–c) Model (solid line) and experimental data (markers) of HMF, hydrogenation products (BHMF), and by-product (HEMF) over 40 wt % CuO/Bhm catalyst at 433, 443, and 453 K, and (d) Arrhenius plot.
  Scheme2 Mechanism of HMF hydrogenation over catalyst interfacial site.
Fig.10  Profiles of the catalyst reuse study. (a) Catalyst recycling experiments (reaction conditions: 10 mL ethanol, 1 mmol HMF, catalyst/HMF = 100%, 433 K). (b) XRD patterns of the fresh and spent 40 wt % CuO/Bhm catalyst.
1 S Chen, R Wojcieszak, F Dumeignil, E Marceau, S Royer. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chemical Reviews, 2018, 118(22): 11023–11117
https://doi.org/10.1021/acs.chemrev.8b00134
2 R Gerardy, D P Debecker, J Estager, P Luis, J M Monbaliu. Continuous flow upgrading of selected C2–C6 platform chemicals derived from biomass. Chemical Reviews, 2020, 120(15): 7219–7347
https://doi.org/10.1021/acs.chemrev.9b00846
3 F A Kucherov, L V Romashov, K I Galkin, V P Ananikov. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8064–8092
https://doi.org/10.1021/acssuschemeng.8b00971
4 L Hu, J Xu, S Zhou, S He, X Tang, L Lin, J Xu, Y Zhao. Catalytic advances in the production and application of biomass-derived 2,5-dihydroxymethylfuran. ACS Catalysis, 2018, 8(4): 2959–2980
https://doi.org/10.1021/acscatal.7b03530
5 M J Gilkey, B Xu. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catalysis, 2016, 6(3): 1420–1436
https://doi.org/10.1021/acscatal.5b02171
6 K T V Rao, Y Hu, Z Yuan, Y Zhang, C C Xu. Green synthesis of heterogeneous copper-alumina catalyst for selective hydrogenation of pure and biomass-derived 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. Applied Catalysis A: General, 2021, 609: 117892
https://doi.org/10.1016/j.apcata.2020.117892
7 K S Arias, J M Carceller, M J Climent, A Corma, S Iborra. Chemoenzymatic synthesis of 5-hydroxymethylfurfural (HMF)-derived plasticizers by coupling HMF reduction with enzymatic esterification. ChemSusChem, 2020, 13(7): 1864–1875
https://doi.org/10.1002/cssc.201903123
8 W Zhao, Z Huang, L Yang, X Liu, H Xie, Z Liu. Highly efficient syntheses of 2,5-bis(hydroxymethyl)furan and 2,5-dimethylfuran via the hydrogenation of biomass-derived 5-hydroxymethylfurfural over a nickel-cobalt bimetallic catalyst. Applied Surface Science, 2022, 577: 151968
https://doi.org/10.1016/j.apsusc.2021.151869
9 Y Jing, Y Wang, S Furukawa, J Xia, C Sun, M J Hulsey, H Wang, Y Guo, X Liu, N Yan. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angewandte Chemie International Edition, 2021, 60(10): 5527–5535
https://doi.org/10.1002/anie.202011063
10 P Yang, Q Xia, X Liu, Y Wang. Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni−Co/C catalyst. Fuel, 2017, 187: 159–166
https://doi.org/10.1016/j.fuel.2016.09.026
11 G H Wang, X Deng, D Gu, K Chen, H Tuysuz, B Spliethoff, H J Bongard, C Weidenthaler, W Schmidt, F Schuth. Co3O4 nanoparticles supported on mesoporous carbon for selective transfer hydrogenation of α,β-unsaturated aldehydes. Angewandte Chemie International Edition, 2016, 55(37): 11101–11105
https://doi.org/10.1002/anie.201604673
12 L Hu, S Liu, J Song, Y Jiang, A He, J Xu. Zirconium-containing organic−inorganic nanohybrid as a highly efficient catalyst for the selective synthesis of biomass-derived 2,5-dihydroxymethylfuran in isopropanol. Waste and Biomass Valorization, 2020, 11(7): 3485–3499
https://doi.org/10.1007/s12649-019-00703-z
13 N Chen, Z Zhu, T Su, W Liao, C Deng, W Ren, Y Zhao, H Lü. Catalytic hydrogenolysis of hydroxymethylfurfural to highly selective 2,5-dimethylfuran over FeCoNi/h-BN catalyst. Chemical Engineering Journal, 2020, 381: 122755
https://doi.org/10.1016/j.cej.2019.122755
14 I Elsayed, M A Jackson, E B Hassan. Hydrogen-free catalytic reduction of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan using copper-iron oxides bimetallic nanocatalyst. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1774–1785
https://doi.org/10.1021/acssuschemeng.9b05575
15 T Wang, J Zhang, W Xie, Y Tang, D Guo, Y Ni. Catalytic transfer hydrogenation of biobased HMF to 2,5-bis(hydroxymethyl)furan over Ru/Co3O4. Catalysts, 2017, 7(3): 92
https://doi.org/10.3390/catal7030092
16 J Zhang, Z Qi, Y Liu, J Wei, X Tang, L He, L Peng. Selective hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over a cheap carbon-nanosheets-supported Zr/Ca bimetallic catalyst. Energy & Fuels, 2020, 34(7): 8432–8439
https://doi.org/10.1021/acs.energyfuels.0c01128
17 H Wang, B Liu, F Liu, Y Wang, X Lan, S Wang, B Ali, T Wang. Transfer hydrogenation of cinnamaldehyde catalyzed by Al2O3 using ethanol as a solvent and hydrogen dono. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8195–8205
https://doi.org/10.1021/acssuschemeng.0c00942
18 L Huang, Y Zhu, C Huo, H Zheng, G Feng, C Zhang, Y Li. Mechanistic insight into the heterogeneous catalytic transfer hydrogenation over Cu/Al2O3: direct evidence for the assistant role of support. Journal of Molecular Catalysis A: Chemical, 2008, 288(1-2): 109–115
https://doi.org/10.1016/j.molcata.2008.03.026
19 T J Kloprogge, L V Duong, B J Wood, R L Frost. XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-)boehmite. Journal of Colloid and Interface Science, 2006, 296(2): 572–576
https://doi.org/10.1016/j.jcis.2005.09.054
20 M Nazim, A A P Khan, A M Asiri, J H Kim. Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: synthesis, dye removal, and kinetic studies at room temperature. ACS Omega, 2021, 6(4): 2601–2612
https://doi.org/10.1021/acsomega.0c04747
21 A Majid, J Tunney, S Argue, D Kingston, M Post, J Margeson, G J Gardner. Characterization of CuO phase in SnO2−CuO prepared by the modified Pechini method. Journal of Sol–Gel Science and Technology, 2010, 53(2): 390–398
https://doi.org/10.1007/s10971-009-2108-x
22 J Wang, Z Zhang, S Jin, X Shen. Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sulfonic acid-functionalized mesoporous carbon catalyst. Fuel, 2017, 192: 102–107
https://doi.org/10.1016/j.fuel.2016.12.027
23 S Li, M Dong, J Yang, X Cheng, X Shen, S Liu, Z Q Wang, X Q Gong, H Liu, B Han. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nature Communications, 2021, 12(1): 584
https://doi.org/10.1038/s41467-020-20878-7
24 Y Lu, J Bradshaw, Y Zhao, W Kuester, D Kabotso. Structure-reactivity relationship for alcohol oxidations via hydride transfer to a carbocationic oxidizing agent. Journal of Physical Organic Chemistry, 2011, 24(12): 1172–1178
https://doi.org/10.1002/poc.1842
25 B A Fachri, R M Abdilla, H H Bovenkamp, C B Rasrendra, H J Heeres. Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of D-fructose to 5-hydroxymethylfurfural and levulinic acid in water. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3024–3034
https://doi.org/10.1021/acssuschemeng.5b00023
26 X Deng, P Zhao, X Zhou, L Bai. Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks. Chemical Engineering Journal, 2021, 405: 126979
https://doi.org/10.1016/j.cej.2020.126979
27 A He, L Hu, Y Zhang, Y Jiang, X Wang, J Xu, Z Wu. High-efficiency catalytic transfer hydrogenation of biomass-based 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan over a zirconium-carbon coordination catalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(46): 15557–15570
https://doi.org/10.1021/acssuschemeng.1c05618
28 A H Valekar, M Lee, J W Yoon, J Kwak, D Y Hong, K R Oh, G Y Cha, Y U Kwon, J Jung, J S Chang, Y K Hwang. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: exploring the role of metal node coordination and modification. ACS Catalysis, 2020, 10(6): 3720–3732
https://doi.org/10.1021/acscatal.9b05085
29 M Vandichel, F Vermoortele, S Cottenie, D E De Vos, M Waroquier, V Van Speybroeck. Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization. Journal of Catalysis, 2013, 305: 118–129
https://doi.org/10.1016/j.jcat.2013.04.017
30 F Vermoortele, B Bueken, G Le Bars, B Van de Voorde, M Vandichel, K Houthoofd, A Vimont, M Daturi, M Waroquier, V Van Speybroeck, C Kirschhock, D E De Vos. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). Journal of the American Chemical Society, 2013, 135(31): 11465–11468
https://doi.org/10.1021/ja405078u
31 A Mironenko, G Vlachos. Conjugation-driven “reverse Mars−Van Krevelen”-type radical mechanism for low-temperature C–O bond activation. Journal of the American Chemical Society, 2016, 138(26): 8104–8113
https://doi.org/10.1021/jacs.6b02871
32 B Erb, E Risto, T Wendling, L J Goossen. Reductive etherification of fatty acids or esters with alcohols using molecular hydrogen. ChemSusChem, 2016, 9(12): 1442–1448
https://doi.org/10.1002/cssc.201600336
33 S De, S Dutta, B Saha. One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 2012, 5(9): 1826–1833
https://doi.org/10.1002/cssc.201200031
34 W Hu, Y Wan, L Zhu, X Cheng, S Wan, J Lin, Y Wang. A strategy for the simultaneous synthesis of methallyl alcohol and diethyl acetal with Sn-β. ChemSusChem, 2017, 10(23): 4715–4724
https://doi.org/10.1002/cssc.201701435
[1] FCE-22053-OF-HZ_suppl_1 Download
[1] Xiao Han, Xiaoxuan Wang, Jiafang Wang, Yingjie Xie, Cuiwei Du, Chongfei Yu, Jinglan Feng, Jianhui Sun, Shuying Dong. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight[J]. Front. Chem. Sci. Eng., 2023, 17(4): 449-459.
[2] Meiyu Zheng, Zhenzhen Cui, Jing Zhang, Jing Fu, Zhiwen Wang, Tao Chen. Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis[J]. Front. Chem. Sci. Eng., 2023, 17(4): 425-436.
[3] Chuanhui Li, Li-Long Zhang, Hu Li, Song Yang. Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source[J]. Front. Chem. Sci. Eng., 2023, 17(1): 68-81.
[4] Fateme Abbasi, Javad Karimi-Sabet, Zeinab Abbasi, Cyrus Ghotbi. Conversion of CO into CO2 by high active and stable PdNi nanoparticles supported on a metal-organic framework[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1139-1148.
[5] Yunpeng Shang, Xiaohong Sun, Zhe Chen, Kunzhou Xiong, Yunmei Zhou, Shu Cai, Chunming Zheng. Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1500-1513.
[6] Wei Wang, Linlin Song, Huoli Zhang, Guanghui Zhang, Jianliang Cao. Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI)[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1537-1549.
[7] Qifeng Lei, Chang Wang, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Multifunctional heteroatom zeolites: construction and applications[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1462-1486.
[8] Xiang-Hui Yu, Jin-Long Yi, Ru-Liang Zhang, Feng-Yun Wang, Lei Liu. Hollow carbon spheres and their noble metal-free hybrids in catalysis[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1380-1407.
[9] Giuseppe Sanzone, Jinlong Yin, Hailin Sun. Scaling up of cluster beam deposition technology for catalysis application[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1360-1379.
[10] Weihang Sun, Dongfang Liu, Minghui Zhang. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1427-1443.
[11] Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
[12] Feng Cheng, Dongwen Guo, Jinhua Lai, Meihui Long, Wenguang Zhao, Xianxiang Liu, Dulin Yin. Efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over copper-doped manganese oxide nanorods with tert-butanol as solvent[J]. Front. Chem. Sci. Eng., 2021, 15(4): 960-968.
[13] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[14] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[15] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed