Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (2) : 274-291    https://doi.org/10.1007/s11707-016-0558-3
RESEARCH ARTICLE
Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed
Suvendu ROY(),Abhay Sankar SAHU
Department of Geography, University of Kalyani, Kalyani, Nadia-741235, West Bengal, India
 Download: PDF(5122 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A multidisciplinary approach using the integrated field of geosciences (e.g., geomorphology, geotectonics, geophysics, and hydrology) is established to conduct groundwater recharge potential mapping of the Kunur River Basin, India. The relative mean error (RME) calculation of the results of three applied techniques and water table data from twenty-four observation wells in the basin over the 2000-2010 period are presented. Nine sub-basins were identified and ranked for the RME calculation, where the observation wells-based ranking was taken as standard order for comparison. A linear model has been developed using six factors (drainage density, surface slope, ruggedness index, lineament density, Bouguer gravity anomaly, and potential maximum water retention capacity) and a grid-wise weighted index. In a separate comparative approach, the sub-basin and grid-wise analyses have been conducted to identify the suitable spatial unit for watershed level hydrological modeling.

Keywords groundwater      basin morphometry      SCS curve number      geosciences      geoinformatics     
Corresponding Author(s): Suvendu ROY   
Just Accepted Date: 14 January 2016   Online First Date: 16 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Suvendu ROY,Abhay Sankar SAHU. Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed[J]. Front. Earth Sci., 2016, 10(2): 274-291.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0558-3
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I2/274
Fig.1  Location map of the study area with sub-basins and major aquifer system over the Ajay-Damodar interfluve (inset) (Source: CGWB, 2014).
Code Name Depth of water level (Decadal Average in m bgl) Thickness of aquifer/weathered zone/m Yield /(m3·day-1) Age % of the total KRB
AL01 Younger alluvium (clay/silt/sand/ calcareous concretions) 5-10 50-700 200-1500 Quarternary 3.81
AL03 Older alluvium (silt/sand/gravel/ lithomargic clay) 34.07
LA01 Laterite/ferruginous concretions 5-10 8-20 20-60 58.00
ST01 Sandstone/ conglomerate 5-10 5-40 5-2000 Upper Palaeozoic to Cenozoic 0.28
SH02 Shale with sandstone 5-15 10-30 20-80 2.67
IN01 Basic rocks (dolerite, anorthosite etc.) 5-15 5-25 Low Yield Proterozoic to Cenozoic 1.17
Tab.1  The major aquifers in the study area and their different characteristic with geological formation period and covering area in the KRB (Source: CGWB, 2014)
Morphometric parameters Formulas Followed by Role or relation with groundwater development Applied by
Stream Order (u) Hierarchical rank Strahler (1964) (–ive)
Stream Frequency (Sf) Sf = SNu / A where Sf =Stream frequency; SNu = Total no. of streams of all orders; A=Area of the Basin (km2) Horton (1932,1945) (–ive) Biswas et al., 1999; Subba Rao, 2009
Drainage Density (Dd) Dd= SLu / A where Dd = Drainage Density (km/km2); SLu = Total length of streams of all orders in km; A=Area of the Basin (km2) Horton (1932,1945 ) (–ive) Todd and Mays, 2005
Drainage Texture (Dt) Dt = Dd× Sf where Sf =Stream frequency and Dd = Drainage Density (km/km2) Horton (1945) (–ive) Smith 1950; Kale and Gupta, 2001
Stream Length Ratio (Str) Str = Lu / Lu-1 where, Lu= Total stream length of order ‘ u ’; Lu- l = The total stream length of its next lower order Horton (1945) (–ive) Pakhmode et al., 2003; Sreedevi et al., 2005
Bifurcation Ratio (Rb) Rb =Nu /Nu-1; where Rb =Bifurcation ratio; Nu =Total no. of stream segments of order ‘ u ’; Nu-l = Number of segments of the next higher order Schumm (1956) (–ive) Pakhmode et al., 2003; Biswas et al., 1999; Avinash et al., 2011
Mean Bifurcation Ratio (BR) BR = Average of bifurcation ratios of all orders Strahler (1957) (–ive)
Form Factor (Ff) Ff = A / L2 where, A=Area of the basin (km2); L=Basin length (km) Horton (1932,1945) (–ive) Biswas et al., 1999; Subba Rao, 2009
Elongation Ratio (ER) Er =1.128√(A / L) where, A=Area of the basin (km2); L=Basin length (km) Schumm (1956) (+ive) Obi Reddy et al., 2004, Manu and Anirudhan, 2008
Circularity Ratio (Cr) Cr = 4 p A / P2 where, A= Area of the basin (km2); P=Perimeter (km); p = 3.1415 Miller (1953), Strahler (1964) (–ive) Miller,1953; Biswas et al., 1999; Avinash et al., 2011
Shape Factor (SF) Bs= L2 / A where, L=Basin length (km); A=Area of the basin (km2) Horton (1932) (+ive) Biswas et al., 1999
Compactness Co-efficient (Cc) Cc = 0.2821 P/ A0.5 where, P= Perimeter (km); A= Area of the basin (km2) Gravelius (1914) (+ive) Gravelius, 1914; Hidore, 1964; Avinash et al., 2011
Constant of Channel Maintenance (Cm) Cm = 1/ Dd where, Dd = Drainage density Schumm (1956) (+ive) Subba Rao, 2009; Avinash et al., 2011
Length of overland flow (Lo) Lo = 1 / 2Dd where, Dd =Drainage density Horton (1945) (+ive) Horton, 1945; Avinash et al., 2011
Basin Relief (Br) Br = H – h, where, H=Maximum elevation in meter and h= Minimum elevation in meter Hadley and Schumm (1961) (–ive) Hadley and Schumm, 1961; Subba Rao, 2009
Relief Ratio (Rr) Rr = R / L; where, R= Basin relief; L= Longest axis in kilometre Schumm (1956) (–ive) Srinivasa et al., 2008; Subba Rao, 2009
RuggednessIndex ( RI) RI= Br× Dd where, RI=Ruggedness Index; Br =Basin relief; Dd =Drainage density Schumm (1956) (–ive) Biswas et al., 1999; Subba Rao, 2009
Mean Slope (S) ASTER data based Arc GIS v.9.3 (–ive) Biswas et al., 1999; Avinash et al., 2011
Stream Gradient Ratio (Sg ) Sg = (a - b )/ Lwhere Sg =Stream Gradient ratioa=Elevation at sourceb=Elevation at mouthL=Longest axis in kilometre Sreedevi et al., (2005) (–ive) Suja Rose and Krishnan, 2009
Travel Time (Tt) Tt= KL/ √S, where, K= a proportional constant, L= Length of Main Stream, S= Slope of the Stream between two points Kirpich (1940) (+ive) Chow, 1964; Raghunath, 2013
Tab.2  Techniques of different morphometric indices and their relationship with groundwater development
Morphometric indices Source Role on groundwater development (references) Weightage values (Wv)
Drainage density (DD)/km2 Topographical Maps, 1967-72(1: 50,000) (–ive)(Todd and Mays, 2005) <0= 40-0.130= 30.131-0.990= 2>0.990= 1
Surface slope (SS)/(°) ASTER Dem, 2009 (30 m) (–ive)(Biswas et al., 1999; Avinash et al., 2011) <1.7= 41.71-3.397= 33.398-5.430= 2>5.430= 1
Ruggedness index (RI)/km2 ASTER Dem, 2009 (30 m) (–ive)(Biswas et al., 1999; Subba Rao, 2009) <4.580= 44.581-6.930= 36.931-9.510= 2>9.510= 1
Lineament density (LD)/km2 (NRSC, 2014) (+ive)(Yeh et al., 2014) <0.000075= 10.000076-0.0840= 20.0841-0.200= 3>0.200= 4
Bouguer gravity anomaly (BGA)/mGal (NGRI, 1978) (–ive)(Long and Kaufmann, 2013) <0= 40-5= 35-10= 2>10= 1
Maximum Water Retention Capacity (S)/mm SCS Curve Number Method,(Chow, 1964; United States Department of Agriculture et al., 1999 (+ive)(Chow, 1964) <55.76= 155.76-63.50= 263.51-108.85= 3>108.85= 4
Tab.3  Techniques of different morphometric indices and their relationship with groundwater development
SB Area/km2 Sf Dd Dt Str BR FF ER CR SF CC CM LO Br Rr RI S Sg Tt
A 58.75 0.80 1.13 0.90 1.63 1.94 0.3338 0.6517 0.641 3.00 1.25 0.88 0.44 34.66 2.77 39.17 0.248 1.97 01.8654
B 74.77 0.41 0.66 0.27 1.31 1.78 0.3230 0.6411 0.65 3.09 1.24 1.52 0.76 40.00 2.75 26.40 0.322 2.38 01.7024
C 58.10 0.15 0.38 0.06 1.33 4.00 0.3343 0.6522 0.68 2.99 1.21 2.63 1.32 17.31 1.45 6.58 0.126 0.17 02.2343
D 87.11 0.20 0.42 0.08 0.4 2.33 0.3164 0.6345 0.6 3.16 1.29 2.38 1.19 22.0 1.48 9.24 0.086 0.45 02.8164
E 113.28 0.38 0.42 0.16 1.71 2.39 0.3053 0.6232 0.61 3.27 1.28 2.38 1.19 32.05 1.72 13.46 0.167 1.55 01.6010
F 92.87 0.54 0.71 0.38 1.29 2.18 0.3136 0.6317 0.59 3.19 1.31 1.40 0.70 23.45 1.46 16.65 0.171 1.43 01.6214
G 191.27 0.22 0.69 0.15 0.71 1.97 0.2843 0.6014 0.64 3.52 1.26 1.45 0.72 39.87 1.99 27.51 0.15 0.11 28.0901
H 79.15 0.23 0.47 0.11 2.26 2.50 0.3205 0.6386 0.63 3.12 1.27 2.13 1.06 27.99 1.88 13.16 0.072 0.47 03.4776
I 160.31 0.26 0.54 0.14 1.48 2.02 0.2912 0.6087 0.57 3.43 1.33 1.85 0.93 14.42 0.75 7.79 0.078 0.17 09.6179
Tab.4  Sub-basin wise extracted values of eighteen morphometric parameters of KRB
SB Sf Dd Dt Str BR FF ER CR SF CC CM LO Br Rr RI S Sg Tt Total score Rank
A 9 9 9 7 2 9 2 7 8 7 9 9 7 9 9 8 8 6 134 9
B 7 6 7 4 1 7 3 8 7 8 6 6 9 8 7 9 9 7 119 8
C 1 1 1 5 9 8 1 9 9 9 1 1 2 2 1 4 2 5 71 3
D 2 3 2 1 6 5 5 3 5 3 3 3 3 4 3 3 4 4 62 2
E 6 2 6 8 7 3 7 4 3 4 2 2 6 5 5 6 7 9 92 6
F 8 8 8 3 5 4 6 2 4 2 8 8 4 3 6 7 6 8 100 7
G 3 7 5 2 3 1 9 6 1 6 7 7 8 7 8 5 1 1 87 5
H 4 4 3 9 8 6 4 5 6 5 4 4 5 6 4 1 5 3 86 4
I 5 5 4 6 4 2 8 1 2 1 5 5 1 1 2 2 3 2 59 1
Tab.5  Sub-basin wise groundwater recharge potential ranking based on morphometric parameters of the KRB
Sub-basin Area/km2 Hydrological soil types(with area in % of total and land use type) Weighted CN value S/mm P*/mm Q/mm % of total rainfall
A 58.75 B (61.34/Pa),C (38.66/Pa) 81.71 56.86 160 107.50 67.19
B 74.77 A (30.23/I),B (13.67/Pa),C (56.10/Pa) 76.80 76.73 160 94.52 59.08
C 58.10 C (89.31/TF),D (10.69/A) 77.43 74.04 160 96.16 60.10
D 87.11 B (3.18/Pa),C (96.82/DF) 70.28 107.41 160 78.02 48.76
E 113.28 C (73.05/DF),D (26.95/A) 75.66 81.71 160 91.57 57.23
F 92.89 C (98.23/DF),D (1.77/A) 70.37 106.95 160 78.24 48.90
G 191.27 C (53.35/A),D (46.65/A) 89.40 30.12 160 128.78 80.49
H 79.15 C (14.80/A),D (85.20/A) 90.56 26.48 160 132.09 82.56
I 160.31 D (100/A) 91.00 25.12 160 133.36 83.35
Tab.6  Potential maximum retention and direct runoff characteristics of nine Sub-basin of the KRB during a strom event (19th September, 2000) using SCS curve number method
Fig.2  (a-f): Applied indices from different field of geosciences to identify the groundwater recharge potential area over the Kunur River Basin.
Fig.3  Panel diagram showing the lithological condition in the Interfluve region of Ajay and Kunur rivers (Source: modified of Niyogi, 1985)
Land use Infiltration rate/(cm·hr-1)
Forest 26.0
Grassland 12.0
Cropland 09.0
Grazed grassland 5.13
Cultivated land 7.20
Tab.7  Role of land cover type on soil surface infiltration (after NIH, 1996-1997)
Fig.4  Groundwater recharge potential map of the Kunur River Basin.
Fig.5  Selected windows (W) for the case studies; (a) represents the highest potential zone for groundwater recharge due to the presence of numerous palaeochannels; (b) shows another excellent zone for groundwater recharge due to dense and healthy sal (shorea robusta) forest cover with higher NDVI values; (c) shows the extended urban area (DMC) acting as land impervious to recharge, and (d) is the zone of intensive agricultural cultivation and a poor zone for groundwater recharge.
Fig.6  Average seasonal fluctuation [post monsoon ─ pre monsoon] of the groundwater table over the KRB for the last decade (2000-2010), W1–W4 are showing the reference windows used in recharge potential map.
Sub-basins Ranks (based on the potentiality of groundwater recharge)
Basin morphometry wise SCS CN method+ applied remote sensing wise Integrated geoscience wise Seasonal recharge wise (observed data)
A 9 6 5 7
B 8 4 7 8
C 3 5 9 9
D 2 1 3 3
E 6 3 4 5
F 7 2 6 2
G 5 7 8 6
H 4 8 2 4
I 1 9 1 1
RME 46.14 125.78 38.26 Referenced rank
Tab.8  Sub-basin wise ranking on the potentiality of groundwater recharge form different techniques to calculate the average relative mean error (RME)
1 Ahmad I, Verma V, Verma M K (2015). Application of Curve Number Method for Estimation of Runoff Potential in GIS Environment. 2nd International Conference on Geological and Civil Engineering, IPCBEE, 80, 16–20
https://doi.org/10.7763/IPCBEE.2015.V80.4
2 Ajmal M, Moon G, Ahn J, Kim T (2015). Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds. J Hydro-environment Res, 9(4): 592–603
https://doi.org/10.1016/j.jher.2014.11.003
3 Anbazhagan S, Ramasamy S M, Das Gupta S (2005). Remote sensing and GIS for artificial recharge study, runoff estimation and planning in Ayyar basin, Tamil Nadu, India. Environ Geol, 48(2): 158–170
https://doi.org/10.1007/s00254-005-1284-4
4 Avinash K, Deepika B, Jayappa K S (2014). Basin geomorphology and drainage morphometry parameters used as indicators for groundwater prospect: insight from geographical information system (GIS) technique. Journal of Earth Science, 25(6): 1018–1032
https://doi.org/10.1007/s12583-014-0505-8
5 Avinash K, Jayappa K S, Deepika B (2011). Prioritization of sub-basins based on geomorphology and morphometric analysis using remote sensing and geographic information system (GIS) techniques. Geocarto Int, 26(7): 569–592
https://doi.org/10.1080/10106049.2011.606925
6 Banerjee T, Das A L, Mukhopadhyay S C (2011). Prioritisation of Silai sub watersheds for erosion management using drainage morphometry and soil erosion rates. Geogr Rev India, 73(4): 323–338
7 Biswas S, Sudhakar S, Desai V R (1999). Prioritization of sub-watersheds based on morphometric analysis of drainage basin: a remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27(3): 155–166
https://doi.org/10.1007/BF02991569
8 CGWB (Central Ground Water Board) (2010). Groundwater Scenario of India 2009–10. Ministry of Water Resources, Govt. of India
9 CGWB (Central Ground Water Board) (2014). Aquifer Systems of West Bengal. Ministry of Water Resources, Govt. of India, Eastern Region, Kolkata
10 Chaudhary B S, Kumar M, Roy A K, Ruhal D S (1996). Application of Remote sensing and Geographic Information Systems in Groundwater investigations in Sohna block, Gurgaon District, Haryana (India). In: International Archives of Photogrametry and Remote sensing Vienna, vol. XXXI, Part B6, 18–23
11 Chow V T (1964). Handbook of Applied Hydrology. New York: McGraw-Hill
12 de Alwis D A, Easton Z M, Dahlke H E, Philpot W D, Steenhuis T S (2007). Unsupervised classification of saturated areas using a time series of remotely sensed images. Hydrol Earth Syst Sci, 11(5): 1609–1620
https://doi.org/10.5194/hess-11-1609-2007
13 Dobrin M B (1976). Introduction to Geophysical Prospecting. New York: McGraw-Hill Bock Company
14 Drury S A (1993). Image Interpretation in Geology. UK: Chapman & Hall
15 Elbeih S F (2015). An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Engineering Journal, 6(1): 1–15
https://doi.org/10.1016/j.asej.2014.08.008
16 Elmahdy S I, Mohamed M M (2015). Automatic detection of near surface geological and hydrological features and investigating their influence on groundwater accumulation and salinity in southwest Egypt using remote sensing and GIS. Geocarto Int, 30(2): 132–144
https://doi.org/doi:10.1080/10106049.2014.883433
17 Esper Angillieri M Y (2008). Morphometric analysis of Colanguil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1): 107–111
https://doi.org/10.1007/s00254-007-0969-2
18 Falkenmark M (1994). Successfully coping with complex water scarcity: an issue of land/water integration. In: Gieske A, Gould J, eds. Proceedings of the Workshop on Integrated Water Resources Management, University of Botswana and Rural Industries Research Centre, Kanye-Gaborone, 11–26
19 Godebo T R (2005). Application of Remote Sensing and GIS for Geological Investigation and Groundwater Potential Zone Identification, Southeastern Ethiopian Plateau, Bale Mountains and the Surrounding Areas. Thesis of M. Sc. Dissertation, Department of Earth Sciences, Addis Ababa University, 43
20 Gopinath G, Seralathan P (2004). Identification of Groundwater Prospective Zones Using IRS-ID LISS III and Pump Test Methods. Journal of Indian Society of Remote Sensing, 32(4): 329–342
https://doi.org/10.1007/BF03030858
21 Gravelius H (1914). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde (Compendium of Hydrology, vol. I. Rivers, in German). Germany: Goschen, Berlin
22 Gundalia M, Dholakia M (2014). Impact of Monthly Curve Number on Daily Runoff Estimation for Ozat Catchment in India. Open Journal of Modern Hydrology, 4(04): 144–155
https://doi.org/10.4236/ojmh.2014.44014
23 Guo K, Wang J, Wang Y (2015). Application of ZY-3 remote sensing image in the research of Huashan experimental watershed. Proceedings of the International Association of Hydrological Sciences, 368: 51–56
https://doi.org/doi:10.5194/piahs-368-51-2015
24 Hadley R F, Schumm S A (1961). Sediment sources and drainage basin characteristics in upper Cheyenne River basin. Washington, DC: US Geological Survey, Water-Supply Paper. 1531–B, 198
25 Hajam R A, Hamid A, Bhat S (2013). Application of morphometric analysis for geo-hydrological studies using geo-spatial technology- A case study of Vishav Drainage Basin. Hydrol Current Res., 4: 157
https://doi.org/doi:10.4172/2157-7587.1000157
26 Haridas V R, Aravmdan S, Gopinath G (1998). Remote sensing and its applications for groundwater favourable area identification. Qut J GARC, 6(1): 18–22
27 Haridas V R, Chandra Sekaran V A, Kumaraswamy K, Rajendran S, Unnikrishnan K (1994). Geomorphological and lineament studies of Kanjamalai using IRS-IA data with special reference to groundwater potentiality. Trans Inst Indian Geogr, 16(1): 35–41
28 Hidore J J (1964). Landform characteristics affecting watershed yields on the Mississippi–Missouri interfluve. In: Moore G A, ed. Proceedings of the Oklahoma Academy of Science. Edmond, Oklahoma: University of Central Oklahoma, 201–203
29 Horton R E (1932). Drainage basin characteristics. Trans Am Geophys Union, 13(1): 350–361
https://doi.org/10.1029/TR013i001p00350
30 Horton R E (1945). Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology. Geol Soc Am Bull, 56(3): 275–370
https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
31 Indian Meteorological Department (2014). IMD District wise normals, Barddhaman. Govt. of India
32 Javed A, Khanday Y M, Ahmed R (2009). Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of Indian Society of Remote Sensing, 37(2): 261–274
https://doi.org/10.1007/s12524-009-0016-8
33 Jiang D, Wang J, Huang Y, Zhou K, Ding X, Fu J (2014). The Review of GRACE Data Applications in Terrestrial Hydrology Monitoring. Advances in Meteorology, Volume 2014, Article ID 725131, 9 pages,
34 Kale V S, Gupta A (2001). Introduction to geomorphology. Hyderabad, India: Orient Longman Ltd
35 Khan M A, Gupta V P, Moharana P C (2001). Watershed prioritization using remote sensing and geographical information system: a case study from Guhiya. India. J Arid Environ, 49(3): 465–475
https://doi.org/10.1006/jare.2001.0797
36 Khan Z A, Tewari R C (2011). Palaeochannel and palaeohydrology of a Middle Siwalik (Pliocene) fluvial system, northern India. J Earth Syst Sci, 120(3): 531–543
https://doi.org/10.1007/s12040-011-0083-4
37 Kirpich Z P (1940). Time of concentration of small agricultural watersheds. Civ Eng (NYNY), 6: 362
38 Kolker A S, Cable J E, Johannesson K H, Allison M A, Inniss L V (2013). Pathways and processes associated with the transport of groundwater in deltaic systems. J Hydrol (Amst), 498: 319–334
https://doi.org/10.1016/j.jhydrol.2013.06.014
39 Koopmans B N (1983). Side looking Radar, a tool for geological surveys. Remote Sens Rev, 1(1): 19–69
https://doi.org/10.1080/02757258309532063
40 Krishnamurthy J, Venkatesa Kumar N, Jayaraman V, Manivel M (1996). An approach to demarcate groundwater potential zones through remote sensing and a geographical information system. Int J Remote Sens, 17(10): 1867–1884
https://doi.org/10.1080/01431169608948744
41 Kumar R, Raj H (2013). Mitigation of groundwater depletion hazards in India. Curr Sci, 104(10): 1271
42 Long D, Scanlon B R, Longuevergne L, Sun A Y, Fernando D N, Save H (2013). GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett, 40(13): 3395–3401
https://doi.org/10.1002/grl.50655
43 Long D, Shen Y, Sun A, Hong Y, Longuevergne L, Yang Y, Li B, Chen L (2014). Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens Environ, 155: 145–160
https://doi.org/10.1016/j.rse.2014.08.006
44 Long L T, Kaufmann R D (2013). Acquisition and Analysis of Terrestrial Gravity Data. Delhi: Cambridge University Press
45 Longuevergne L, Scanlon B R, Wilson C R (2010). GRACE Hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour Res, 46(11): W11517
https://doi.org/10.1029/2009WR008564
46 Magesh N S, Jitheshal K V, Chandrasekar N, Jini K V (2013). Geographical information system based morphometric analysis of Bharathapuzha River Basin, Kerla, India. Appl Water Sci, 3(2): 467–477
https://doi.org/doi:10.1007/s13201-013-0095-0
47 Mallinson D J, Smith C W, Culver S J, Riggs S R, Ames D (2010). Geological characteristics and spatial distribution of paleo-inlet channels beneath the outer banks barrier islands, North Carolina, USA. Estuar Coast Shelf Sci, 88(2): 175–189
https://doi.org/10.1016/j.ecss.2010.03.024
48 Manu M S, Anirudhan S (2008). Drainage characteristics of Achankovil river basin, Kerala. J Geol Soc India, 71: 841–850
49 Martin A K, Gadiga B L (2015). Hydrological and Morphometric Analysis of Upper Yedzaram Catchmnet of Mubi in Adamawa State, Nigeria Using Geographical Information System (GIS). World Environment, 5(2): 63–69
https://doi.org/doi:10.5923/j.env.20150502.03
50 McCauley J, Schaber F, Breed C S, Grolier M J, Haynes C V, Issawa B, Elachi C, Blom R (1982). Subsurface valleys and geo-archeology of the eastern Sahara revealed by Shuttle radar. Science, 218(4576): 1004–1020
https://doi.org/10.1126/science.218.4576.1004
51 Meijerink A M G (1996). Remote sensing applications to hydrology: groundwater. Hydrol Sci J, 41(4): 549–561
https://doi.org/10.1080/02626669609491525
52 Menenti M, LI X, Wang J, Vereecken H, LI J, Mnacini M, Liu Q, Jia L, Kuenzer C, Huang S, Yesou H, Wen J, Ker Y, Cheng X, Gourmelen N, KE C, Ludwing R, LIN H, Eineder M, MA Y, Su ZB (2015). Hydrologic and Cryospheric Processes Observed From Space. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL (7/W3): 1101–1110
https://doi.org/doi:10.5194/isprsarchives-XL-7-W3-1101-2015
53 Miller V C (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch mountain area. New York: Department of Geology, ONR, Columbia University, Virginia and Tennessee, Project NR389–402, Technical Report 3
54 Minor Irrigation Census (2001). Report on Census of Minor Irrigation Schemes (1993-94). Minor Irrigation Division, Ministry of Water Resources, Govt. of India, New Delhi
55 National Climate Centre (2006). Trends in the rainfall pattern over the India. India Meteorological Department, Pune, India
56 NGRI (1978). NGRI/GPH-1 to 5: Gravity Maps of India scale 1: 5,000,000. National Geophysical Research Institute, Hyderabad, India
57 NIH (National Institute of Hydrology) (1996-1997). Infiltration Studies in Sher-Umar River Doab in Narmada basin. Report No. CS (AR) 6/96-97, Jal Vighyan Bhawan, Roorkee, India
58 Niyogi M (1985). Groundwater resource of the Ajay Basin. In: Chatterjee S P, ed. Geographical Mosaic- Professor K.G. Bagechi Felicitation, Manasi Press, Calcutta, India, 165–182
59 Nooka Ratnam K, Srivastava Y K, Venkateswara Rao V, Amminedu E, Murthy K S R (2005). Check dam positioning by prioritization of micro watersheds using SYI model and morphometric analysis – remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33(1): 25–38
https://doi.org/10.1007/BF02989988
60 NRSC (2014). National geomorphological and lineament mapping on 1:50,000 scale using Resourcesat-1 LISS-III data. Manual for Geomorphology and Lineament Mapping (Web Version), National Remote Sensing Centre, Hyderabad, India
61 Obi Reddy G P, Maji A K, Gajbhiye K S (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, central India: a remote sensing and GIS approach. Int J Appl Earth Obs Geoinf, 6(1): 1–16
https://doi.org/10.1016/j.jag.2004.06.003
62 Pakhmode V, Kulkarni H, Deolankar S B (2003). Hydrological-drainage analysis in watershed-programme planning: a case from the Deccan basalt, India. Hydrogeol J, 11(5): 595–604
https://doi.org/10.1007/s10040-003-0279-z
63 Philip G M, Watson D F (1982). A precise method for determining contoured surfaces. Aust Petrol Explor Assoc J, 22(1): 205–212
64 Prakash S R, Mishra D (1993). Identification of groundwater prospecting zones by using remote sensing and geoelectrical methods in and around Saidnager area, Dakar Block, Jalaun district, uttar pradesh. Indian Society of Remote Sensing, 21(4): 217–227
https://doi.org/10.1007/BF03016721
65 Prasad A S S S R S, Venkateswarlu N, Reddy P R (2005). Crustal density model along Gopali- Port Canning profile, West Bengal basin using seismic and gravity data. J Ind Geophys Union, 9(4): 235–239
66 Raghunath H M (2013). Hydrology: Principal, Analysis, Design (2nd Revised Ed.). New Delhi: New Age International Publishers
68 Rajwant, SharmaU K (2015). Morphometric analysis of third order river basins to assess the vulnerability of Baner Khad Watershed towards Erosional process, Himachal Pradesh, India. Himalayan Geology, 36(1): 65–73
69 Ramalingam M, Santhakumar A R (2001). Case study on artificial recharge using remote sensing and GIS., accessed on January 2, 2014
70 Ramamoorthi A (1983). Snow-melt run-off studies using remote sensing data. Sadhana, 6: 279–286
71 Rango A, Ritchie J C (1996). Remote sensing application to hydrology. Hydrol Sci J, 41(4): 477–494
https://doi.org/10.1080/02626669609491521
72 Ravindran K V, Jeyram A (1997). Groundwater prospects of Shahbad tehsil, Baran district and eastern Rajasthan: a remote sensing approach. Indian society of remote sensing, 25 (4): 239–246
73 Reddy J R (2005). A Textbook of Hydrology. New Delhi: University Science Press
74 Ringrose S, Vanderpost C, Matheson W (1998). Evaluation of vegetative criteria for near-surface groundwater detection using multispectral mapping and GIS techniques in semi-arid Botswana. Appl Geogr, 18(4): 331–354
https://doi.org/10.1016/S0143-6228(98)00025-3
75 Roy A K, Ray P K C (1993). Groundwater investigation using remote sensing and geographic information techniques- A case study in Manabazar-II, Purulia (W.B.). Proceeding national symposium of north-eastern region, Guwahati, India, 180–184
76 Roy S, Mistri B (2013). Estimation of peak flood discharge for an ungauged river: a case study of the Kunur River, West Bengal. Geogr J, 2013(214140): 1–11
https://doi.org/10.1155/2013/214140
77 Roy S, Sahu A S (2015). Quaternary tectonic control on channel morphology over sedimentary low land: a case study in the Ajay-Damodar interfluve of Eastern India. Geoscience Frontiers, 6(6): 927–946, doi: 10.1016/j.gsf.2015.04.001
78 Sahu S, Saha D (2014). Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone–Ganga alluvial tract in Middle Ganga Plain, India. J Earth Syst Sci, 123:1335–1347
79 Samadder R K, Kumar S, Gupta R P (2011). Palaeochannels and their potential for artificial groundwater recharge in the western Ganga plains. J Hydrol (Amst), 400(1-2): 154–164
https://doi.org/10.1016/j.jhydrol.2011.01.039
80 Sankar K (2002). Evaluation of groundwater potential zones using remote sensing data in Upper Vaigai river basin, Tamil Nadu. India J Indian Soc Rem Sens, 30(3): 119–129
https://doi.org/10.1007/BF02990644
81 Saraf A K, Choudhury P R (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens, 19(10): 1825–1841
https://doi.org/10.1080/014311698215018
82 Saravanan S, Manjula R (2015). Geomorphology based semi-distributed approach for modeling rainfall-runoff modeling using GIS. Aquatic Procedia, 4: 908–916
https://doi.org/10.1016/j.aqpro.2015.02.114
83 Schultz G A (1997). Use of remote sensing data in a GIS environment for water resources management, Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources Systems. In: Proceedings of Rabat Symposium S3, April 1997. IAHS Publ no. 242, 3–15
84 Schumm S A (1956). Evolution of drainage system and slope in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull, 67(5): 597–646
https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
85 Shah T (2009). Taming the Anarchy: Groundwater Governance in South Asia. Resources for the Future, Washington DC and International Water Management Institute, Colombo
86 Shah T (2011). Innovations in Groundwater Management: Examples from India. International Water Management Institute.
87 Shankar V P S, Kulkarni H, Krishnan S (2011). India’s groundwater challenge and the way forward. Econ Polit Wkly, XLVI(2): 37–45
88 Shi J, Wang J, Hsu A Y, O’Neill P E, Engman E T (1997). Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans Geosci Rem Sens, 35(5): 1254–1266
https://doi.org/10.1109/36.628792
89 Shi Z H, Chen L D, Fang N F, Qin D F, Cai C F (2009). Research on the SCS CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena, 77(1): 1–7
https://doi.org/10.1016/j.catena.2008.11.006
90 Smith A B, Walker J P, Western A W (2004). Assimilation of gravity data into a soil moisture and groundwater column model. In: Teuling A J, Leijnse H, Troch P A, Sheffield J, Wood E, F, eds. Proceedings of the 2nd international CAHMDA workshop on: The Terrestrial Water Cycle: Modelling and Data Assimilation Across Catchment Scales, Princeton, NJ, 135–137
91 Smith K G (1950). Standards for grading texture of erosional topography. American Journal of Science, 248: 655–668
91a Soil Conservation Service (1964). National engineering handbook. Section 4, Hydrology, Department of Agriculture, Washington, 450
92 Soil Conservation Service (1972). National engineering handbook. Section 4, Hydrology, Department of Agriculture, Washington, 762
93 Sreedevi P D, Subrahmanyam K, Ahmed S (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47(3): 412–420
https://doi.org/10.1007/s00254-004-1166-1
94 Sridhar A (2007). Discharge estimation from planform characters of the Shedhi River, Gujarat alluvial plain: present and past. J Earth Syst Sci, 116(4): 341–346
https://doi.org/10.1007/s12040-007-0031-5
95 Sridhar A, Chamyal L S, Bhattacharjee F, Singhvi A K (2013). Early Holocene fluvial activity from the sedimentology and palaeohydrology of gravel terrace in the semi arid Mahi River Basin, India. J Asian Earth Sci, 66: 240–248
https://doi.org/10.1016/j.jseaes.2013.01.017
96 Srinivasa V S, Govindaiah S, Honne Gowda H (2008). Prioritization of sub-watersheds for sustainable development and management of natural resources: an integrated approach using remote sensing, GIS and socio-economic data. Curr Sci, 95: 345–354
97 Strahler A N (1957). Quantative Analysis of Watershed geomorphology. Transactions. American Geophysical Union, 38(6): 913–920
98 Strahler A N (1964). Quantitative geomorphology of drainage and channel networks. In: Chow V T, ed. Handbook of Applied Hydrology. New York: McGraw Hill Book Company, 439–476
99 Subba Rao N (2009). A numerical scheme for groundwater development in a watershed basin of basement terrain: a case study from India. Hydrogeol J, 17(2): 379–396
https://doi.org/10.1007/s10040-008-0402-2
100 Subba Rao N, Chakradhar G K J, Srinivas V (2001). Identification of groundwater potential zones using remote sensing techniques in and around Guntur Town, Andhra Pradesh, India. Journal of Indian Society of Remote Sensing, 29(1&2): 69–78
101 Suja Rose R S, Krishnan N (2009). Spatial analysis of groundwater potential using remote sensing and GIS in the Kanyakumari and Nambiyar Basins, India. J Indian Soc Remote Sens, 37(4): 681–692
https://doi.org/10.1007/s12524-009-0058-y
102 Suresh M, Sudhakar S, Tiwari K N, Chowdary V M (2004). Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing. Journal of the Indian Society of Remote Sensing, 32(3): 249–259
https://doi.org/10.1007/BF03030885
103 Thakkar A K, Dhiman S D (2007). Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat, using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 35(4): 313–321
https://doi.org/10.1007/BF02990787
104 Todd D K, Mays L W (2005). Groundwater Hydrology (3rd edition). New York: John Wiley & Sons, 636
105 United State Geological Society (1997). Introduction to Potential Fields: Gravity. FS-239-95. Available on, retrieved on 13th December, 2014
106 United States Department of Agriculture, Natural Resource Conservation Service, and National Employee Development Centre (1999). SCS Runoff Equation: Module 205. Engineering and Hydrology Training Series, 1–27
107 van Dijk A I J M, Renzullo L J (2011). Water resource monitoring systems and the role of satellite observations. Hydrol Earth Syst Sci, 15(1): 39–55
https://doi.org/10.5194/hess-15-39-2011
108 Verma R K (1985). Gravity field, seismicity, and tectonics of the Indian peninsula and the Himalayas (Solid earth sciences library). Holland: D. Reidel Publishing Company
https://doi.org/doi: 10.1007/978-94-009-5259-1
109 Wagener T, Wheater H S, Gupta H V (2004). Rainfall-Runoff Modelling In: Gauged and Ungauged Catchments. London: Imperial College Press
110 Wagner W, Naeimi V, Scipal K, de Jeu R, Martinez-Fernandez J (2007). Soil moisture from operational meteorological satellites. Journal of Hydrogeology, 15(1): 121–131
https://doi.org/10.1007/s10040-006-0104-6
111 Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004). Timevariable gravity from GRACE: fist results. Geophys Res Lett, 31(11): L11501
https://doi.org/10.1029/2004GL019779
112 Yeh H F, Lin H I, Lee S T, Chang M H, Hsu K C, Lee C H (2014). GIS and SBF for estimating groundwater recharge of a mountainous basin in the Wu River watershed, Taiwan. J Earth Syst Sci, 123(3): 503–516
https://doi.org/10.1007/s12040-014-0420-5
113 Zankhna S, Thakkar M G (2014). Palaeochannel Investigations and Geo Hydrological Significance of Saraswati River of Mainland Gujarat,India: using remote sensing and GIS techniques. J Environ Res Develop, 9(2): 472–479
114 Zhang H Y, Shi Z H, Fang N F, Guo M H (2015). Linking watershed geomorphic characteristics to sediment yield: evidence from the Loess Plateau of China. Geomorphology, 234: 19–27
https://doi.org/10.1016/j.geomorph.2015.01.014
[1] Sergei RASSKAZOV, Aigul ILYASOVA, Sergei BORNYAKOV, Irina CHUVASHOVA, Eugene CHEBYKIN. Responses of a 234U/238U activity ratio in groundwater to earthquakes in the South Baikal Basin, Siberia[J]. Front. Earth Sci., 2020, 14(4): 711-737.
[2] Haizhu HU, Xiaomin MAO, Qing YANG. Development of a groundwater flow and reactive solute transport model in the Yongding River alluvial fan, China[J]. Front. Earth Sci., 2019, 13(2): 371-384.
[3] Jincui WANG, Yongsheng ZHAO, Jichao SUN, Ying ZHANG, Chunyan LIU. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China[J]. Front. Earth Sci., 2019, 13(1): 33-42.
[4] Yintao LU, Xinghua ZANG, Hong YAO, Shichao ZHANG, Shaobin SUN, Fang LIU. Assessment of trace metal contamination in groundwater in a highly urbanizing area of Shenfu New District, Northeast China[J]. Front. Earth Sci., 2018, 12(3): 569-582.
[5] Yilei YU, Xianfang SONG, Yinghua ZHANG, Fandong ZHENG, Licai LIU. Impact of reclaimed water in the watercourse of Huai River on groundwater from Chaobai River basin, Northern China[J]. Front. Earth Sci., 2017, 11(4): 643-659.
[6] Jianmei JIANG,Lin ZHAO,Zhe ZHAI. Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone[J]. Front. Earth Sci., 2016, 10(3): 513-526.
[7] Yintao LU,Changyuan TANG,Jianyao CHEN,Hong YAO. Assessment of major ions and heavy metals in groundwater: a case study from Guangzhou and Zhuhai of the Pearl River Delta, China[J]. Front. Earth Sci., 2016, 10(2): 340-351.
[8] Jianmei JIANG,Lin ZHAO,Yijian ZENG,Zhe ZHAI. Experimental study of the effect of shallow groundwater table on soil thermal properties[J]. Front. Earth Sci., 2016, 10(1): 29-37.
[9] Da AN, Yonghai JIANG, Beidou XI, Zhifei MA, Yu YANG, Queping YANG, Mingxiao LI, Jinbao ZHANG, Shunguo BAI, Lei JIANG. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater[J]. Front Earth Sci, 2013, 7(3): 310-319.
[10] I. C. EZEKWE, E. ODUBO, G. N. CHIMA, I. S. ONWUCHEKWA. Groundwater occurrence and flow patterns in the Ishiagu mining area of southeastern Nigeria[J]. Front Earth Sci, 2012, 6(1): 18-28.
[11] Zuoming XIE, Yanxin WANG, Mengyu DUAN, Xianjun XIE, Chunli SU. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China[J]. Front Earth Sci, 2011, 5(1): 37-44.
[12] Weifang SHI, Weihua ZENG, Bin CHEN, . Application of Visual MODFLOW to assess the Sewage Plant accident pool leakage impact on groundwater in the Guanting Reservoir area of Beijing[J]. Front. Earth Sci., 2010, 4(3): 320-325.
[13] Dan ZHANG, Hui LIU, Ying LIANG, Cheng WANG, Hecheng LIANG, Hesheng CAI. Distribution of phthalate esters in the groundwater of Jianghan plain, Hubei, China[J]. Front Earth Sci Chin, 2009, 3(1): 73-79.
[14] Jun HE, Teng MA, Yamin DENG, Hui YANG, Yanxin WANG. Environmental geochemistry of high arsenic groundwater at western Hetao plain, Inner Mongolia[J]. Front Earth Sci Chin, 2009, 3(1): 63-72.
[15] CAO Jianfeng, YE Xueyan, JIANG Jiyi, WANG Kaijun. Effect of no-flow in the Lower Yellow River on groundwater formation and usage in areas along the banks[J]. Front. Earth Sci., 2008, 2(4): 379-383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed