Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (3) : 239-245    https://doi.org/10.1007/s11705-012-1297-y
RESEARCH ARTICLE
Polyethylene glycol-supported ionic liquid as a highly efficient catalyst for the synthesis of propylene carbonate under mild conditions
Rui YAO, Hua WANG, Jinyu HAN()
Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The coupling reaction of propylene and CO2 to form propylene carbonate (PC) was promoted by an ionic liquid (IL) covalently bound to polyethylene glycol (PEG). The supported ionic liquid, which has both acidic and basic components, proved to be an active catalyst for PC synthesis under mild conditions. The effects of different cations and anions, reaction temperature, CO2 pressure, and reaction time were investigated. It was demonstrated that the acid group in the catalyst plays an important role in the reaction. With this system, a high PC yield (95%) was achieved under mild conditions (3.0 MPa, 120°C and 4 h) without a co-solvent. In addition, the catalyst was readily recovered and reused. Based on the experimental results, a plausible mechanism for the catalyst was proposed.

Keywords ionic liquid      PEG-supported ionic liquid      carbon dioxide      propylene carbonate     
Corresponding Author(s): HAN Jinyu,Email:hanjinyu@tju.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Hua WANG,Jinyu HAN,Rui YAO. Polyethylene glycol-supported ionic liquid as a highly efficient catalyst for the synthesis of propylene carbonate under mild conditions[J]. Front Chem Sci Eng, 2012, 6(3): 239-245.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1297-y
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I3/239
Fig.1  Synthesis of propylene carbonate from propylene oxide and CO
Fig.2  Synthesis process of PEG-supported ionic liquids (PEG-MIM-HSO)
Fig.3  FTIR spectra of (a)PEG-MIM-HSO, (b) PEG-MIM-HPO and(c)PEG-MIM-HCO
EntryCatalystPC yield /%PC selectivity /%
1PEG400--
2MIM5498
3PEG400-MIM-Br6097
4PEG400-MIM-HSO49599
5PEG400-MIM-H2PO47198
6PEG400-MIM-HCO35099
7PEG400-MIM-BF42597
8PEG400-MIM-PF6898
9PEG200-MIM-HSO48897
Tab.1  Effect of different catalysts on the synthesis of PC
Fig.4  The yield of PC at different reaction temperatures. Reaction conditions: propylene oxide, 17.2 mmol; ionic liquid, 6 mmol%; pressure, 3.0 MPa; time, 4 h
Fig.5  The yield of PC at different reaction pressures. Reaction conditions: propylene oxide, 17.2 mmol; ionic liquid, 6 mmol%; temperature, 120°C; time, 4 h
Fig.6  Yield of PC as a function of reaction time. Reaction conditions: propylene oxide, 17.2 mmol; ionic liquid, 6 mmol%; pressure, 3.0 MPa; temperature, 120°C
Fig.7  Catalytic activity of recycled PEG-MIM-HSO. Reaction conditions: propylene oxide, 17.2 mmol; ionic liquid, 6 mmol%; pressure, 3.0 MPa; temperature, 120°C, time, 4 h
Fig.8  Proposed mechanism for the reaction
1 Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews , 2007, 107(6): 2365–2387
doi: 10.1021/cr068357u pmid:17564481
2 Dai W L, Luo S L, Yin S F, Au C T. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Applied Catalysis A: General , 2009, 366(1): 2–12
doi: 10.1016/j.apcata.2009.06.045
3 Zhang S J, Chen Y H, Li F W, Lu X M, Dai W B, Mori R. Fixation and conversion of CO2 using ionic liquids. Catalysis Today , 2006, 115(1–4): 61–69
doi: 10.1016/j.cattod.2006.02.021
4 Sako T, Fukai T, Sahashi R, Sone M, Matsuno M. Cycloaddition of oxirane group with carbon dioxide in the supercritical homogeneous state. Industrial & Engineering Chemistry Research , 2002, 41(22): 5353–5358
doi: 10.1021/ie020164j
5 Caló V, Nacci A, Monopoli A, Fanizzi A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Organic Letters , 2002, 4(15): 2561–2563
doi: 10.1021/ol026189w pmid:12123376
6 Chang T, Jing H W, Jin L L, Qiu W Y. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. Journal of Molecular Catalysis A: Chemical , 2007, 264(1–2): 241–247
doi: 10.1016/j.molcata.2006.08.089
7 He L N, Yasuda T, Sakakura T. New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2. Green Chemistry , 2003, 5(1): 92–94
doi: 10.1039/b210007j
8 Jiang J L, Gao F X, Hua R M, Qiu X Q. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free conditions. Journal of Organic Chemistry , 2005, 70(1): 381–383
doi: 10.1021/jo0485785 pmid:15624956
9 Kim H S, Kim J J, Kwon H N, Chung M J, Lee B G, Jang H G. Well-defined highly active heterogeneous catalyst system for the coupling reactions of carbon dioxide and epoxides. Journal of Catalysis , 2002, 205(1): 226–229
doi: 10.1006/jcat.2001.3444
10 Kawanami H, Sasaki A, Matsui K, Ikushima Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chemical Communications , 2003, 2003(7): 896–897
doi: 10.1039/b212823c pmid:12739666
11 Wang J Q, Yue X D, Cai F, He L N. Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catalysis Communications , 2007, 8(2): 167–172
doi: 10.1016/j.catcom.2006.05.049
12 Peng J J, Deng Y Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed with ionic liquid. New Journal of Chemistry , 2001, 25(4): 639–641
doi: 10.1039/b008923k
13 Yang H Z, Gu Y L, Deng Y Q, Shi F. Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chemical Communications , 2002, 2002(3): 274–275
doi: 10.1039/b108451h pmid:12120401
14 Kim H S, Kim J J, Kim H, Jang H G. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. Journal of Catalysis , 2003, 220(1): 44–46
doi: 10.1016/S0021-9517(03)00238-0
15 Li F, Xiao L, Xia C, Hu B. Chemical fixationof CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system. Tetrahedron Letters , 2004, 45(45): 8307–8310
doi: 10.1016/j.tetlet.2004.09.074
16 Sun J M, Fujita S I, Arai M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. Journal of Organometallic Chemistry , 2005, 690(15): 3490–3497
doi: 10.1016/j.jorganchem.2005.02.011
17 Xiao L F, Li F W, Peng J J, Xia C G. Immobilized ionic liquid zinc chloride: heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of Molecular Catalysis A: Chemical , 2006, 253(1–2): 265–269
doi: 10.1016/j.molcata.2006.03.047
18 Sun J, Zhang S J, Cheng W G, Ren G Y. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Letters , 2008, 49(22): 3588–3591
doi: 10.1016/j.tetlet.2008.04.022
19 Kim Y J, Varma R S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. Journal of Organic Chemistry , 2005, 70(20): 7882–7891
doi: 10.1021/jo050699x pmid:16277307
20 Tian J S, Miao C X, Wang J Q, Cai F, Du Y, Zhao Y, He L N. Efficient synthesis of dimethy carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chemistry , 2007, 9(6): 566–571
doi: 10.1039/b614259a
21 Dai W L, Chen L, Yin S F, Luo S L, Au C T. 3-(2-Hydroxyl-ethyl)-1-propylimidazolium bromide immobilized on SBA-15 as efficient catalyst for the synthesis of cyclic carbonates via the coupling of carbon dioxide with epoxides. Catalysis Letters , 2010, 135(3–4): 295–304
doi: 10.1007/s10562-010-0285-4
22 Wang J Q, Kong D L, Chen J Y, Cai F, He L N. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. Journal of Molecular Catalysis A: Chemical , 2006, 249(1–2): 143–148
doi: 10.1016/j.molcata.2006.01.008
23 Du Y, Wang J Q, Chen J Y, Cai F, Tian J S, Kong D L, He L N. A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Letters , 2006, 47(8): 1271–1275
doi: 10.1016/j.tetlet.2005.12.077
24 Sun J, Cheng W G, Fan W, Wang Y H, Meng Z Y, Zhang S J. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catalysis Today , 2009, 148(3–4): 361–367
doi: 10.1016/j.cattod.2009.07.070
25 Ulusoy M, Cetinkaya E, Cetinkaya B. Conversion of carbon dioxide to cyclic carbonates using diimine Ru(II) complexes as catalysts. Applied Organometallic Chemistry , 2009, 23(2): 68–74
doi: 10.1002/aoc.1473
26 Xie Y, Zhang Z F, Jiang T, He J L, Han B X, Wu T B, Ding K L. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angewandte Chemie International Edition , 2007, 46(38): 7255–7258
doi: 10.1002/anie.200701467
27 Heldebrant D J, Witt H N, Walsh S M, Ellis T, Rauscher J, Jessop P G. Liquid polymers as solvents for catalytic reductions. Green Chemistry , 2006, 8(9): 807–815
doi: 10.1039/b605405f
28 Gourgouillon D, Avelino H J, Fareleira J, Ponte M N. Simultaneous viscosity and density measurement of supercritical CO2-satureted PEG 400. Journal of Supercritical Fluids , 1998, 13(1–3): 177–185
doi: 10.1016/S0896-8446(98)00050-3
29 Harrison K L, Johnston K P, Sanchez I C. Effect of surfactants on the interfacial tension between supercritical carbonate dioxide and polyethylene glocol. Langmuir , 1996, 12(11): 2637–2644
doi: 10.1021/la9510137
30 Dariva C, Coelho L A F, Oliveira J V. A kinetic approach for predicting diffusivities in dense fluid mixtures. Fluid Phase Equilibria , 1999, 158–160(b) : 1045–1054
31 Kawanami H, Sasaki A, Matsui K, Ikushima Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chemical Communications , 2003, 7(7): 896–897
doi: 10.1039/b212823c pmid:12739666
32 Nomura R, Kimura M, Teshima S, Ninagawa A, Matsuda H. Directsynthesis of cyclic carbonates in the presence of organometallic compounds. Catalyses by systems from IVA, VA, and VIA group compounds and Lewis base. Bulletin of the Chemical Society of Japan , 1982, 55(10): 3200–3203
doi: 10.1246/bcsj.55.3200
33 Udayakumar S, Lee M K, Shim H L, Park D W. Functionalization of organic ions on hybrid MCM-41 for cycloaddition reaction: the effective conversion of carbon dioxide. Applied Catalysis A: General , 2009, 365(1): 88–95
doi: 10.1016/j.apcata.2009.05.057
34 Udayakumar S, Park S W, Park D W, Choi B S. Immobilization of ionic liquid on hybrid MCM-41 system for the chemical fixation of carbon dioxide on cyclic carbonate. Catalysis Communications , 2008, 9(7): 1563–1570
doi: 10.1016/j.catcom.2008.01.001
35 Zhu A L, Jiang T, Han B X, Zhang J C, Xie Y, Ma X M. Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chemistry , 2007, 9(2): 169–172
doi: 10.1039/b612164k
[1] Jie Liu, Jiahao Shen, Jingjing Wang, Yuan Liang, Routeng Wu, Wenwen Zhang, Delin Shi, Saixiang Shi, Yanping Wang, Yimin Wang, Yumin Xia. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
[2] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[3] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[4] Muhammad Faisal, Azeem Haider, Quret ul Aein, Aamer Saeed, Fayaz Ali Larik. Deep eutectic ionic liquids based on DABCO-derived quaternary ammonium salts: A promising reaction medium in gaining access to terpyridines[J]. Front. Chem. Sci. Eng., 2019, 13(3): 586-598.
[5] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[6] Atanu Biswas, Carlucio R. Alves, Maria T. S. Trevisan, Roseane L. E. da Silva, Roselayne F. Furtado, Zengshe Liu, H. N. Cheng. Synthesis of a cardanol-amine derivative using an ionic liquid catalyst[J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[7] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[8] Kathryn A. MUMFORD,Yue WU,Kathryn H. SMITH,Geoffrey W. STEVENS. Review of solvent based carbon-dioxide capture technologies[J]. Front. Chem. Sci. Eng., 2015, 9(2): 125-141.
[9] Zimeng HE,Ling YUE,Meng LI,Yazhuo SHANG,Honglai LIU. Rheological behavior of mixed system of ionic liquid [C8mim]Br and sodium oleate in water[J]. Front. Chem. Sci. Eng., 2015, 9(2): 232-241.
[10] Jing WANG, Hua WANG, Zhenzhen HAN, Jinyu HAN. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid[J]. Front. Chem. Sci. Eng., 2015, 9(1): 57-63.
[11] Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
[12] Stefania MOIOLI, Laura A. PELLEGRINI, Simone GAMBA, Ben LI. Improved rate-based modeling of carbon dioxide absorption with aqueous monoethanolamine solution[J]. Front Chem Sci Eng, 2014, 8(1): 123-131.
[13] Jingcai ZHAO, Xingfu SONG, Ze SUN, Jianguo YU. Simulation on thermodynamic state of ammonia carbonation at low temperature and low pressure[J]. Front Chem Sci Eng, 2013, 7(4): 447-455.
[14] Ang LI, Hua WANG, Jinyu HAN, Li LIU. Preparation of a Pb loaded gas diffusion electrode and its application to CO2 electroreduction[J]. Front Chem Sci Eng, 2012, 6(4): 381-388.
[15] Geoff G.X. WANG, Xiaodong ZHANG, Xiaorong WEI, Xuehai FU, Bo JIANG, Yong QIN. A review on transport of coal seam gas and its impact on coalbed methane recovery[J]. Front Chem Sci Eng, 2011, 5(2): 139-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed