Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (1) : 1    https://doi.org/10.1007/s11705-023-2367-z
RESEARCH ARTICLE
Oxidative coupling of methane by Mn-Na2WO4/γ-Al2O3 catalyst: effect of Mn/W ratio
Hasan Oliaei Torshizi, Ali Nakhaei Pour(), Alireza Salimi, Melika Ghadamyari
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
 Download: PDF(1058 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, Mn-Na2WO4/γ-Al2O3 catalysts with varying ratios of Mn/W were prepared using the dry impregnation method. These catalysts were then tested for their suitability in the oxidative coupling of methane reaction. The X-ray photoelectron results revealed the presence of the tetrahedral WO42– phase in all prepared catalysts. It is believed that the presence of this phase is associated with high catalyst activity, indicating the potential of the catalysts for the desired reaction. The activity results show that the catalyst with a high Mn/W ratio exhibited higher activity at 800 °C, whereas the catalyst with a low Mn/W ratio showed greater activity at 850 °C. This suggests that the Mn/W ratio influences the reaction temperature at which the catalyst is most active. Furthermore, the X-ray diffraction results of the treated catalysts revealed that the catalyst with a high Mn/W ratio exhibited more MnAl2O4 at 800 °C, whereas the catalyst with a low Mn/W ratio contained more MnWO4 at 850 °C. The results suggest that the presence of MnAl2O4 sites may promote a more facile Mn2+ ↔ Mn3+ cycle at lower temperatures than the MnWO4 site, potentially contributing to the enhanced catalyst activity in the oxidative coupling of methane reaction at 800 °C.

Keywords oxidative coupling of methane      Mn-Na2WO4      methane      Al2O3     
Corresponding Author(s): Ali Nakhaei Pour   
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work.
Just Accepted Date: 06 September 2023   Issue Date: 06 November 2023
 Cite this article:   
Hasan Oliaei Torshizi,Ali Nakhaei Pour,Alireza Salimi, et al. Oxidative coupling of methane by Mn-Na2WO4/γ-Al2O3 catalyst: effect of Mn/W ratio[J]. Front. Chem. Sci. Eng., 2024, 18(1): 1.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2367-z
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I1/1
Fig.1  Schematic representation of the catalyst activity test in the present work (1: gas cylinders, 2: pressure regulators, 3: needle valves, 4: digital pressure controllers, 5: MFC, 6: non-return valves, 7: ball valves, 8: mixing chamber, 9: TIC, 10: cold trap, 11: BPR (back pressure regulator), 12: cold water circulator, 13: flow meter, 14: gas chromatograph (GC), 15: tubular reactor and catalyst bed, 16: tubular furnace).
Fig.2  FTIR of the prepared catalysts.
Fig.3  The XRD patterns of the fresh calcined catalysts.
Fig.4  The XRD patterns of treated catalysts at 800–850 °C, CH4/O2 = 4 molar ratios, with a GHSV of 12000 h–1 at atmospheric pressure after 1-h activity test. Catalysts were (a) treated at 800 °C, (b) treated at 825 °C, and (c) treated at 850 °C (The peak related to γ-Al2O3 (■), MnAl2O4 (Δ), Na2WO4 (●), Mn2O3 (▲), and MnWO4 (?)).
Fig.5  TPR resuolts f the prepared catalysts.
Fig.6  FESEM of the prepared catalysts.
Fig.7  High resolution of Mn 2p of (a) fresh catalysts, (b) treated at 800 °C, (c) treated at 825 °C and (d) treated at 850 °C, and W 4f spectra of (e) the fresh catalysts, (f) treated at 800 °C, (g) treated at 825 °C and (h) treated at 850 °C.
Fig.8  High resolution of O 1s spectra and deconvolution oxygen results of (a) fresh catalysts, (b) treated at 800 °C, (c) treated at 825 °C and (d) treated at 850 °C.
CatalystCH4/O2T/oCCH4 Conversion/%Selectivity/%
CO2COC2H4C2H6
Ac285068.332.940.214.311.7
485062.124.846.118.29.8
282566.729.539.616.213.8
482564.820.841.823.313.2
280066.228.641.915.113.4
480065.620.043.322.313.5
Bc285067.632.438.815.012.6
485064.524.244.019.611.0
282566.931.341.114.012.3
482563.723.846.718.010.6
280066.133.548.09.28.3
480062.925.754.511.57.2
Cc285069.130.636.617.114.6
485065.822.841.222.412.6
282567.532.842.912.210.9
482564.324.848.416.19.6
280065.637.854.03.93.7
480062.428.059.07.64.8
Tab.1  CH4 conversion (%) and product selectivity (%) of prepared catalysts (SV = 12000 h–1)
CatalystC2H4/%C2H6/%CO2/%CO/%C2H4/C2H6CO2/CORef.
Mn-Na2WO4/SiO235.616.229.718.42.21.61[18]
Mn-Na2WO4/SiO244.927.017.99.91.71.8[41]
Mn-Na2WO4/MgO17.946.928.270.44[41]
Na2WO4/TiO222.315.926.135.41.40.74[47]
AC22.313.520.043.31.650.46This work
Tab.2  Comparison of the products selectivity (%) of the OCM catalysts
1 G K Heilig . The greenhouse gas methane (CH4): sources and sinks, the impact of population growth, possible interventions. Population and Environment, 1994, 16(2): 109–137
https://doi.org/10.1007/BF02208779
2 T Eren , C Polat . Natural gas underground storage and oil recovery with horizontal wells. Journal of Petroleum Science Engineering, 2020, 187: 106753
https://doi.org/10.1016/j.petrol.2019.106753
3 C Karakaya , R J Kee . Progress in the direct catalytic conversion of methane to fuels and chemicals. Progress in Energy and Combustion Science, 2016, 55: 60–97
https://doi.org/10.1016/j.pecs.2016.04.003
4 M Mousavi , A Nakhaei Pour . Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method. New Journal of Chemistry, 2019, 43(27): 10763–10773
https://doi.org/10.1039/C9NJ01805K
5 A Nakhaei Pour , M R Housaindokht , S M Kamali Shahri . Fischer-Tropsch synthesis over cobalt/CNTs catalysts: functionalized support and catalyst preparation effect on activity and kinetic parameters. Industrial & Engineering Chemistry Research, 2018, 57(41): 13639–13649
https://doi.org/10.1021/acs.iecr.8b02485
6 A Nakhaei Pour , J Karimi , S Taghipoor , M Gholizadeh , M Hashemian . Fischer-Tropsch synthesis over CNT-supported cobalt catalyst: effect of magnetic field. Journal of the Indian Chemical Society, 2017, 14(7): 1477–1488
7 M Behrooz , M H Peyrovi , A Nakhaei Pour . Direct partial oxidation (dpo) of methane to higher hydrocarbons by modified h-Zsm5 catalyst. Reaction Kinetics and Catalysis Letters, 2001, 73(1): 127–133
https://doi.org/10.1023/A:1013993309356
8 Y Liu , E H Osta , A S Poryvaev , M V Fedin , A Longo , A Nefedov , N Kosinov . Direct conversion of methane to zeolite-templated carbons, light hydrocarbons, and hydrogen. Carbon, 2023, 201: 535–541
https://doi.org/10.1016/j.carbon.2022.09.050
9 A Nakhaei Pour , M R Housaindokht . A new kinetic model for direct CO2 hydrogenation to higher hydrocarbons on a precipitated iron catalyst: effect of catalyst particle size. Journal of Energy Chemistry, 2017, 26(3): 359–367
https://doi.org/10.1016/j.jechem.2016.12.006
10 Y Gambo , A Jalil , S Triwahyono , A Abdulrasheed . Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: a review. Journal of Industrial and Engineering Chemistry, 2018, 59: 218–229
https://doi.org/10.1016/j.jiec.2017.10.027
11 C A Ortiz-Bravo , C A Chagas , F S Toniolo . Oxidative coupling of methane (OCM): an overview of the challenges and opportunities for developing new technologies. Journal of Natural Gas Science and Engineering, 2021, 96: 104254
https://doi.org/10.1016/j.jngse.2021.104254
12 C Karakaya , H Zhu , C Loebick , J G Weissman , R J Kee . A detailed reaction mechanism for oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst for non-isothermal conditions. Catalysis Today, 2018, 312: 10–22
https://doi.org/10.1016/j.cattod.2018.02.023
13 S Sourav , Y Wang , D Kiani , J Baltrusaitis , R R Fushimi , I E Wachs . New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2 catalysts. Angewandte Chemie International Edition, 2021, 60(39): 21502–21511
https://doi.org/10.1002/anie.202108201
14 J Wu , S Li , J Niu , X Fang . Mechanistic study of oxidative coupling of methane over Mn2O3-Na2WO4SiO2 catalyst. Applied Catalysis A, General, 1995, 124(1): 9–18
https://doi.org/10.1016/0926-860X(94)00245-2
15 G Zhao , J Ni , J Si , W Sun , Y Lu . Low-temperature light-off MnOx-Na2WO4-based catalysts: a step forward to OCM process industrialization. ChemPhysChem, 2022, 23(22): e202200365
https://doi.org/10.1002/cphc.202200365
16 S Gu , J Kang , T Lee , J Shim , J W Choi , D J Suh , H Lee , C Yoo , H Baik , J Choi , J M Ha . Na2WO4/Mn supported on all-silica delaminated zeolite for the optimal oxidative coupling of methane via the effective stabilization of tetrahedral WO4: elucidating effects of support precursors with different crystal structures, Al-addition, and morphologies. Chemical Engineering Journal, 2023, 457: 141057
https://doi.org/10.1016/j.cej.2022.141057
17 K Jaroenpanon , W Tiyatha , T Chukeaw , S Sringam , T Witoon , C Wattanakit , M Chareonpanich , K Faungnawakij , A Seubsai . Synthesis of Na2WO4-MnxOy supported on SiO2 or La2O3 as fiber catalysts by electrospinning for oxidative coupling of methane. Arabian Journal of Chemistry, 2022, 15(2): 103577
https://doi.org/10.1016/j.arabjc.2021.103577
18 S M K Shahri , A Nakhaei Pour . Ce-promoted Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane at atmospheric pressure. Journal of Natural Gas Chemistry, 2010, 19(1): 47–53
https://doi.org/10.1016/S1003-9953(09)60022-0
19 T N Nguyen , K Seenivasan , S Nakanowatari , P Mohan , T P N Tran , S Nishimura , K Takahashi , T Taniike . Factors to influence low-temperature performance of supported Mn-Na2WO4 in oxidative coupling of methane. Molecular Catalysis, 2021, 516: 111976
https://doi.org/10.1016/j.mcat.2021.111976
20 C A Ortiz-Bravo , S J Figueroa , R Portela , C A Chagas , M A Bañares , F S Toniolo . Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures. Journal of Catalysis, 2022, 408: 423–435
https://doi.org/10.1016/j.jcat.2021.06.021
21 M Yildiz , Y Aksu , U Simon , K Kailasam , O Goerke , F Rosowski , R Schomäcker , A Thomas , S Arndt . Enhanced catalytic performance of MnxOy-Na2WO4/SiO2 for the oxidative coupling of methane using an ordered mesoporous silica support. Chemical Communications (Cambridge), 2014, 50(92): 14440–14442
https://doi.org/10.1039/C4CC06561A
22 D Kiani , S Sourav , J Baltrusaitis , I E Wachs . Oxidative coupling of methane (OCM) by SiO2-supported tungsten oxide catalysts promoted with Mn and Na. ACS Catalysis, 2019, 9(7): 5912–5928
https://doi.org/10.1021/acscatal.9b01585
23 S Arndt , T Otremba , U Simon , M Yildiz , H Schubert , R Schomäcker . Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Applied Catalysis A, General, 2012, 425: 53–61
https://doi.org/10.1016/j.apcata.2012.02.046
24 M Yıldız . Mesoporous TiO2-rutile supported MnxOy-Na2WO4: preparation, characterization and catalytic performance in the oxidative coupling of methane. Journal of Industrial and Engineering Chemistry, 2019, 76: 488–499
https://doi.org/10.1016/j.jiec.2019.04.016
25 T Baidya , N Van Vegten , R Verel , Y Jiang , M Yulikov , T Kohn , G Jeschke , A Baiker . SrO·Al2O3 mixed oxides: a promising class of catalysts for oxidative coupling of methane. Journal of Catalysis, 2011, 281(2): 241–253
https://doi.org/10.1016/j.jcat.2011.05.005
26 S Sourav , Y Wang , D Kiani , J Baltrusaitis , R R Fushimi , I E Wachs . Resolving the types and origin of active oxygen species present in supported Mn-Na2WO4/SiO2 catalysts for oxidative coupling of methane. ACS Catalysis, 2021, 11(16): 10288–10293
https://doi.org/10.1021/acscatal.1c02315
27 Z Aydin , A Zanina , V A Kondratenko , J Rabeah , J Li , J Chen , Y Li , G Jiang , H Lund , S Bartling . et al.. Effects of N2O and water on activity and selectivity in the oxidative coupling of methane over Mn-Na2WO4/SiO2: role of oxygen species. ACS Catalysis, 2022, 12(2): 1298–1309
https://doi.org/10.1021/acscatal.1c04915
28 N Sun , J Zhang , L Ling , R Zhang , L Jia , D Li , B Wang . Effect of different oxygen species on the oxidative coupling of methane over TiO2 catalysts. Applied Catalysis A, General, 2023, 650: 118998
https://doi.org/10.1016/j.apcata.2022.118998
29 S Sourav , D Kiani , Y Wang , J Baltrusaitis , R R Fushimi , I E Wachs . Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction. Catalysis Today, 2023, 416: 113837
https://doi.org/10.1016/j.cattod.2022.07.005
30 M Yildiz , U Simon , T Otremba , Y Aksu , K Kailasam , A Thomas , R Schomäcker , S Arndt . Support material variation for the MnxOy-Na2WO4/SiO2 catalyst. Catalysis Today, 2014, 228: 5–14
https://doi.org/10.1016/j.cattod.2013.12.024
31 Z C JiangH GongS B Li. Methane activation over Mn2O3-Na2WO4/SiO2 catalyst and oxygen spillover. In: Studies in Surface Science and Catalysis. Elsevier, 1997, 481–490
32 B Yan , L Lin , J Wu , F Lei . Photoluminescence of rare earth phosphors Na0.5Gd0.5WO4:RE3+ and Na0.5Gd0.5(Mo0.75W0.25)O4:RE3+ (RE = Eu, Sm, Dy). Journal of Fluorescence, 2011, 21(1): 203–211
https://doi.org/10.1007/s10895-010-0706-1
33 W Tiyatha , T Chukeaw , S Sringam , T Witoon , M Chareonpanich , G Rupprechter , A Seubsai . Oxidative coupling of methane—comparisons of MnTiO3-Na2WO4 and MnOx-TiO2-Na2WO4 catalysts on different silica supports. Scientific Reports, 2022, 12(1): 2595
https://doi.org/10.1038/s41598-022-06598-6
34 B Xu , Y Yang , Y Xu , B Han , Y Wang , X Liu , Z Yan . Synthesis and characterization of mesoporous Si-modified alumina with high thermal stability. Microporous and Mesoporous Materials, 2017, 238: 84–89
https://doi.org/10.1016/j.micromeso.2016.02.031
35 P Kidamorn , W Tiyatha , T Chukeaw , C Niamnuy , M Chareonpanich , H Sohn , A Seubsai . Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4-TiO2-MnOx/SiO2 catalysts with alkali or alkali earth oxide additives. ACS Omega, 2020, 5(23): 13612–13620
https://doi.org/10.1021/acsomega.0c00537
36 Z E A Abdalla , B Li , A Tufail . Preparation of phosphate promoted Na2WO4/Al2O3 catalyst and its application for oxidative desulfurization. Journal of Industrial and Engineering Chemistry, 2009, 15(6): 780–783
https://doi.org/10.1016/j.jiec.2009.09.026
37 A Vamvakeros , D Matras , S D Jacques , M di Michiel , V Middelkoop , P Cong , S W Price , C L Bull , P Senecal , A M Beale . Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane. Catalysis Today, 2021, 364: 242–255
https://doi.org/10.1016/j.cattod.2020.05.045
38 I Ismagilov , E Matus , V Kuznetsov , M Kerzhentsev , S Yasnik , T Larina , I Prosvirin , R Navarro , J Fierro , G Gerritsen . Effect of preparation mode on the properties of Mn-Na-W/SiO2 catalysts for oxidative coupling of methane: conventional methods vs. POSS nanotechnology. Eurasian Chemico-Technological Journal, 2016, 18(2): 93–110
https://doi.org/10.18321/ectj430
39 V Bayer , R Podloucky , C Franchini , F Allegretti , B Xu , G Parteder , M G Ramsey , S Surnev , F P Netzer . Formation of Mn3O4 (001) on MnO (001): surface and interface structural stability. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(16): 165428
https://doi.org/10.1103/PhysRevB.76.165428
40 J H Scofield . Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomena, 1976, 8(2): 129–137
https://doi.org/10.1016/0368-2048(76)80015-1
41 T W Elkins , H E Hagelin-Weaver . Characterization of Mn-Na2WO4/SiO2 and Mn-Na2WO4/MgO catalysts for the oxidative coupling of methane. Applied Catalysis A, General, 2015, 497: 96–106
https://doi.org/10.1016/j.apcata.2015.02.040
42 G J Kim , J T Ausenbaugh , H T Hwang . Effect of TiO2 on the performance of Mn/Na2WO4 catalysts in oxidative coupling of methane. Industrial & Engineering Chemistry Research, 2021, 60(10): 3914–3921
https://doi.org/10.1021/acs.iecr.0c06126
43 S Gu , H S Oh , J W Choi , D J Suh , J Jae , J Choi , J M Ha . Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: reducibility of metal additives to manipulate the catalytic activity. Applied Catalysis A, General, 2018, 562: 114–119
https://doi.org/10.1016/j.apcata.2018.05.031
44 H Schwarz . Chemistry with methane: concepts rather than recipes. Angewandte Chemie International Edition, 2011, 50(43): 10096–10115
https://doi.org/10.1002/anie.201006424
45 A Zanina , V A Kondratenko , H Lund , J Li , J Chen , Y Li , G Jiang , E V Kondratenko . Performance-defining factors of (MnOx)-M2WO4/SiO2 (M = Na, K, Rb, or Cs) catalysts in oxidative coupling of methane. Journal of Catalysis, 2023, 419: 68–79
https://doi.org/10.1016/j.jcat.2023.02.004
46 P Wang , G Zhao , Y Liu , Y Lu . TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst for oxidative coupling of methane: solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Applied Catalysis A, General, 2017, 544: 77–83
https://doi.org/10.1016/j.apcata.2017.07.012
47 V Jodaian , M Mirzaei . Ce-promoted Na2WO4/TiO2 catalysts for the oxidative coupling of methane. Inorganic Chemistry Communications, 2019, 100: 97–100
https://doi.org/10.1016/j.inoche.2018.12.028
48 S B Li . Oxidative coupling of methane over W-Mn/SiO2 catalyst. Chinese Journal of Chemistry, 2001, 19(1): 16–21
https://doi.org/10.1002/cjoc.20010190104
49 Y Wang , S Sourav , J P Malizia , B Thompson , B Wang , M R Kunz , E Nikolla , R Fushimi . Deciphering the mechanistic role of individual oxide phases and their combinations in supported Mn-Na2WO4 catalysts for oxidative coupling of methane. ACS Catalysis, 2022, 12(19): 11886–11898
https://doi.org/10.1021/acscatal.2c03725
50 J Si , G Zhao , T Lan , J Ni , W Sun , Y Liu , Y Lu . Insight into the role of Na2WO4 in a low-temperature light-off Mn7SiO12-Na2WO4/cristobalite catalyst for oxidative coupling of methane. ACS Catalysis, 2022, 13(2): 1033–1044
https://doi.org/10.1021/acscatal.2c04637
[1] Guowei Wang, Lanhui Zhou, Huanling Zhang, Chunlei Zhu, Xiaolin Zhu, Honghong Shan. The stabilization effect of Al2O3 on unconventional Pb/SiO2 catalyst for propane dehydrogenation[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1423-1429.
[2] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[3] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[4] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[5] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[6] Alberto T. Penteado, Mijin Kim, Hamid R. Godini, Erik Esche, Jens-Uwe Repke. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production[J]. Front. Chem. Sci. Eng., 2018, 12(4): 598-618.
[7] Shufeng Shan, Haiyan Liu, Gang Shi, Xiaojun Bao. Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 59-69.
[8] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[9] Zhong HE,Xianqin WANG. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2014, 8(3): 369-377.
[10] Yan LI,Zhehao WEI,Yong WANG. Ni/MgO catalyst prepared via dielectric-barrier discharge plasma with improved catalytic performance for carbon dioxide reforming of methane[J]. Front. Chem. Sci. Eng., 2014, 8(2): 133-140.
[11] Anton SHALYGIN, Evgenii PAUKSHTIS, Evgenii KOVALYOV, Bair BAL’ZHINIMAEV. Light olefins synthesis from С12 paraffins via oxychlorination processes[J]. Front Chem Sci Eng, 2013, 7(3): 279-288.
[12] Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor[J]. Front Chem Sci Eng, 2013, 7(3): 347-356.
[13] Piyawat PUE-ON, Vissanu MEEYOO, Thirasak RIRKSOMBOOON. Methane partial oxidation over NiO-MgO/Ce0.75Zr0.25O2 catalysts[J]. Front Chem Sci Eng, 2013, 7(3): 289-296.
[14] M. ABDELLAHI, M. ZAKERI, H. BAHMANPOUR. Events and reaction mechanisms during the synthesis of an Al2O3-TiB2 nanocomposite via high energy ball milling[J]. Front Chem Sci Eng, 2013, 7(2): 123-129.
[15] Xianyun LIU, Jianzhou LIU, Feifei GENG, Zhanku LI, Ping LI, Wanli GONG. Synthesis and properties of PdO/CeO2-Al2O3 catalysts for methane combustion[J]. Front Chem Sci Eng, 2012, 6(1): 34-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed