Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (3) : 325-337    https://doi.org/10.1007/s11707-013-0394-7
RESEARCH ARTICLE
Emergy evaluation of the contribution of irrigation water, and its utilization, in three agricultural systems in China
Dan CHEN1,2,Zhaohui LUO3,*(),Michael WEBBER2,Jing CHEN1,Weiguang WANG4
1. Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China (Ministry of Education), College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
2. Department of Resource Management and Geography, The University of Melbourne, Victoria 3010, Australia
3. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
4. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
 Download: PDF(423 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Emergy theory and method are used to evaluate the contribution of irrigation water, and the process of its utilization, in three agricultural systems. The agricultural systems evaluated in this study were rice, wheat, and oilseed rape productions in an irrigation pumping district of China. A corresponding framework for emergy evaluation and sensitivity analysis methods was proposed. Two new indices, the fraction of irrigation water (FIW), and the irrigation intensity of agriculture (IIA), were developed to depict the contribution of irrigation water. The calculated FIW indicated that irrigation water used for the rice production system (34.7%) contributed more than irrigation water used for wheat (5.3%) and oilseed rape (11.2%) production systems in a typical dry year. The wheat production with an IIA of 19.0 had the highest net benefit from irrigation compared to the rice (2.9) and oilseed rape (8.9) productions. The transformities of the systems’ products represented different energy efficiencies for rice (2.50E+05 sej·J-1), wheat (1.66E+05 sej·J-1) and oilseed rape (2.14E+05 sej·J-1) production systems. According to several emergy indices, of the three systems evaluated, the rice system had the greatest level of sustainability. However, all of them were less sustainable than the ecological agricultural systems. A sensitivity analysis showed that the emergy inputs of irrigation water and nitrogenous fertilizer were the highest sensitivity factors influencing the emergy ratios. Best Management Practices, and other agroecological strategies, could be implemented to make further improvements in the sustainability of the three systems.

Keywords emergy      evaluation      irrigation      agriculture      sustainability     
Corresponding Author(s): Zhaohui LUO   
Issue Date: 04 July 2014
 Cite this article:   
Dan CHEN,Zhaohui LUO,Michael WEBBER, et al. Emergy evaluation of the contribution of irrigation water, and its utilization, in three agricultural systems in China[J]. Front. Earth Sci., 2014, 8(3): 325-337.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0394-7
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I3/325
No.ItemRiceWheatOilseed rape
1Growth stage10 June –15 SeptemberEarly November – early MayEarly October –late May
2Rainfall in the growth stage/mm423224257
3Irrigation water/(m3·Mu-1)4704080
4Irrigated area/Mu876568120
5Annual yield/( kg·Mu-1)510400180
6Nitrogenous fertilizer/( kg·Mu-1)13.012.09.5
7Phosphate fertilizer/( kg·Mu-1)1.20.40.8
8Potash fertilizer/( kg·Mu-1)0.00.10.0
9Compound fertilizer/ (kg·Mu-1)9.011.28.0
10Pesticide/( kg·Mu-1)2.00.40.4
11Seeds/( kg·Mu-1)1.014.50.3
12Machinery service/( CNY·Mu-1)1809030
13Labor/(CNY·Mu-1)161104228
Tab.1  Main data for rice, wheat and oilseed rape production (1 Mu= 667 m2)
Fig.1  Energy systems diagram for an irrigated agricultural production system.
No.ItemRaw data a)Solar transformitySolar emergy
Renewable resources (R)7.10E+14sej·yr-1
1Sunlight7.73E+11J·yr-11.00E+00sej·J-1b)7.73E+11sej·yr-1
2Wind, kinetic energy4.60E+08J·yr-12.45E+03sej·J-1b)1.13E+12sej·yr-1
3Rain, geopotential1.66E+07J·yr-11.68E+04sej·J-1c)2.78E+11sej·yr-1
4Rain, chemical1.39E+09J·yr-13.10E+04sej·J-1b)4.32E+13sej·yr-1
5Irrigation water2.31E+09J·yr-12.88E+05sej·J-1d)6.67E+14sej·yr-1
Nonrenewable resources (N)2.03E+12sej·yr-1
6Soil loss1.64E+07J·yr-11.24E+05sej·J-1b)2.03E+12sej·yr-1
Materials (M)6.72E+14sej·yr-1
7Nitrogenous fertilizer1.30E+04g·yr-14.05E+10sej·g-1e)5.27E+14sej·yr-1
8Phosphate fertilizer1.20E+03g·yr-13.70E+10sej·g-1e)4.44E+13sej·yr-1
9Potash fertilizer0.00E+00g·yr-12.92E+09sej·g-1e)0.00E+00sej·yr-1
10Compound fertilizer9.00E+03g·yr-14.70E+09sej·g-1f)4.23E+13sej·yr-1
11Pesticide2.00E+03g·yr-12.49E+10sej·g-1e)4.98E+13sej·yr-1
12Seeds2.60E+07J·yr-13.36E+05sej·J-1f)8.74E+12sej·yr-1
Services (S)5.40E+14sej·yr-1
13Machinery service2.59E+01$·yr-11.10E+13sej·$-1g)2.85E+14sej·yr-1
14Labor2.32E+01$·yr-11.10E+13sej·$-1g)2.55E+14sej·yr-1
Total emergy yield (Y)1.92E+15sej·yr-1
Output (O)
15Rice7.70E+09J·yr-12.50E+05sej·J-1h)1.92E+15sej·yr-1
Tab.2  Emergy evaluation of the irrigated rice production system (1 Mu=667 m2)
No.ItemRaw data aSolar transformitySolar emergy
Renewable resources (R)7.96E+13sej·yr-1
1Sunlight1.43E+12J·yr-11.00E+00sej·J-1b)1.43E+12sej·yr-1
2Wind, kinetic energy8.51E+08J·yr-12.45E+03sej·J-1b)2.09E+12sej·yr-1
3Rain, geopotential8.77E+06J·yr-11.68E+04sej·J-1c)1.47E+11sej·yr-1
4Rain, chemical7.37E+08J·yr-13.10E+04sej·J-1b)2.28E+13sej·yr-1
5Irrigation water1.97E+08J·yr-12.88E+05sej·J-1d)5.68E+13sej·yr-1
Nonrenewable resources (N)3.75E+12sej·yr-1
6Soil loss3.02E+07J·yr-11.24E+05sej·J-1b)3.75E+12sej·yr-1
Materials (M)6.90E+14sej·yr-1
7Nitrogenous fertilizer1.20E+04g·yr-14.05E+10sej·g-1e)4.86E+14sej·yr-1
8Phosphate fertilizer4.00E+02g·yr-13.70E+10sej·g-1e)1.48E+13sej·yr-1
9Potash fertilizer1.00E+02g·yr-12.92E+09sej·g-1e)2.92E+11sej·yr-1
10Compound fertilizer1.12E+04g·yr-14.70E+09sej·g-1f)5.26E+13sej·yr-1
11Pesticide4.00E+02g·yr-12.49E+10sej·g-1e)9.96E+12sej·yr-1
12Seeds3.77E+08J·yr-13.36E+05sej·J-1f)1.27E+14sej·yr-1
Services (S)3.07E+14sej·yr-1
13Machinery service1.30E+01$·yr-11.10E+13sej·$-1g)1.43E+14sej·yr-1
14Labor1.49E+01$·yr-11.10E+13sej·$-1g)1.64E+14sej·yr-1
Total emergy yield (Y)1.08E+15sej·yr-1
Output (O)
15Wheat6.52E+09J·yr-11.66E+05sej·J-1h)1.08E+15sej·yr-1
Tab.3  Emergy evaluation of the irrigated wheat production system (1 Mu=667 m2)
No.ItemRaw data a)Solar transformitySolar emergy
Renewable resources (R)1.40E+14sej·yr-1
1Sunlight1.66E+12J·yr-11.00E+00sej·J-1b)1.66E+12sej·yr-1
2Wind, kinetic energy9.91E+08J·yr-12.45E+03sej·J-1b)2.43E+12sej·yr-1
3Rain, geopotential1.01E+07J·yr-11.68E+04sej·J-1c)1.69E+11sej·yr-1
4Rain, chemical8.47E+08J·yr-13.10E+04sej·J-1b)2.63E+13sej·yr-1
5Irrigation water3.94E+08J·yr-12.88E+05sej·J-1d)1.14E+14sej·yr-1
Nonrenewable resources (N)4.36E+12sej·yr-1
6Soil loss3.52E+07J·yr-11.24E+05sej·J-1b)4.36E+12sej·yr-1
Materials (M)4.61E+14sej·yr-1
7Nitrogenous fertilizer9.50E+03g·yr-14.05E+10sej·g-1e)3.85E+14sej·yr-1
8Phosphate fertilizer7.50E+02g·yr-13.70E+10sej·g-1e)2.78E+13sej·yr-1
9Potash fertilizer2.00E+01g·yr-12.92E+09sej·g-1e)5.84E+10sej·yr-1
10Compound fertilizer8.00E+03g·yr-14.70E+09sej·g-1f)3.76E+13sej·yr-1
11Pesticide3.50E+02g·yr-12.49E+10sej·g-1e)8.72E+12sej·yr-1
12Seeds6.50E+06J·yr-13.36E+05sej·J-1f)2.18E+12sej·yr-1
Services (S)4.08E+14sej·yr-1
13Machinery service4.32E+00$·yr-11.10E+13sej·$-1g)4.75E+13sej·yr-1
14Labor3.28E+01$·yr-11.10E+13sej·$-1g)3.61E+14sej·yr-1
Total emergy yield (Y)1.01E+15sej·yr-1
Output (O)
15Oilseed rape4.73E+09J·yr-12.14E+05sej·J-1h)1.01E+15sej·yr-1
Tab.4  Emergy evaluation of the irrigated oilseed rape production system (1 Mu=667 m2)
Fig.2  Structure of emergy inputs for the three irrigated agricultural systems.
No.Emergy indicatorsExpressionQuantity
RiceWheatOilseed rape
1Solar transformity/(sej·J-1)Tr = Y/E2.50E+051.66E+052.14E+05
2Emergy density/(sej·m-2)ED = U/area2.88E+121.62E+121.52E+12
3Fraction of irrigation waterFIW = RI /U34.7%5.3%11.2%
4Irrigation intensity of agricultureIIA = Y/RI2.919.08.9
5Emergy yield ratioEYR = Y/(M+S)1.591.081.17
6Emergy investment ratioEIR = (M+S)/(R+N)1.7011.966.03
7Environmental load ratioELR = (M+N+S)/R1.7112.576.25
8Environmental sustainability indexESI = EYR/ELR0.930.090.19
Tab.5  Emergy indicators for the irrigated agricultural systems
Fig.3  Sensitivity analysis results for the three irrigated agricultural systems (unit: %; emergy inputs with less than 10% change across all the three emergy indices were not shown).
1 Agostinho F, Diniz G, Siche R, Ortega E (2008). The use of emergy assessment and the Geographical Information System in the diagnosis of small family farms in Brazil. Ecol Modell, 210(1–2): 37–57
doi: 10.1016/j.ecolmodel.2007.07.007
2 Amekawa Y, Sseguya H, Onzere S, Carranza I (2010). Delineating the multifunctional role of agroecological practices: toward sustainable livelihoods for smallholder farmers in developing countries. J Sustain Agric, 34(2): 202–228
doi: 10.1080/10440040903433079
3 Barton D N (2002). The transferability of benefit transfer: contingent valuation of water quality improvements in Costa Rica. Ecol Econ, 42(1–2): 147–164
doi: 10.1016/S0921-8009(02)00044-7
4 Bastianoni S, Marchettini N, Panzieri M, Tiezzi E (2001). Sustainability assessment of a farm in the Chianti area (Italy). J Clean Prod, 9(4): 365–373
doi: 10.1016/S0959-6526(00)00079-2
5 Blamey R, Gordon J, Chapman R (1999). Choice modelling: assessing the environmental values of water supply options. Aust J Agric Resour Econ, 43(3): 337–357
doi: 10.1111/1467-8489.00083
6 Brandt-Williams S L (2002). Handbook of Emergy Evaluation. Folio# 4. Emergy of Florida Agriculture (2nd printing). Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, Gainesville, FL
7 Brown M, Bardi E (2001). Handbook of Emergy Evaluation. Folio# 3: Emergy of Ecosystems. Center for Environmental Policy, University of Florida, Gainesville
8 Brown M T, Martínez A, Uche J (2010). Emergy analysis applied to the estimation of the recovery of costs for water services under the European Water Framework Directive. Ecol Modell, 221(17): 2123–2132
doi: 10.1016/j.ecolmodel.2010.06.004
9 Brown M T, McClanahan T (1996). Emergy analysis perspectives of Thailand and Mekong River dam proposals. Ecol Modell, 91(1–3): 105–130
doi: 10.1016/0304-3800(95)00183-2
10 Brown M T, Ulgiati S (1997). Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecol Eng, 9(1–2): 51–69
doi: 10.1016/S0925-8574(97)00033-5
11 Buenfil A A (2001). Emergy evaluation of water. Dissertation for Ph.D Degree. Gainesville: University of Florida
12 Cavalett O, Queiroz J F, Ortega E (2006). Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecol Modell, 193(3–4): 205–224
doi: 10.1016/j.ecolmodel.2005.07.023
13 Chen B, Chen G (2006). Ecological footprint accounting based on emergy—A case study of the Chinese society. Ecol Modell, 198(1–2): 101–114
doi: 10.1016/j.ecolmodel.2006.04.022
14 Chen B, Chen G Q (2009). Emergy-based energy and material metabolism of the Yellow River basin. Commun Nonlinear Sci Numer Simul, 14(3): 923–934
doi: 10.1016/j.cnsns.2007.05.034
15 Chen B, Chen Z, Zhou Y, Zhou J, Chen G (2009a). Emergy as embodied energy based assessment for local sustainability of a constructed wetland in Beijing. Commun Nonlinear Sci Numer Simul, 14(2): 622–635
doi: 10.1016/j.cnsns.2007.05.035
16 Chen D, Chen J, Luo Z H (2012). Communications on emergy indices of regional water ecological-economic system. Ecol Eng, 46: 116–117
doi: 10.1016/j.ecoleng.2012.04.031
17 Chen D, Chen J, Luo Z H, Lv Z W (2009b). Emergy evaluation of the natural value of water resources in Chinese rivers. Environ Manage, 44(2): 288–297
doi: 10.1007/s00267-009-9320-x pmid: 19536593
18 Chen D, Chen J, Lv Z W, Chen X (2008). A quantitative analysis method in water sciences research: emergy theory and method. Journal of China Three Gorges University(Natural Sciences), 30(2): 1–5
19 Chen D, Luo Z H, Webber M, Chen J, Wang W G (2013). Emergy evaluation of a pumping irrigation water production system in China. Frontiers of Earth Science, doi: 10.1007/s11707-013-0367-x
20 Chen D, Webber M, Chen J, Luo Z H (2011). Emergy evaluation perspectives of an irrigation improvement project proposal in China. Ecol Econ, 70(11): 2154–2162
doi: 10.1016/j.ecolecon.2011.06.017
21 Chen G Q, Jiang M M, Chen B, Yang Z F, Lin C (2006). Emergy analysis of Chinese agriculture. Agric Ecosyst Environ, 115(1–4): 161–173
doi: 10.1016/j.agee.2006.01.005
22 Chen S Q, Chen B (2011). Assessing inter-city ecological and economic relations: an emergy-based conceptual model. Frontiers of Earth Science, 5(1): 97–102
doi: 10.1007/s11707-011-0171-4
23 Chen S Q, Chen B (2012). Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: an emergy synthesis. Renew Sustain Energy Rev, 16(6): 3948–3959
doi: 10.1016/j.rser.2012.03.040
24 Connor J D, Schwabe K, King D, Knapp K (2012). Irrigated agriculture and climate change: the influence of water supply variability and salinity on adaptation. Ecol Econ, 77: 149–157
doi: 10.1016/j.ecolecon.2012.02.021
25 Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R V, Paruelo J, Raskin R G, Sutton P, van den Belt M (1998). The value of the world’s ecosystem services and natural capital. Ecol Econ, 25(1): 3–15
doi: 10.1016/S0921-8009(98)00020-2
26 de Barros I, Blazy J M, Rodrigues G S, Tournebize R, Cinna J P (2009). Emergy evaluation and economic performance of banana cropping systems in Guadeloupe (French West Indies). Agric Ecosyst Environ, 129(4): 437–449
doi: 10.1016/j.agee.2008.10.015
27 Faux J, Perry G M (1999). Estimating irrigation water value using hedonic price analysis: a case study in Malheur County, Oregon. Land Econ, 75(3): 440–452
doi: 10.2307/3147189
28 Gohar A A, Ward F A, Amer S A (2013). Economic performance of water storage capacity expansion for food security. J Hydrol (Amst), 484: 16–25
doi: 10.1016/j.jhydrol.2013.01.005
29 Hau J L, Bakshi B R (2004). Promise and problems of emergy analysis. Ecol Modell, 178(1–2): 215–225
doi: 10.1016/j.ecolmodel.2003.12.016
30 Huang Q, Rozelle S, Lohmar B, Huang J, Wang J (2006). Irrigation, agricultural performance and poverty reduction in China. Food Policy, 31(1): 30–52
doi: 10.1016/j.foodpol.2005.06.004
31 Hussain I, Sial M H, Hussain Z, Akram W (2009). Economic value of irrigation water: evidence from a Punjab Canal. Lahore Journal of Economics, 14(1): 69–84
32 Hussain I, Turral H, Molden D, Ahmad M D (2007). Measuring and enhancing the value of agricultural water in irrigated river basins. Irrig Sci, 25(3): 263–282
doi: 10.1007/s00271-007-0061-4
33 Ingwersen W W (2010). Uncertainty characterization for emergy values. Ecol Modell, 221(3): 445–452
doi: 10.1016/j.ecolmodel.2009.10.032
34 Jabeen S, Ashfaq M, Baig A (2006). Linear program modeling for determining the value of irrigation water. J Agric Soc Sci, 2(2): 101–105
35 Jiang M M, Chen B, Zhou J B, Tao F R, Li Z, Yang Z F, Chen G Q (2007). Emergy account for biomass resource exploitation by agriculture in China. Energy Policy, 35(9): 4704–4719
doi: 10.1016/j.enpol.2007.03.014
36 Jiang W L (1998). The research of value-model assessment about value of water resource. Journal of natural resources, 1: 35–43
37 Kang D, Park S S (2002). Emergy evaluation perspectives of a multipurpose dam proposal in Korea. J Environ Manage, 66(3): 293–306
pmid: 12448407
38 Kim C, Schaible G D (2000). Economic benefits resulting from irrigation water use: theory and an application to groundwater use. Environ Resour Econ, 17(1): 73–87
doi: 10.1023/A:1008340504971
39 La Rosa A, Siracusa G, Cavallaro R (2008). Emergy evaluation of Sicilian red orange production. A comparison between organic and conventional farming. J Clean Prod, 16(17): 1907–1914
doi: 10.1016/j.jclepro.2008.01.003
40 Lan S F, Qin P, Lu H F (2002). Emergy Analysis of Eco-economic System. Beijing: Chemical Industry Press
41 Larson C (2013). Climate change. Losing arable land, China faces stark choice: adapt or go hungry. Science, 339(6120): 644–645
doi: 10.1126/science.339.6120.644 pmid: 23393241
42 Lefroy E, Rydberg T (2003). Emergy evaluation of three cropping systems in southwestern Australia. Ecol Modell, 161(3): 195–211
doi: 10.1016/S0304-3800(02)00341-1
43 Li L, Lu H, Campbell D E, Ren H (2011a). Methods for estimating the uncertainty in emergy table-form models. Ecol Modell, 222(15): 2615–2622
doi: 10.1016/j.ecolmodel.2011.04.023
44 Li L, Lu H, Ren H, Kang W, Chen F (2011b). Emergy evaluations of three aquaculture systems on wetlands surrounding the Pearl River Estuary, China. Ecol Indic, 11(2): 526–534
doi: 10.1016/j.ecolind.2010.07.008
45 Lima J S G, Rivera E C, Focken U (2012). Emergy evaluation of organic and conventional marine shrimp farms in Guaraira Lagoon, Brazil. J Clean Prod, 35: 194–202
doi: 10.1016/j.jclepro.2012.05.009
46 Lu H F, Bai Y, Ren H, Campbell D E (2010). Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China. J Environ Manage, 91(12): 2727–2735
doi: 10.1016/j.jenvman.2010.07.025 pmid: 20702024
47 Lu H F, Kang W L, Campbell D E, Ren H, Tan Y W, Feng R X, Luo J T, Chen F P (2009). Emergy and economic evaluations of four fruit production systems on reclaimed wetlands surrounding the Pearl River Estuary, China. Ecol Eng, 35(12): 1743–1757
doi: 10.1016/j.ecoleng.2009.08.001
48 Lv C M, Wu Z N (2009). Emergy analysis of regional water ecological–economic system. Ecol Eng, 35(5): 703–710
doi: 10.1016/j.ecoleng.2008.11.003
49 Martin J F, Diemont S A W, Powell E, Stanton M, Levy-Tacher S (2006). Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agric Ecosyst Environ, 115(1–4): 128–140
doi: 10.1016/j.agee.2005.12.016
50 Mayer A L (2008). Strengths and weaknesses of common sustainability indices for multidimensional systems. Environ Int, 34(2): 277–291
doi: 10.1016/j.envint.2007.09.004 pmid: 17949813
51 Odum H T (1996). Environmental Accounting: Emergy and Environmental Decision Making. New York: John Wiley & Sons
52 Odum H T (2000). Handbook of Emergy Evaluation. Folio# 2, Emergy of Global Processes. Handbook of Emergy Evaluation. Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, Gainesville, 30
53 Odum H T, Brown M T, Brandt-Williams S (2000). Handbook of Emergy Evaluation. Folio# 1: Introduction and Global Budget. Center for Environmental Policy, Environmental Engineering Sciences, University of Florida, Gainesville
54 Odum H T, Odum E C (2000). Modeling for All Scales: An Introduction to System Simulation. Academic Press
55 Ortega E, Cavalett O, Bonifácio R, Watanabe M (2005). Brazilian soybean production: emergy analysis with an expanded scope. Bull Sci Technol Soc, 25(4): 323–334
doi: 10.1177/0270467605278367
56 ?zerol G, Bressers H, Coenen F (2012). Irrigated agriculture and environmental sustainability: an alignment perspective. Environ Sci Policy, 23: 57–67
doi: 10.1016/j.envsci.2012.07.015
57 Patterson M G (2002). Ecological production based pricing of biosphere processes. Ecol Econ, 41(3): 457–478
doi: 10.1016/S0921-8009(02)00094-0
58 Pimentel D, Pimentel M H (2007). Food, Energy, and Society (3rd Edition). CRC
59 Playán E, Mateos L (2006). Modernization and optimization of irrigation systems to increase water productivity. Agric Water Manage, 80(1–3): 100–116
doi: 10.1016/j.agwat.2005.07.007
60 Pulselli F M, Patrizi N, Focardi S (2011). Calculation of the unit emergy value of water in an Italian watershed. Ecol Modell, 222(16): 2929–2938
doi: 10.1016/j.ecolmodel.2011.04.021
61 Reca J, Roldán J, Alcaide M, Lopez R, Camacho E (2001). Optimisation model for water allocation in deficit irrigation systems: I. Description of the model. Agric Water Manage, 48(2): 103–116
doi: 10.1016/S0378-3774(00)00126-8
62 Rugani B, Benetto E (2012). Improvements to Emergy evaluations by using Life Cycle Assessment. Environ Sci Technol, 46(9): 4701–4712
doi: 10.1021/es203440n pmid: 22489863
63 Rydberg T, Haden A C (2006). Emergy evaluations of Denmark and Danish agriculture: assessing the influence of changing resource availability on the organization of agriculture and society. Agric Ecosyst Environ, 117(2–3): 145–158
doi: 10.1016/j.agee.2006.03.025
64 Sciubba E, Ulgiati S (2005). Emergy and exergy analyses: complementary methods or irreducible ideological options? Energy, 30(10): 1953–1988
doi: 10.1016/j.energy.2004.08.003
65 Seyam I, Hoekstra A, Savenije H (2002). Calculation methods to assess the value of upstream water flows and storage as a function of downstream benefits. Physics and Chemistry of the Earth, Parts A/B/C, 27 (11–22): 977–982
66 Shao L, Wu Z, Zeng L, Chen Z M, Zhou Y, Chen G Q (2013). Embodied energy assessment for ecological wastewater treatment by a constructed wetland. Ecol Modell, 252: 63–71
doi: 10.1016/j.ecolmodel.2012.09.004
67 Shen D J, Liang R J, Wang H (1999). Water Pricing in Theory and Practice. Beijing: Science Press
68 Tsadilas C, Vakalis P (2003). Economic benefit from irrigation of cotton and corn with treated wastewater. Water supply, 3(4): 223–229
69 Ulgiati S, Brown M T (1998). Monitoring patterns of sustainability in natural and man-made ecosystems. Ecol Modell, 108(1–3): 23–36
doi: 10.1016/S0304-3800(98)00016-7
70 Voora V, Thrift C (2010). Using Emergy to Value Ecosystem Goods and Services. Winnipeg: International Institute for Sustainable Development, Canada
71 Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009). Agroecology as a science, a movement and a practice. A review. Agronomy For Sustainable Development, 29(4): 503–515
doi: 10.1051/agro/2009004
72 Xi Y G, Qin P (2009). Emergy evaluation of organic rice-duck mutualism system. Ecol Eng, 35(11): 1677–1683
doi: 10.1016/j.ecoleng.2007.11.006
73 Yan M C, Odum H T (2001). New Visual Angle to View Eco-economic System Emergy Evaluation Case Studies of Chinese Regional Eco-economic System. Beijing: China Zhigong Publishing House
74 Zhang L X, Ulgiati S, Yang Z F, Chen B(2011). Emergy evaluation and economic analysis of three wetland fish farming systems in Nansi Lake area, China. J Environ Manage, 92(3): 683–694
75 Zhang L X, Song B, Chen B (2012). Emergy-based analysis of four farming systems: insight into agricultural diversification in rural China. J Clean Prod, 28(0): 33–44
doi: 10.1016/j.jclepro.2011.10.042
76 Zhang L X, Yang Z F, Chen G Q (2007). Emergy analysis of cropping–grazing system in Inner Mongolia Autonomous Region, China. Energy Policy, 35 (7): 3843–3855
[1] Bilaşco ŞTEFAN, Roşca SANDA, Fodorean IOAN, Vescan IULIU, Filip SORIN, Petrea DĂNUŢ. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models[J]. Front. Earth Sci., 2018, 12(2): 311-324.
[2] Li LI, Xinyuan WANG, Lei LUO, Yanchuang ZHAO, Xin ZONG, Nabil BACHAGHA. Mapping of wind energy potential over the Gobi Desert in Northwest China based on multiple sources of data[J]. Front. Earth Sci., 2018, 12(2): 264-279.
[3] Fangbing MA,Chunhui LI,Xuan WANG,Zhifeng YANG,Chengchun SUN,Peiyu LIANG. A Bayesian method for comprehensive water quality evaluation of the Danjiangkou Reservoir water source area, for the middle route of the South-to-North Water Diversion Project in China[J]. Front. Earth Sci., 2014, 8(2): 242-250.
[4] Dan CHEN, Zhaohui LUO, Michael WEBBER, Jing CHEN, Weiguang WANG. Emergy evaluation of a pumping irrigation water production system in China[J]. Front Earth Sci, 2014, 8(1): 131-141.
[5] Hongzhao TANG, Maosi CHEN, John DAVIS, Wei GAO. Comparison of aerosol optical depth of UV-B Monitoring and Research Program (UVMRP), AERONET and MODIS over continental United States[J]. Front Earth Sci, 2013, 7(2): 129-140.
[6] Mohammad Reza Mansouri Daneshvar, Ali Bagherzadeh. Evaluation of sediment yield in PSIAC and MPSIAC models by using GIS at Toroq Watershed, Northeast of Iran[J]. Front Earth Sci, 2012, 6(1): 83-94.
[7] Yufeng GE, J. Alex THOMASSON, Ruixiu SUI, James WOOTEN. Regression-kriging for characterizing soils with remote-sensing data[J]. Front Earth Sci, 2011, 5(3): 239-244.
[8] Yufeng GE, J. Alex THOMASSON, Ruixiu SUI. Remote sensing of soil properties in precision agriculture: A review[J]. Front Earth Sci, 2011, 5(3): 229-238.
[9] Shaoqing CHEN, Bin CHEN. Assessing inter-city ecological and economic relations: An emergy-based conceptual model[J]. Front Earth Sci, 2011, 5(1): 97-102.
[10] Yu LI, Suocheng DONG, Chuansheng WANG, Xin’an DENG, Qiong GAO, Xianglian LI, Yuzhou LUO, Xiusheng YANG, . Impact of irrigation and other inputs on farm productivity in the upper and middle parts of the Yellow River basin, China[J]. Front. Earth Sci., 2010, 4(3): 345-356.
[11] Sheng WANG, Guanghe RAN, Lin WANG, Biao SHI, . An evaluation on performance of rural eco-environment public expenditure of Chinese local governments : theoretical and empirical analysis[J]. Front. Earth Sci., 2009, 3(4): 431-436.
[12] Shan SHAN, Lina ZHANG, Xuan WANG, Bin CHEN. Township ecosystem health assessment based on fuzzy synthesis evaluation method: a case study of Tongzhou District, Beijing, China[J]. Front Earth Sci Chin, 2009, 3(3): 312-319.
[13] M. ?MIETANKA, J. BRZOZOWSKI, D. ?LIWI?SKI, K. SMARZY?SKA, Z. MIATKOWSKI, M. KALARUS. Pilot implementation of WFD and creation of a tool for catchment management using SWAT: River Zglowiaczka Catchment, Poland[J]. Front Earth Sci Chin, 2009, 3(2): 175-181.
[14] Shiliang LIU, Yuhong DONG, Minxia WEN, Bin CHEN. Quantify the landscape effect and environmental sustainability of rural region planning at town scale near metropolis[J]. Front Earth Sci Chin, 2009, 3(1): 112-117.
[15] WU Junyu, ZENG Rongshu, REN Tianxiang. Geochemistry characteristics and evaluation of the pollution extent of arsenic in wastewater irrigated soil in the North of Tianjin City[J]. Front. Earth Sci., 2008, 2(1): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed