Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (4) : 661-672    https://doi.org/10.1007/s11705-019-1830-3
RESEARCH ARTICLE
Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15
Ye Zhang1,2, Jian Song1,2, Josue Quispe Mayta1,2, Fusheng Pan1,2, Xue Gao1, Mei Li1, Yimeng Song1,2, Meidi Wang1,2, Xingzhong Cao3, Zhongyi Jiang1,2()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
3. Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(2090 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The utilization of materials with a hierarchical porous structure as multi-functional additives is highly attractive in the preparation of hybrid membranes. In this study, novel hybrid membranes are designed by embedding hierarchical porous Santa Barbara Amorphous 15 (SBA-15) with a dual-pore architecture (micropores and mesopores) for pervaporation desulfurization. The SBA-15 with cylindrical mesopores provides molecular transport expressways to ensure improved permeability, while micropores on the wall have molecular sieving effects that are essential for the enhancement of permselectivity of thiophene molecules. Considering thiophene/n-octane mixture as a model system, the hybrid membrane with embedded 6 wt-% SBA-15 exhibits optimal pervaporation desulfurization performance with a permeation flux of 22.07 kg·m−2·h−1 and an enrichment factor of 6.76. Moreover, the detailed structure and properties of hybrid membranes are systematically characterized. This study demonstrates the immense potential of hierarchical porous materials as additives in membranes to simultaneously increase permeability and permselectivity.

Keywords hybrid membranes      hierarchical porous SBA-15      sieving effect      pervaporation      desulfurization     
Corresponding Author(s): Zhongyi Jiang   
Just Accepted Date: 21 August 2019   Online First Date: 09 October 2019    Issue Date: 22 May 2020
 Cite this article:   
Ye Zhang,Jian Song,Josue Quispe Mayta, et al. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15[J]. Front. Chem. Sci. Eng., 2020, 14(4): 661-672.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1830-3
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I4/661
Fig.1  (a) Chemical structure of Pebax 2533 and (b) scheme structure of hierarchical porous SBA-15.
Fig.2  SEM image (a) and TEM image (b) of SBA-15.
Fig.3  (a) FTIR spectra and (b) the wide-angle XRD patterns of SBA-15 (inset indicates the small-angle XRD patterns of SBA-15).
Fig.4  SEM cross-section images of (a) Pebax/PSf, (b) Pebax-SBA-15(4)/PSf, (c) Pebax- SBA-15(6)/PSf, (d) Pebax-SBA-15(10)/PSf; SEM surface images of (e) Pebax /PSf, (f) Pebax-SBA-15(4)/PSf, (g) Pebax-SBA-15(6)/PSf, (h) Pebax-SBA-15(10)/PSf.
Fig.5  (a) FTIR spectra, (b) XRD patterns, (c) degree of swelling and (d) TGA results for the pristine Pebax and Pebax-SBA-15(X) membranes.
Fig.6  Separation performance of pristine Pebax/PSf and Pebax-SBA-15(6)/PSf hybrid membranes.
Fig.7  (a) The sorption selectivity and (b) diffusion selectivity of thiophene and n-octane in membranes.
Fig.8  Effect of feed temperature on (a) total flux and enrichment factor, (b) n-octane flux and thiophene flux, (c) permeance and selectivity of Pebax-SBA-15(6)/PSf hybrid membranes for the desulfurization of 1312 ppm thiophene/n-octane mixtures and (d) Arrhenius plots of n-octane and thiophene fluxes.
Fig.9  Effect of thiophene concentration in the feed on the (a) total flux and enrichment factor, (b) thiophene and n-octane flux and (c) permeance and selectivity of Pebax-SBA-15(6)/PSf hybrid membranes for the desulfurization of thiophene/n-octane mixture.
Fig.10  Long-term operating stability of Pebax-SBA-15(6)/PSf hybrid membrane.
Fig.11  Comparison of separation performance for desulfurization of Pebax-SBA-15(6)/PSf hybrid membrane with other membranes reported in the literature.
1 J Xiong, W Zhu, H Li, W Ding, Y Chao, P Wu, S Xun, M Zhang, H Li. Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chemistry, 2015, 17(3): 1647–1656
https://doi.org/10.1039/C4GC02053G
2 B V Voorde, M Hezinová, J Lannoeye, A Vandekerkhove, B Marszalek, B Gil, I Beurroies, P Nachtigall, D D Vos. Adsorptive desulfurization with CPO-27/MOF-74: An experimental and computational investigation. Physical Chemistry Chemical Physics, 2015, 17(16): 10759–10766
https://doi.org/10.1039/C5CP01063B
3 C Song. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86(1): 211–263
https://doi.org/10.1016/S0920-5861(03)00412-7
4 L Lin, Y Zhang, Y Kong. Recent advances in sulfur removal from gasoline by pervaporation. Fuel, 2009, 88(10): 1799–1809
https://doi.org/10.1016/j.fuel.2009.03.031
5 F Wu, L Lin, H Liu, H Liu, H Wang, J Qiu, X Zhang. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544(2): 342–350
https://doi.org/10.1016/j.memsci.2017.09.047
6 P Shao, R Y M Huang. Polymeric membrane pervaporation. Journal of Membrane Science, 2007, 287(2): 162–179
https://doi.org/10.1016/j.memsci.2006.10.043
7 Y H Deng, J T Chen, C H Chang, K S Liao, K L Tung, W E Price, Y Yamauchi, K C W Wu. A drying-free, water-based process for fabricating mixed-matrix membranes with outstanding pervaporation performance. Angewandte Chemie International Edition, 2016, 55(41): 12793–12796
https://doi.org/10.1002/anie.201607014
8 L Wang, N Wang, H Yang, Q An, B Li, S Ji. Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation. Journal of Membrane Science, 2018, 559: 8–18
https://doi.org/10.1016/j.memsci.2018.04.051
9 M Wang, H Wu, X Jin, C Yang, X He, F Pan, Z Jiang, C Wang, M Chen, P Zhang, X Cao. Enhanced dehydration performance of hybrid membranes by incorporating fillers with hydrophilic-hydrophobic regions. Chemical Engineering Science, 2017, 178: 273–283
https://doi.org/10.1016/j.ces.2017.12.021
10 T H Bae, J R Long. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy & Environmental Science, 2013, 6(12): 3565–3569
https://doi.org/10.1039/c3ee42394h
11 D Yang, S Yang, Z Jiang, S Yu, J Zhang, F Pan, X Cao, B Wang, J Yang. Polydimethyl siloxane-graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. Journal of Membrane Science, 2015, 487: 152–161
https://doi.org/10.1016/j.memsci.2015.03.068
12 J Wang, M Li, S Zhou, A Xue, Y Zhang, Y Zhao, J Zhong. Controllable construction of polymer/inorganic interface for poly(vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes. Chemical Engineering Science, 2018, 181: 237–250
https://doi.org/10.1016/j.ces.2018.02.009
13 L X Dong, X C Huang, Z Wang, Z Yang, X M Wang, C Y Tang. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology, 2016, 166: 230–239
https://doi.org/10.1016/j.seppur.2016.04.043
14 S Yu, Z Jiang, H Ding, F Pan, B Wang, J Yang, X Cao. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481: 73–81
https://doi.org/10.1016/j.memsci.2015.01.045
15 S Yu, F Pan, S Yang, H Ding, Z Jiang, B Wang, Z Li, X Cao. Enhanced pervaporation performance of MIL-101(Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135: 479–488
https://doi.org/10.1016/j.ces.2014.11.058
16 J H Choi, J Jegal, W N Kim. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. Journal of Membrane Science, 2006, 284(1): 406–415
https://doi.org/10.1016/j.memsci.2006.08.013
17 D Q Vu, W J Koros, S J Miller. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003, 211(2): 311–334
https://doi.org/10.1016/S0376-7388(02)00429-5
18 D Zhao, J Feng, Q Huo, N Melosh, G H Fredrickson, B F Chmelka, G D Stucky. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552
https://doi.org/10.1126/science.279.5350.548
19 E Okumuş, T Gürkan, L Yılmaz. Effect of fabrication and process parameters on the morphology and performance of a PAN-based zeolite-filled pervaporation membrane. Journal of Membrane Science, 2003, 223(1): 23–38
https://doi.org/10.1016/S0376-7388(03)00287-4
20 T W Pechar, S Kim, B Vaughan, E Marand, M Tsapatsis, H K Jeong, C J Cornelius. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations. Journal of Membrane Science, 2006, 277(1-2): 195–202
https://doi.org/10.1016/j.memsci.2005.10.029
21 M Heiranian, A B Farimani, N R Aluru. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6(1): 8616
https://doi.org/10.1038/ncomms9616
22 M Vatani, A Raisi, G Pazuki. Mixed matrix membrane of ZSM-5/poly (ether-block-amide)/polyethersulfone for pervaporation separation of ethyl acetate from aqueous solution. Microporous and Mesoporous Materials, 2018, 263: 257–267
https://doi.org/10.1016/j.micromeso.2017.12.030
23 B Moermans, W D Beuckelaer, I F J Vankelecom, R Ravishankar, J A Martens, P A Jacobs. Incorporation of nano-sized zeolites in membranes. Chemical Communications, 2000, 24(24): 2467–2468
https://doi.org/10.1039/b007435g
24 M Bao, G Zhu, L Wang, M Wang, C Gao. Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization. Desalination, 2013, 309(3): 261–266
https://doi.org/10.1016/j.desal.2012.10.028
25 X Cheng, Z Jiang, X Cheng, H Yang, L Tang, G Liu, M Wang, H Wu, F Pan, X Cao. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. Journal of Membrane Science, 2018, 555: 146–156
https://doi.org/10.1016/j.memsci.2018.03.024
26 F Pan, W Li, Y Zhang, J Sun, M Wang, H Wu, Z Jiang. Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. AIChE Journal. American Institute of Chemical Engineers, 2019, 65(1):196–206
https://doi.org/10.1002/aic.16399
27 V Vattipalli, X Qi, P J Dauenhauer, W Fan. Long walks in hierarchical porous materials due to combined surface and configurational diffusion. Chemistry of Materials, 2016, 28(21): 7852–7863
https://doi.org/10.1021/acs.chemmater.6b03308
28 H H Tseng, A K Itta, T H Weng, Y L Li. SBA-15/CMS composite membrane for H2, purification and CO2, capture: Effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 2013, 180(11): 270–279
https://doi.org/10.1016/j.micromeso.2013.07.003
29 T H Weng, H H Tseng, M Y Wey. Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane. Journal of Membrane Science, 2011, 369(1): 550–559
https://doi.org/10.1016/j.memsci.2010.12.039
30 Y Niu, H Wang, X Zhu, Z Song, X Xie, X Liu, J G Q Han, Q Ge. Ru supported on zirconia-modified SBA-15 for selective conversion of cellobiose to hexitols. Microporous and Mesoporous Materials, 2014, 198(11): 215–222
https://doi.org/10.1016/j.micromeso.2014.07.030
31 W Liu, Y Li, X Meng, G Liu, S Hu, F Pan, H Wu, Z Jiang, B Wang, Z Li, X Cao. Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(11): 3713–3723
https://doi.org/10.1039/c3ta00766a
32 M Y Cheng, C J Pan, B J Hwang. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15: Blockage-free nanochannels. Journal of Materials Chemistry, 2009, 19(29): 5193–5200
https://doi.org/10.1039/b902949d
33 X J Ma, Y J Yu, J L Xing, T Q Yang, K F Lam, Q S Xue, B Albela, L Bonneviot, K Zhang. Tailoring porosity and dimensionality of Co3O4 nanophase using channel interconnectivity control by steaming of nanocasting SBA-15. Microporous and Mesoporous Materials, 2014, 200: 182–189
https://doi.org/10.1016/j.micromeso.2014.08.043
34 L Chen, Z Zheng, J Wang, J Wang, X Wang. Mesoporous SBA-15 end-capped by PEG via L-cystine based linker for redox responsive controlled release. Microporous and Mesoporous Materials, 2014, 185: 7–15
https://doi.org/10.1016/j.micromeso.2013.10.025
35 M Kruk, M Jaroniec, C H Ko, R Ryoo. Characterization of the porous structure of SBA-15. Chemistry of Materials, 2000, 12(7): 1961–1968
https://doi.org/10.1021/cm000164e
36 V Nafisi, M B Hägg. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459(1): 244–255
https://doi.org/10.1016/j.memsci.2014.02.002
37 V I Bondar, B D Freeman, I Pinnau. Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B, Polymer Physics, 2015, 37(17): 2463–2475
https://doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2463::AID-POLB18>3.0.CO;2-H
38 V Nafisi, M B Hägg. Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer. ACS Applied Materials & Interfaces, 2014, 6(18): 15643–15652
https://doi.org/10.1021/am500532a
39 H Ding, F Pan, E Mulalic, H Gomaa, W Li, H Yang, H Wu, Z Jiang, B Wang, X Cao, P Zhang. Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+, and Fe2+ ions co-impregnated carbon nitride. Journal of Membrane Science, 2017, 526: 94–105
https://doi.org/10.1016/j.memsci.2016.12.020
40 K Rychlewska, W Kujawski, K Konieczny. Pervaporative removal of organosulfur compounds (OSCs) from gasoline using PEBA and PDMS based commercial hydrophobic membranes. Chemical Engineering Journal, 2017, 309: 435–444
https://doi.org/10.1016/j.cej.2016.10.090
41 F Pan, H Wang, W Li, S Zhang, J Sun, H Yang, M Wang, M Wang, X Zhou, X Liu, et al. Constructing rapid diffusion pathways in ultrapermeable hybrid membranes by hierarchical porous nanotubes. Chemical Engineering Science, 2019, 195: 609–618
https://doi.org/10.1016/j.ces.2018.10.003
42 F Pan, H Ding, W Li, Y Song, H Yang, H Wu, Z Jiang, B Wang, X Cao. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545: 29–37
https://doi.org/10.1016/j.memsci.2017.09.054
43 N Mittal, G M Nisola, J G Seo, S P Lee, W J Chung. Organic radical functionalized SBA-15 as a heterogeneous catalyst for facile oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Journal of Molecular Catalysis A: Chemical, 2015, 404: 106–114
https://doi.org/10.1016/j.molcata.2015.04.008
[1] FCE-18107-OF-ZY_suppl_1 Download
[1] Eniko Haaz, Botond Szilagyi, Daniel Fozer, Andras Jozsef Toth. Combining extractive heterogeneous-azeotropic distillation and hydrophilic pervaporation for enhanced separation of non-ideal ternary mixtures[J]. Front. Chem. Sci. Eng., 2020, 14(5): 913-927.
[2] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[3] Hui Shang, Pengfei Ye, Yude Yue, Tianye Wang, Wenhui Zhang, Sainab Omar, Jiawei Wang. Experimental and theoretical study of microwave enhanced catalytic hydrodesulfurization of thiophene in a continuous-flow reactor[J]. Front. Chem. Sci. Eng., 2019, 13(4): 744-758.
[4] Yingying Zhao, Mengfan Wu, Zhiyong Ji, Yuanyuan Wang, Jiale Li, Jianlu Liu, Junsheng Yuan. A combination process of mineral carbonation with SO2 disposal for simulated flue gas by magnesia-added seawater[J]. Front. Chem. Sci. Eng., 2019, 13(4): 832-844.
[5] Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang. Mass transport mechanisms within pervaporation membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 458-474.
[6] Youhao Xu, Shouye Cui. A novel fluid catalytic cracking process for maximizing iso-paraffins: From fundamentals to commercialization[J]. Front. Chem. Sci. Eng., 2018, 12(1): 9-23.
[7] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[8] Lifeng WANG, Ralph T. YANG. New nanostructured sorbents for desulfurization of natural gas[J]. Front Chem Sci Eng, 2014, 8(1): 8-19.
[9] Liyan LIU, Yu ZHANG, Wei TAN. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 422-427.
[10] Haiding XIANG, Tiefeng WANG. Kinetic study of hydrodesulfurization of coker gas oil in a slurry reactor[J]. Front Chem Sci Eng, 2013, 7(2): 139-144.
[11] Aihua KONG, Yanyu WEI, Yonghong LI. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation[J]. Front Chem Sci Eng, 2013, 7(2): 170-176.
[12] Joseph LEE, Bo FENG. A thermodynamic study of the removal of HCl and H2S from syngas[J]. Front Chem Sci Eng, 2012, 6(1): 67-83.
[13] Bowu CHENG, Zhaofei CAO, Yong BAI, Dexiang ZHANG. Preparation and selection of Fe-Cu sorbent for COS removal in syngas[J]. Front Chem Eng Chin, 2010, 4(4): 441-444.
[14] Ruizhuang ZHAO, Ju SHANGGUAN, Yanru LOU, Jin SONG, Jie MI, Huiling FAN. Regeneration of Fe2O3-based high-temperature coal gas desulfurization sorbent in atmosphere with sulfur dioxide[J]. Front Chem Eng Chin, 2010, 4(4): 423-428.
[15] SUN Guida, LI Cuiqing, ZHOU Zhijun, LI Fengyan. Synthesis, characterization and hydrotreating performance of supported tungsten phosphide catalysts[J]. Front. Chem. Sci. Eng., 2008, 2(2): 155-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed