Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (1) : 87-107    https://doi.org/10.1007/s11707-015-0495-6
RESEARCH ARTICLE
Risk management for sulfur dioxide abatement under multiple uncertainties
C. DAI1,W. SUN2,Q. TAN3,2,*(),Y. LIU1,W.T. LU1,H.C. GUO1
1. College of Environmental Science and Engineering, Peking University, Beijing 100871, China
2. Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 7H9, Canada
3. College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
 Download: PDF(1305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, interval-parameter programming, two-stage stochastic programming (TSP), and conditional value-at-risk (CVaR) were incorporated into a general optimization framework, leading to an interval-parameter CVaR-based two-stage programming (ICTP) method. The ICTP method had several advantages: (i) its objective function simultaneously took expected cost and risk cost into consideration, and also used discrete random variables and discrete intervals to reflect uncertain properties; (ii) it quantitatively evaluated the right tail of distributions of random variables which could better calculate the risk of violated environmental standards; (iii) it was useful for helping decision makers to analyze the trade-offs between cost and risk; and (iv) it was effective to penalize the second-stage costs, as well as to capture the notion of risk in stochastic programming. The developed model was applied to sulfur dioxide abatement in an air quality management system. The results indicated that the ICTP method could be used for generating a series of air quality management schemes under different risk-aversion levels, for identifying desired air quality management strategies for decision makers, and for considering a proper balance between system economy and environmental quality.

Keywords risk management      conditional value-at-risk      interval optimization      two-stage programming      uncertainty      air quality management     
Corresponding Author(s): Q. TAN   
Just Accepted Date: 05 March 2015   Online First Date: 28 April 2015    Issue Date: 25 December 2015
 Cite this article:   
C. DAI,W. SUN,Q. TAN, et al. Risk management for sulfur dioxide abatement under multiple uncertainties[J]. Front. Earth Sci., 2016, 10(1): 87-107.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0495-6
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I1/87
Fig.1  The study system.
Fig.2  The frequency of SO2 generation rate for (a) power plant 1, (b) power plant 2, (c) chemical industry plant, (d) petroleum refinery and (e) steel mill.
Scenario Power plant 1 Power plant 2 Chemical industry plant Petroleum refinery Steel mill
Probability/% Emission amount /(tonne·day?1) Probability/% Emission amount /(tonne·day?1) Probability/%)/ Emission amount /(tonne·day?1) Probability/% Emission amount /(tonne·day?1) Probability/% Emission amount /(tonne·day?1)
S1 0.2 [64.8, 68.4] 0.2 [41.3, 43.7] 0.2 [4.5, 4.7] 0.3 [10.3, 10.9] 0.5 [3.1, 3.3]
S2 0.7 [68.4, 72] 0.4 [43.7, 46] 0.4 [4.7, 5] 0.6 [10.9, 11.5] 0.9 [3.3, 3.5]
S3 2.3 [72, 75.6] 0.8 [46, 48.4] 1.2 [5, 5.3] 2 [11.5, 12] 1.8 [3.5, 3.7]
S4 3.1 [75.6, 79.2] 1 [48.4, 50.7] 1.6 [5.3, 5.6] 2.3 [12, 12.6] 2.9 [3.7, 3.9]
S5 3.5 [79.2, 82.7] 3 [50.7, 53.1] 3.7 [5.6, 5.8] 4 [12.6, 13.2] 4.2 [3.9, 4.1]
S6 6.2 [82.7, 86.3] 4.5 [53.1, 55.4] 4.3 [5.8, 6.1] 6.6 [13.2, 13.8] 7.3 [4.1, 4.3]
S7 7.8 [86.3, 89.9] 7 [55.4, 57.8] 7.5 [6.1, 6.4] 9.2 [13.8, 14.3] 11.1 [4.3, 4.5]
S8 10.5 [89.9, 93.5] 8.1 [57.8, 60.1] 10.4 [6.4, 6.6] 11.1 [14.3, 14.9] 13 [4.5, 4.7]
S9 9.8 [93.5, 97] 10.4 [60.1, 62.5] 11.4 [6.6, 6.9] 12.7 [14.9, 15.5] 15.5 [4.7, 4.9]
S10 13.3 [97, 100.6] 10.4 [62.5, 64.8] 13.4 [6.9, 7.2] 11.3 [15.5, 16.1] 14 [4.9, 5.1]
S11 10.6 [100.6, 104.2] 11.3 [64.8, 67.2] 12.5 [7.2, 7.5] 11.9 [16.1, 16.6] 11 [5.1, 5.3]
S12 9.7 [104.2, 107.8] 11.6 [67.2, 69.5] 12.4 [7.5, 7.7] 10.6 [16.6, 17.2] 8.2 [5.3, 5.5]
S13 9.4 [107.8, 111.4] 10.9 [69.5, 71.9] 7.2 [7.7, 8] 6 [17.2, 17.8] 5.5 [5.5, 5.7]
S14 5.3 [111.4, 114.9] 7.7 [71.9, 74.2] 6 [8, 8.3] 4.8 [17.8, 18.4] 2.1 [5.7, 5.9]
S15 3.3 [114.9, 118.5] 5.2 [74.2, 76.6] 4.2 [8.3, 8.6] 3.7 [18.4, 18.9] 0.8 [5.9, 6.1]
S16 2.4 [118.5, 122.1] 3.5 [76.6, 79] 1.7 [8.6, 8.8] 1.9 [18.9, 19.5] 0.6 [6.1, 6.3]
S17 1.1 [122.1, 125.7] 1.7 [79, 81.3] 1 [8.8, 9.1] 0.5 [19.5, 20.1] 0.1 [6.3, 6.5]
S18 0.4 [125.7, 129.3] 1.5 [81.3, 83.7] 0.6 [9.1, 9.4] 0.1 [20.1, 20.7] 0.2 [6.5, 6.7]
S19 0.3 [129.3, 132.8] 0.5 [83.7, 86] 0.1 [9.4, 9.7] 0.2 [20.7, 21.2] 0.2 [6.7, 7]
S20 0.1 [132.8, 136.4] 0.3 [86, 88.4] 0.2 [9.7, 9.9] 0.2 [21.2, 21.8] 0.1 [7, 7.2]
Tab.1  SO2 generation rates under different probability levels
Technology Efficiency/% Regular operation cost /($·tonne?1) Penalty operation cost /($·tonne?1) Capacity/(tonne·day?1)
OPA [75, 80] [47, 54] [70, 76] [100, 110]
AA [82, 90] [65, 71] [90, 99] [75, 80]
LWS [61, 70] [32, 37] [50,60] [85,90]
Tab.2  Parameters of pollution-control technologies
Fig.3  The framework of the ICTP method.
Source Scenario OPA (j = 1) AA (j = 2) LWS (j = 3)
Treated amount of SO2 emission, Xij,opt±/(tonne·day?1) Treated amount of excess SO2 emission, Yijs,opt±/(tonne·day?1) Treated amount of SO2 emission, Xij,opt±/(tonne·day?1) Treated amount of excess SO2 emission, Yijs,opt±/(tonne·day?1) Treated amount of SO2 emission, Xij,opt±/(tonne·day?1) Treated amount of excess SO2 emission, Yijs,opt±/(tonne·day?1)
Power plant 1(i = 1) s = 1 30 0 30 0 24 0
s = 2 30 0 30 0 24 0
s = 3 30 0 30 0 24 0
s = 4 30 0 30 0 24 0
s = 5 30 0 30 0 24 0
s = 6 30 0 30 0 24 [0, 2.3]
s = 7 30 0 30 0 24 [2.3, 5.9]
s = 8 30 0 30 0 24 [5.9, 9.5]
s = 9 30 0 30 0 24 [9.5, 13]
s = 10 30 0 30 0 24 [13, 16.6]
s = 11 30 0 30 0 24 [16.6, 20.2]
s = 12 30 0 30 0 24 [20.2, 23.8]
s = 13 30 [0, 3.4] 30 0 24 [23.8, 24]
s = 14 30 [5.8, 6.9] 30 0 24 [21.6, 24]
s = 15 30 12.6 30 0 24 [18.3, 21.9]
s = 16 30 [13.6, 14.1] 30 0 24 [20.9, 24]
s = 17 30 [17.4, 17.7] 30 0 24 [20.7, 24]
s = 18 30 16.1 30 5.2 24 [20.4, 24]
s = 19 30 13.1 30 12.1 24 [20.1, 23.6]
s = 20 30 10.3 30 18.7 24 [19.8, 23.4]
Power plant 2(i = 2) s = 1 30 0 18 0 12 0
s = 2 30 0 18 0 12 0
s = 3 30 0 18 0 12 0
s = 4 30 0 18 0 12 0
s = 5 30 0 18 0 12 0
s = 6 30 0 18 0 12 0
s = 7 30 0 18 0 12 0
s = 8 30 0 18 0 12 [0, 0.1]
s = 9 30 0 18 0 12 [0.1, 2.5]
s = 10 30 0 18 0 12 [2.5, 4.8]
s = 11 30 0 18 0 12 [4.8, 7.2]
s = 12 30 0 18 0 12 [7.2, 9.5]
s = 13 30 0 18 0 12 [9.5, 11.9]
s = 14 30 [0, 2.2] 18 0 12 [11.9, 12]
s = 15 30 [2.2, 4.6] 18 0 12 12
s = 16 30 [4.6, 7] 18 0 12 12
s = 17 30 [7, 9.3] 18 0 12 12
s = 18 30 [9.3, 11.7] 18 0 12 12
s = 19 30 [11.7, 14] 18 0 12 12
s = 20 30 [14, 16.4] 18 0 12 12
Chemical industry plant (i = 3) s = 1 0 0 0 0 [7.5, 7.7] 0
s = 2 0 0 0 0 [7.5, 7.7] 0
s = 3 0 0 0 0 [7.5, 7.7] 0
s = 4 0 0 0 0 [7.5, 7.7] 0
s = 5 0 0 0 0 [7.5, 7.7] 0
s = 6 0 0 0 0 [7.5, 7.7] 0
s = 7 0 0 0 0 [7.5, 7.7] 0
s = 8 0 0 0 0 [7.5, 7.7] 0
s = 9 0 0 0 0 [7.5, 7.7] 0
s = 10 0 0 0 0 [7.5, 7.7] 0
s = 11 0 0 0 0 [7.5, 7.7] 0
s = 12 0 0 0 0 [7.5, 7.7] 0
s = 13 0 0 0 0 [7.5, 7.7] [0.2, 0.3]
s = 14 0 0 0 0 [7.5, 7.7] [0.5, 0.6]
s = 15 0 0 0 0 [7.5, 7.7] [0.8, 0.9]
s = 16 0 0 0 0 [7.5, 7.7] 1.1
s = 17 0 0 0 0 [7.5, 7.7] [1.3, 1.4]
s = 18 0 0 0 0 [7.5, 7.7] [1.6, 1.7]
s = 19 0 0 0 0 [7.5, 7.7] [1.9, 2]
s = 20 0 0 0 0 [7.5, 7.7] 2.2
Petroleum refinery (i = 4) s = 1 8 0 0 0 7.5 0
s = 2 8 0 0 0 7.5 0
s = 3 8 0 0 0 7.5 0
s = 4 8 0 0 0 7.5 0
s = 5 8 0 0 0 7.5 0
s = 6 8 0 0 0 7.5 0
s = 7 8 0 0 0 7.5 0
s = 8 8 0 0 0 7.5 0
s = 9 8 0 0 0 7.5 0
s = 10 8 0 0 0 7.5 [0, 0.6]
s = 11 8 0 0 0 7.5 [0.6, 1.1]
s = 12 8 0 0 0 7.5 [1.1, 1.7]
s = 13 8 1.2 0 0 7.5 [0.5, 1.1]
s = 14 8 2.3 0 0 7.5 [0, 0.6]
s = 15 8 0 0 0 7.5 [2.9, 3.4]
s = 16 8 3.4 0 0 7.5 [0, 0.6]
s = 17 8 4 0 0 7.5 [0, 0.6]
s = 18 8 4.6 0 0 7.5 [0, 0.6]
s = 19 8 5.2 0 0 7.5 [0, 0.5]
s = 20 8 5.7 0 0 7.5 [0, 0.6]
Steel mill (i = 5) s = 1 2 0 2.7 0 [0, 0.2] 0
s = 2 2 0 2.7 0 [0, 0.2] 0
s = 3 2 0 2.7 0 [0, 0.2] 0
s = 4 2 0 2.7 0 [0, 0.2] 0
s = 5 2 0 2.7 0 [0, 0.2] 0
s = 6 2 0 2.7 0 [0, 0.2] 0
s = 7 2 0 2.7 0 [0, 0.2] 0
s = 8 2 0 2.7 0 [0, 0.2] 0
s = 9 2 0 2.7 0 [0, 0.2] 0
s = 10 2 0.2 2.7 0 [0, 0.2] 0
s = 11 2 0.4 2.7 0 [0, 0.2] 0
s = 12 2 0.6 2.7 0 [0, 0.2] 0
s = 13 2 0.8 2.7 0 [0, 0.2] 0
s = 14 2 1 2.7 0 [0, 0.2] 0
s = 15 2 1.1 2.7 0.1 [0, 0.2] 0
s = 16 2 0.9 2.7 0.5 [0, 0.2] 0
s = 17 2 0.7 2.7 0.9 [0, 0.2] 0
s = 18 2 0 2.7 1.8 [0, 0.2] 0
s = 19 2 0 2.7 2 [0, 0.2] [0, 0.1]
s = 20 2 0 2.7 2.3 [0, 0.2] 0
Tab.3  Solution obtained through the ICTP method under λ = 1 and β = 0.99
Confidence level Source Technology Risk parameters/(tonne·day?1)
λ = 0.5 λ = 1 λ = 2 λ = 5 λ = 10
β = 0.6 i = 1 j = 1 [34.2, 34.7] [32.3, 32.5] [31.5, 31.7] [31, 31.7] [30.9, 31.7]
j = 2 22 27.3 30.1 30.1 30
j = 3 [40.5, 43.4] [37.6, 40.6] [35.9, 38.8] [36.4, 38.9] [36.5, 38.9]
i = 2 j = 1 [31.4, 32.3] [31.1, 31.9] [30.6, 31.1] [30.3, 30.6] [30.3, 30.6]
j = 2 12.3 13.4 15.8 18 18
j = 3 [19.1, 20.3] [18.5, 19.7] [17.2, 18.4] [16, 17.2] [16, 17.2]
i = 3 j = 1 0 0 0 3.3 3.3
j = 2 0 0 0 0 0
j = 3 [7.3, 7.5] [7.6, 7.8] [8, 8.2] [5, 5.2] [5, 5.2]
i = 4 j = 1 7.9 8.5 8.5 8.3 8.1
j = 2 0 0 0 0 2.2
j = 3 [8, 8.4] [7.8, 8.1] [7.8, 8.1] [7.9, 8.3] [7.5, 7.6]
i = 5 j = 1 2.4 2.4 2.3 2.1 2.1
j = 2 2.6 2.6 2.8 3.2 3.3
j = 3 [0, 0.2] [0, 0.2] [0, 0.2] [0, 0.2] [0, 0.2]
β = 0.8 i = 1 j = 1 [33, 33.3] [31.8, 32.1] [31.4, 31.7] [31, 31.7] [30.9, 31.7]
j = 2 25.4 28.9 30.1 30.1 30
j = 3 [38.5, 41.6] [36.6, 39.6] [36, 38.8] [36.5, 38.9] [36.5, 38.9]
i = 2 j = 1 [31.1, 31.9] [31.1, 31.9] [30.5, 30.8] [30.3, 30.6] [30.3, 30.6]
j = 2 13.4 13.4 17.1 18 18
j = 3 [18.5, 19.7] [18.5, 19.7] [16.5, 17.7] [16, 17.2] [16, 17.2]
i = 3 j = 1 0 0 0.2 3.3 3.3
j = 2 0 0 0 0 0
j = 3 [7.3, 7.5] [7.6, 7.8] 8.1 [5.3, 5.5] [5.3, 5.5]
i = 4 j = 1 7.9 8.5 8.5 8.3 8.1
j = 2 0 0 0 1 3.1
j = 3 [8, 8.4] [7.8, 8.1] [7.8, 8.1] [7.6, 7.8] 7.5
i = 5 j = 1 1.7 2.3 2.1 2.1 2.1
j = 2 2.8 2.7 3.1 3.3 3.3
j = 3 [0.5, 0.7] [0, 0.2] [0, 0.2] [0, 0.2] [0, 0.2]
β = 0.99 i = 1 j = 1 [33, 33.3] [31.4, 31.7] [31.3, 31.7] [30.9, 31.7] [31, 31.7]
j = 2 25.4 30.1 30.1 30 30
j = 3 [38.5, 41.6] [36.1, 38.8] [36.1, 38.9] [36.5, 38.9] [36.5, 38.9]
i = 2 j = 1 [31.1, 31.9] [30.3, 30.6] [30.3, 30.6] [30.3, 30.6] [30.3, 30.6]
j = 2 13.4 18 18 18 18
j = 3 [18.5, 19.7] [16, 17.2] [16, 17.2] [16, 17.2] [16, 17.2]
i = 3 j = 1 0 0 0.7 3.3 0
j = 2 0 0 0 0 3.3
j = 3 [7.3, 7.5] [7.6, 7.8] 8.1 [6.4, 6.6] [6.4, 6.6]
i = 4 j = 1 8 8.4 8.3 8.1 7.4
j = 2 0 0 1 6.5 7.2
j = 3 [8, 8.4] [7.8, 8.1] [7.6, 7.8] [6.6, 7.2] [6.6, 7.2]
i = 5 j = 1 1.7 2.3 2.1 2.1 2.1
j = 2 2.8 2.7 3.1 3.3 3.3
j = 3 [0.5, 0.7] [0, 0.2] [0, 0.2] [0, 0.2] [0, 0.2]
Tab.4  Optimal SO2 emission allocation schemes under different risk parameters (tonne/day)
Fig.4  Excess SO2 emissions treated by (a) OPA; (b) AA and (c) LWS technologies at different risk levels.
Fig.5  (a) Mean-risk function value and (b) total expected cost under different risk levels.
Fig.6  Recourse cost under different risk levels.
Fig.7  (a) lower bound and (b) upper bound of the CVaR under different risk levels.
From power plant 1(i = 1) From power plant 2(i = 2) From chemical industry plant(i = 3) From petroleum refinery(i = 4) From steel mill(i = 5)
j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3
Allowable SO2 emission ( X i j , o p t ± )/(tonne·day?1) 30 21.6 24 30 11.5 12 0 0 [6.6, 6.8] 6.3 0 7.5 1 2.75 [0.5, 0.68]
Excess SO2 emission ( Y i j s , o p t ± )/(tonne·day?1) s = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s = 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s = 4 0 0 [0, 3.6] 0 0 0 0 0 0 0 0 0 0 0 0
s = 5 0 0 [3.6, 7.1] 0 0 0 0 0 0 0 0 0 0 0 0
s = 6 0 0 [7.1, 10.7] 0 0 [0, 1.9] 0 0 0 0 0 0 0 0 0
s = 7 0 0 [10.7, 14.3] 0 0 [1.9, 4.3] 0 0 0 0 0 [0, 0.5] 0 0 [0.05, 0.07]
s = 8 0 0 [14.3, 17.9] 0 0 [4.3, 6.6] 0 0 0 0 0 [0.5, 1.1] 0 0 [0.25, 0.27]
s = 9 0 0 [17.9, 21.4] 0 0 [6.6, 9] 0 0 [0, 0.1] 0 0 [1.1, 1.7] 0 0 [0.4, 0.5]
s = 10 [0, 1] 0 [21.4, 24] 0 0 [9, 11.3] 0 0 [0.3, 0.4] 0 0 [1.7, 2.3] 0.15 0 [0.5, 0.52]
s = 11 [5.3, 5.6] 0 [19.7, 23] [0, 1.7] 0 [11.3, 12] 0 0 [0.6, 0.7] 0 0 [2.3, 2.8] 0.35 0 [0.5, 0.52]
s = 12 9.95 0 [18.6, 22.3] [1.7, 4] 0 12 0 0 0.9 0 0 [2.8, 3.4] 1 0 [0.05, 0.07]
s = 13 [11.1, 11.8] 0 [21.05, 24] [4, 6.4] 0 12 0 0 [1.1, 1.2] 3.4 0 [0, 0.6] 1 0 [0.25, 0.27]
s = 14 [14.8, 15.3] 0 [21, 24] [6.4, 8.7] 0 12 0 0 [1.4, 1.5] 4 0 [0, 0.6] 1 0.45 [0, 0.02]
s = 15 23.2 0 [16.1, 19.7] [8.7, 11.1] 0 12 0 0 [1.7, 1.8] 0 0 [4.6, 5.1] 0.8 0.85 [0, 0.02]
s = 16 16.5 6 [20.4, 24] [11.1, 13.5] 0 12 0 0 2 5.1 0 [0, 0.6] 0 1.85 [0, 0.02]
s = 17 13.5 12.8 [20.2, 23.8] [13.5, 15.8] 0 12 0 0 [2.2, 2.3] 5.7 0 [0, 0.6] 0 2.05 [0, 0.02]
s = 18 10.6 19.6 [19.9, 23.5] [15.8, 18.2] 0 12 0 0 [2.5, 2.6] 6.3 0 [0, 0.6] 0 2.25 [0, 0.02]
s = 19 19.4 21.6 [12.7, 16.2] [13.3, 15.6] 4.9 12 0 0 [2.8, 2.9] 0 0 [6.9, 7.4] 0 2.45 [0, 0.12]
s = 20 17.4 21.6 [18.2, 21.8] [9, 11.4] 11.5 12 0 0 3.1 6.3 0 [1.1, 1.7] [0, 0.1] 2.75 0
Tab.5  Solution of the ITSP model
1 Ahmed  S (2004). Mean-risk objectives in stochastic programming. Technical report, Georgia Institute of Technology, available at www. optimization-online.org
2 An  H, Eheart  J W (2007). A screening technique for joint chance-constrained programming for air-quality management. Oper Res, 55(4): 792–798
https://doi.org/10.1287/opre.1060.0377
3 Athanasiadis  I N, Mitkas  P A (2007). Knowledge discovery for operational decision support in air quality management. Journal of Environmental Informatics, 9(2): 100–107
https://doi.org/10.3808/jei.200700091
4 Birbil  S I, Frenk  J, Kaynar  B, Noyan  N (2009). Risk measures and their applications in asset management. In: Gregoriou  G N, ed. The VaR Implementation Handbook. New York: The McGraw-Hill Companies, 311–337
5 Birge  J R, Louveaux  F V (1988). A multicut algorithm for two-stage stochastic linear programs. Eur J Oper Res, 34(3): 384–392
https://doi.org/10.1016/0377-2217(88)90159-2
6 Byun  D W, Kim  S T, Chen  F Y, Kim  S B, Cuclis  A, Moon  N K (2003). Information infrastructure for air quality modeling and analysis: application to the houston-galveston ozone non-attainment area. Journal of Environmental Informatics, 2(2): 38–57
https://doi.org/10.3808/jei.200300021
7 Cai  Y P, Huang  G H, Tan  Q, Yang  Z F (2011a). An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part I: methodology. Renewable & Sustainable Energy Reviews, 15: 2779–2790
8 Cai  Y P, Huang  G H, Tan  Q, Liu  L (2011b). An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part II. case study. Renewable & Sustainable Energy Reviews, 15: 3051–3073
9 Chen  C, Huang  G H, Li  Y, Li  M (2013a). Model of risk analysis on site selection of biomass power plant based on stochastic robust interval method. Transactions of the Chinese Society of Agricultural Engineering, 29(20): 206–213
10 Chen  C, Huang  G H, Li  Y P, Zhou  Y (2013b). A robust risk analysis method for water resources allocation under uncertainty. Stochastic Environ Res Risk Assess, 27(3): 713–723
https://doi.org/10.1007/s00477-012-0634-5
11 Dai  C, Li  Y, Huang  G (2012). An interval-parameter chance-constrained dynamic programming approach for capacity planning under uncertainty. Resour Conserv Recycling, 62: 37–50
https://doi.org/10.1016/j.resconrec.2012.02.010
12 Dentcheva  D, Ruszczynski  A (2006). Portfolio optimization with stochastic dominance constraints. J Bank Finance, 30(2): 433–451
https://doi.org/10.1016/j.jbankfin.2005.04.024
13 Dong  C, Huang  G H, Cai  Y P, Liu  Y (2012). An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing City. Energy, 37(1): 673–688
https://doi.org/10.1016/j.energy.2011.10.030.
14 Fábián  C I (2008). Handling CVaR objectives and constraints in two-stage stochastic models. Eur J Oper Res, 191(3): 888–911
https://doi.org/10.1016/j.ejor.2007.02.052
15 Haurie  A, Kübler  J, Clappier  A, Van Den Bergh  H (2004). A metamodeling approach for integrated assessment of air quality policies. Environ Model Assess, 9(1): 1–12
https://doi.org/10.1023/B:ENMO.0000020886.39231.52
16 Hsu  C P, Huang  C W, Paul Chiou  W J P (2012). Effectiveness of copula-extreme value theory in estimating value-at-risk: empirical evidence from Asian emerging markets. Rev Quant Finance Account, 39(4): 447–468
https://doi.org/10.1007/s11156-011-0261-0
17 Huang  G, Loucks  D (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ Eng Environ Syst, 17(2): 95–118
https://doi.org/10.1080/02630250008970277
18 Huang  G H, Baetz  B W, Patry  G G (1994). Grey dynamic programming for waste-management planning under uncertainty. J Urban Plann Dev, 120(3): 132–156
https://doi.org/10.1061/(ASCE)0733-9488(1994)120:3(132)
19 Huang  G H, Chang  N B (2003). Perspectives of environmental informatics and systems analysis. J Environ Inform, 1(1): 1–6
https://doi.org/10.3808/jei.200300001
20 Inuiguchi  M, Sakawa  M (1998). Robust optimization under softness in a fuzzy linear programming problem. Int J Approx Reason, 18(1‒2): 21–34
https://doi.org/10.1016/S0888-613X(97)10002-0
21 Lejano  R P, Ayala  P M, Gonzales  E A (1997). RESEARCH: optimizing the mix of strategies for control of vehicular emissions. Environ Manage, 21(1): 79–87
https://doi.org/10.1007/s002679900007
22 Li  Y, Huang  G, Nie  X, Nie  S (2008). An inexact fuzzy-robust two-stage programming model for managing sulfur dioxide abatement under uncertainty. Environ Model Assess, 13(1): 77–91
https://doi.org/10.1007/s10666-006-9077-z
23 Li  Y, Huang  G H, Veawab  A, Nie  X, Liu  L (2006). Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management. J Air Waste Manag Assoc, 56(8): 1070–1082
https://doi.org/10.1080/10473289.2006.10464536
24 Lim  C, Sherali  H D, Uryasev  S (2010). Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Comput Optim Appl, 46(3): 391–415
https://doi.org/10.1007/s10589-008-9196-3
25 Liu  L, Huang  G, Liu  Y, Fuller  G, Zeng  G (2003). A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Eng Optim, 35(2): 177–199
https://doi.org/10.1080/0305215031000097068
26 Liu  Y, Zou  R, Guo  H (2011). Risk explicit interval linear programming model for uncertainty-based nutrient-reduction optimization for the Lake Qionghai Watershed. J Water Resour Plann Manage, 137(1), 83–91
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000099
27 Lv  Y, Huang  G H, Li  Y P, Yang  Z F, Sun  W (2011). A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty. J Environ Manage, 92(3): 813–826
https://doi.org/10.1016/j.jenvman.2010.10.027
28 Ma  X, Zhang  F (2002). A genetic algorithm based stochastic programming model for air quality management. J Environ Sci (China), 14(3): 367–374
29 Marti  K, Ploöchinger  E (1990). Optimal step sizes in semi-stochastic approximation procedures. I. Optimization, 21(1): 123–153
https://doi.org/10.1080/02331939008843527
30 Miller  N, Ruszczynski  A (2008). Risk-adjusted probability measures in portfolio optimization with coherent measures of risk. Eur J Oper Res, 191(1): 193–206
https://doi.org/10.1016/j.ejor.2007.06.052
31 Noyan  N (2012). Risk-averse two-stage stochastic programming with an application to disaster management. Comput Oper Res, 39(3): 541–559
https://doi.org/10.1016/j.cor.2011.03.017
32 Rockafellar  R T, Uryasev  S (2000). Optimization of conditional value-at-risk. Journal of Risk, 2: 21–42
33 Ruszczyński  A (1993). Parallel decomposition of multistage stochastic programming problems. Math Program, 58(1–3): 201–228
https://doi.org/10.1007/BF01581267
34 Schultz  R (2011). Risk aversion in two-stage stochastic integer programming. Stochastic Programming: 165–187
35 Schultz  R, Tiedemann  S (2006). Conditional value-at-risk in stochastic programs with mixed-integer recourse. Math Program, 105(2‒3): 365–386
https://doi.org/10.1007/s10107-005-0658-4
36 Seifi  A, Hipel  K (2001). Interior-point method for reservoir operation with stochastic inflows. J Water Resour Plan Manage, 127(1): 48–57
https://doi.org/10.1061/(ASCE)0733-9496(2001)127:1(48)
37 Shao  L G, Qin  X S, Xu  Y (2011). A conditional value-at-risk based inexact water allocation model. Water Resour Manage, 25(9): 2125–2145
https://doi.org/10.1007/s11269-011-9799-9
38 Tan  Q, Huang  G H, Wu  C Z, Cai  Y P (2011). IF-EM: an interval-parameter fuzzy linear programming model for environment-oriented evacuation planning under uncertainty. J Adv Transport, 45(4): 286–303
https://doi.org/10.1016/j.amc.2009.12.031
38 Tong  X J, Qi  L Q, Wu  F, Zhou  H (2010). A smoothing method for solving portfolio optimization with CVaR and applications in allocation of generation asset. Appl Math Comput, 216(6): 1723–1740
https://doi.org/10.1016/j.amc.2009.12.031
39 Turner  D B (1970). Workbook of atmospheric dispersion estimates. Washington D C: Office of Air Programs, Publication No. AP-26, U.S. Environmental Protection Agency
40 Wang  L, Milford  J B (2001). Reliability of optimal control strategies for photochemical air pollution. Environ Sci Technol, 35(6): 1173–1180
https://doi.org/10.1021/es001358y
41 Zolezzi  T (2001). Well-posedness and optimization under perturbations. Ann Oper Res, 101(1/4): 351–361
https://doi.org/10.1023/A:1010961617177
[1] D.M. HULTSTRAND, S.R. FASSNACHT. The sensitivity of snowpack sublimation estimates to instrument and measurement uncertainty perturbed in a Monte Carlo framework[J]. Front. Earth Sci., 2018, 12(4): 728-738.
[2] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[3] S.R. FASSNACHT, K.S.J. BROWN, E.J. BLUMBERG, J.I. LÓPEZ MORENO, T.P. COVINO, M. KAPPAS, Y. HUANG, V. LEONE, A.H. KASHIPAZHA. Distribution of snow depth variability[J]. Front. Earth Sci., 2018, 12(4): 683-692.
[4] Grey S. NEARING, Hoshin V. GUPTA. Ensembles vs. information theory: supporting science under uncertainty[J]. Front. Earth Sci., 2018, 12(4): 653-660.
[5] Wei LI,Changchun FENG,Chao DAI,Yongping LI,Chunhui LI,Ming LIU. An inexact risk management model for agricultural land-use planning under water shortage[J]. Front. Earth Sci., 2016, 10(3): 419-431.
[6] Yue LIU,Qiuming CHENG,Qinglin XIA,Xinqing WANG. The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China[J]. Front. Earth Sci., 2015, 9(2): 342-354.
[7] Ran WANG,Yin LI,Qian TAN. A review of inexact optimization modeling and its application to integrated water resources management[J]. Front. Earth Sci., 2015, 9(1): 51-64.
[8] Cong DONG, Guohe HUANG, Qian TAN, Yanpeng CAI. Coupled planning of water resources and agricultural land-use based on an inexact-stochastic programming model[J]. Front Earth Sci, 2014, 8(1): 70-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed