Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (1) : 63-71    https://doi.org/10.1007/s11707-016-0613-0
RESEARCH ARTICLE
Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification
Chen CHENG1,2, Chunjuan BI1, Dongqi WANG1(), Zhongjie YU3, Zhenlou CHEN1
1. School of Geographic Sciences, East China Normal University, Shanghai 200241, China
2. Shanghai Environment Monitoring Center, Shanghai 200232, China
3. Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA15217, USA
 Download: PDF(1170 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L–1 and were correlated with temperature (P<0.05). Dry deposition of PAHs concentrations ranged from 3.60–92.15 mg·L–1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m–2·d–1 and 4.06 mg·m–2·d–1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

Keywords PAHs      dry and wet deposition      temporal and spatial variation      Shanghai     
Corresponding Author(s): Dongqi WANG   
Just Accepted Date: 01 December 2016   Online First Date: 30 December 2016    Issue Date: 23 January 2018
 Cite this article:   
Chen CHENG,Chunjuan BI,Dongqi WANG, et al. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification[J]. Front. Earth Sci., 2018, 12(1): 63-71.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0613-0
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I1/63
Fig.1  Map of the research region and a collection of sampling sites 2.2.
Month Wet deposition/mm Dry deposition/(g·m?2·month?1)
Range Median Mean SD Range Median Mean SD
2010-11 0.70?23.7 10.4 10.7 5.11 2.23?10.8 3.16 3.84 1.90
2010-12 30.1?94.8 44.1 46.3 12.7 4.54?18.1 6.03 7.00 3.15
2011-01 5.10?21.2 18.3 15.9 5.33 2.25?16.6 5.61 6.28 3.08
2011-02 6.00?24.7 18.3 16.9 4.48 1.85?9.31 3.89 3.98 1.68
2011-03 21.2?53.2 32.2 33.8 8.54 2.36?14.0 5.30 5.55 2.37
2011-04 16.8?47.3 31.1 32.0 8.45 4.18?32.3 8.74 10.3 6.45
2011-05 5.90?50.0 28.9 28.1 9.94 4.09?15.8 7.68 8.56 3.52
2011-06 240.5?612.4 312.4 340.3 84.8 1.32?5.88 3.00 3.20 1.28
2011-07 9.80?124.0 58.8 58.6 28.4 1.22?7.69 3.75 4.42 1.98
2011-08 98.5?732.0 282.1 275.0 98.7 0.96?17.7 1.02 1.30 0.94
2011-09 8.16?59.7 33.0 32.4 13.8 1.85?13.2 4.69 5.14 2.80
2011-10 6.00?55.3 17.5 22.3 13.7 0.69?7.29 1.81 2.14 1.68
Tab.1  Wet deposition and dry deposition fluxes in Shanghai from Nov. 2010 to Oct. 2011
Fig.2  Monthly variation of PAH concentrations in wet deposition.
Fig.3  Monthly variation of PAH concentrations in dry deposition.
Fig.4  Spatial variation of PAH concentrations in wet deposition at all sampling sites.
Fig.5  Spatial variation of PAH concentrations in dry deposition of all sampling sites.
Month ∑PAHs(mg·m?2·month?1)in wet deposition ∑PAHs(mg·m?2·month?1) in dry deposition
Range Median Mean SD Range Median Mean SD
2010-11 0.36?4.94 1.41 1.76 1.18 42.56?129.15 77.11 83.26 24.53
2010-12 4.75?42.13 8.81 11.88 8.43 75.07?466.39 119.95 167.1 103.87
2011-01 0.91?4.46 2.44 2.41 0.95 31.28?1145.98 142.12 204.02 248.86
2011-02 0.78?4.90 3.56 3.58 1 34.41?255.83 84.97 97.95 49.51
2011-03 4.88?13.98 8.49 8.71 2.74 68.69?217.61 113.32 123.36 47.4
2011-04 3.38?19.00 7.87 8.43 3.53 55.62?1288.08 154.49 223.31 257.43
2011-05 0.83?17.79 7.73 7.79 4.22 87.45?678.35 159.51 210.12 139
2011-06 36.93?290.06 82.84 110.78 67.07 18.32?209.99 98.52 103.73 55.43
2011-07 5.86?29.65 16.55 16.98 7.57 25.54?217.63 72.92 83.57 54.69
2011-08 14.36?84.79 47.81 45.16 22.91 12.26?336.23 39.00 66.83 78.17
2011-09 0.68?17.97 5.16 6.24 4.35 16.54?158.42 59.17 66.59 37.50
2011-10 0.53?13.55 2.55 3.48 2.94 9.41?76.37 28.12 31.38 18.56
Tab.2  Fluxes of the ∑PAHs in wet deposition and dry deposition in Shanghai from Nov. 2010 to Oct. 2011
Fig.6  The temporal and spatial variation of total deposition fluxes of PAHs (dry and wet).
∑PAHs T
∑PAHs 1 0.131*
T 0.131* 1
Tab.3  The Pearson correlation coefficient between the temperature and the ∑PAHs in wet deposition
1 Bae S Y, Yi  S M, Kim  Y P (2002). Temporal and spatial variations of the particle size distribution of PAHs and their dry deposition fluxes in Korea. Atmos Environ, 36(35): 5491–5500 
https://doi.org/10.1016/S1352-2310(02)00666-0
2 Barakat A O (2002). PAHs and petroleum markers in the atmospheric environment of Alexandria City, Egypt. Water Air Soil Pollut, 139(1–4): 289–310 
https://doi.org/10.1023/A:1015894520672
3 Birgül  A,  Tasdemir Y,  Cindoruk S S (2011). Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmos Res, 101(1–2): 341–353 
https://doi.org/10.1016/j.atmosres.2011.03.012
4 Bureau of Shanghai Municipal Statistics (2015). Statistical Yearbook of Shanghai 2014. Concise statistical yearbook of Shanghai, 2015
5 Ciganek M, Adamec  V, Janosek J,  Machala  M (2004). A combined chemical and bioassay analysis of traffic emitted polycyclic aromatic hydrocarbons. Sci Total Environ, 334–335: 141–148 
https://doi.org/10.1016/j.scitotenv.2004.04.034
6 Daane L L, Harjono  I, Zvlstra G J, Häggblom  M M (2001). Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol, 67(6): 2683–2691 
https://doi.org/10.1128/AEM.67.6.2683-2691.2001
7 Dallarosa J B,  Teixeira E C,  Pires M,  Fachel J (2005). Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) using multivariate methods. Atmos Environ, 39(35): 6587–6596 
https://doi.org/10.1016/j.atmosenv.2005.07.034
8 Dickhut R M, Gustafson  K E (1995). Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to southern Chesapeake Bay. Mar Pollut Bull, 30(6): 385–396 
https://doi.org/10.1016/0025-326X(94)00196-G
9 Dunbar J C, Lin  C I, Vergucht  I, Wong J,  Durant J L (2001). Estimating the contributions of mobile sources of PAH to urban air using real-time PAH monitoring. Sci Total Environ, 279(1–3): 1–19 
https://doi.org/10.1016/S0048-9697(01)00686-6
10 Fang G C, Chang  K F, Lu  C, Bai H (2004). Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan, Taichung. Chemosphere, 55(6): 787–796 
https://doi.org/10.1016/j.chemosphere.2003.12.012
11 Guor  C F,  Cheng  N C,  Kuan  F C (2008). Ambient air aerosols, total polycyclic aromatic hydrocarbons (PAHs) for day and night time in the traffic areas of Central Taiwan. Toxicological & Environmental Chemistry, 2008, 70(70): 15–27
12 Ho  K F, Lee  S C (2002). Identification of atmospheric volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in HongKong. Sci Total Environ, 289(1–3): 145–158 
https://doi.org/10.1016/S0048-9697(01)01031-2
13 Jiang Y, Hou  X, Zhuang G,  Li J, Wang  Q, Zhang R,  Lin Y (2009). The sources and seasonal variations of organic compounds in PM2.5 in Beijing and Shanghai. J Atmos Chem, 62(3): 175–192 
https://doi.org/10.1007/s10874-010-9147-0
14 Khalili N R, Scheff  P A, Holsen  T M (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ, 29(4): 533–542 
https://doi.org/10.1016/1352-2310(94)00275-P
15 Li G, Zhou  M, Chen C,  Wang H, Wang  Q, Lou S,  Qiao L P,  Tang X B,  Li L, Huang  H Y, Chen M H,  Huang C,  Zhang G F (2014). Characteristics of particulate matters and its chemical compositions during the dust episodes in Shanghai in spring, 2011. Environ Sci, 35(5): 1644–1653 (J)
16 Li J, Liu  X, Zhang G,  Li X D (2010). Particle deposition fluxes of BDE-209, PAHs, DDTs, and chlordane in the Pearl River Delta, South China. Sci Total Environ, 408(17): 3664–3670 
https://doi.org/10.1016/j.scitotenv.2010.04.048
17 Li X, Li  P, Yan L,  Chen J, Cheng  T, Xu S (2011). Characterization of polycyclic aromatic hydrocarbons in fog–rain events. J Environ Monit, 13(11): 2988–2993 
https://doi.org/10.1039/c1em10543d
18 Liang J, Ma  G, Fang H,  Chen L, Christie  P (2011). Polycyclic aromatic hydrocarbon concentrations in urban soils representing different land use categories in Shanghai. Environmental Earth Sciences, 62(1): 33–42 
https://doi.org/10.1007/s12665-010-0493-7
19 Lim M K C H,  Ayoko G A,  Morawska L (2005). Characterization of elemental and polycyclic aromatic hydrocarbon compositions of the urban air in Brisbane. Atmos Environ, 39(3): 463–476 
https://doi.org/10.1016/j.atmosenv.2004.09.050
20 Liu Y, Chen  L, Zhao J,  Wei Y, Pan  Z, Meng X Z,  Huang Q,  Li W (2010). Polycyclic aromatic hydrocarbons in the surface soil of Shanghai, China: concentrations, distribution and sources. Org Geochem, 41(4): 355–362 
https://doi.org/10.1016/j.orggeochem.2009.12.009
21 Luo X J, She  J C, Mai  B X, Sheng   G Y, Fu   J M, Zeng   E Y (2008). Distribution, source apportionment and transport of PAHs in sediments from the Pearl River Delta and the Northern South China Sea. Arch Environ Contam Toxicol, 55(1): 11–20 
https://doi.org/10.1007/s00244-007-9105-2
22 McVeety B D, Hites  R A (1988). Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. Atmos Environ, 22(3): 511–536 
https://doi.org/10.1016/0004-6981(88)90196-5
23 Nadal  M, Schuhmacher   M, Domingo  J L (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut, 132(1): 1–11 
https://doi.org/10.1016/j.envpol.2004.04.003
24 Nielsen T (1996). Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmos Environ, 30(20): 3481–3490 
https://doi.org/10.1016/1352-2310(96)00096-9
25 Odabasi M, Cetin  E, Sofuoglu A (2006). Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: application to gas–particle partitioning in an urban atmosphere. Atmos Environ, 40(34): 6615–6625 
https://doi.org/10.1016/j.atmosenv.2006.05.051
26 Ollivon D, Blanchoud  H, Motelay-Massei A,  Garban B (2002). Atmospheric deposition of PAHs to an urban site, Pairs, France. Atmos Environ, 36(17): 2891–2900 
https://doi.org/10.1016/S1352-2310(02)00089-4
27 Ozaki N, Nitta  K, Fukushima T (2006). Dispersion and dry and wet deposition of PAHs in an atmospheric environment. Water Science & Technology A Journal of the International Association on Water Pollution Research, 53(2): 215–24
28 Park J S, Wade  T L, Sweet  S T (2002). Atmospheric deposition of PAHs, PCBs, and organochlorine pesticides to Corpus Christi Bay, Texas. Atmos Environ, 36(10): 1707–1720 
https://doi.org/10.1016/S1352-2310(01)00586-6
29 Ren N Q, Que  M X, Li  Y F, Liu  Y, Wan X,  Xu D, Sverko  E, Ma J (2007). Polychlorinated biphenyls in Chinese surface soils.  Environ Sci Technol, 41(11): 3871–3876 
https://doi.org/10.1021/es063004y
30 Tasdemir Y, Holsen  T M (2005). Measurement of particle phase dry deposition fluxes of polychlorinated biphenyls (PCBs) with a water surface sampler. Atmos Environ, 39(10): 1845–1854 
https://doi.org/10.1016/j.atmosenv.2004.11.041
31 Wang X Y, Li  Q B, Luo  Y M, Ding  Q, Xi L M,  Ma J M,  Li Y, Liu  Y P, Cheng  C L (2010). Characteristics and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. Environ Monit Assess, 165(1–4): 295–305 
https://doi.org/10.1007/s10661-009-0946-1
32 Wild S R, Jones  K C (1995). Polynuclear aromatic hydrocarbons in United Kingdom Environment: a preliminary source inventory and budget. Environ Pollut, 88(1): 91–108 
https://doi.org/10.1016/0269-7491(95)91052-M
33 Xu S, Liu  W, Tao S (2006). Emission of polycyclic aromatic hydrocarbons in China. Environ Sci Technol, 40(3): 702–708 
https://doi.org/10.1021/es0517062
34 Yunker  M B,  Macdonald  R W,  Vingarzan  R,  Mitchell  R H,  Goyette  D,  Sylvestre  S (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem, 33(4): 489–515 
https://doi.org/10.1016/S0146-6380(02)00002-5
35 Zhang W S, Zhang  C, Wan D,  Yue D, Ye  Y, Wang X (2008). Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy through fall. Environ Pollut, 153(3): 594–601 
https://doi.org/10.1016/j.envpol.2007.09.004
[1] Supplementary Material 1 Download
[1] Xiaoting WANG, Zhan’e YIN, Xuan WANG, Pengfei TIAN, Yonghua HUANG. A study on flooding scenario simulation of future extreme precipitation in Shanghai[J]. Front. Earth Sci., 2018, 12(4): 834-845.
[2] Guan WANG, Yuan LIU, Jiao CHEN, Feifan REN, Yuying CHEN, Fangzhou YE, Weiguo ZHANG. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China[J]. Front. Earth Sci., 2018, 12(1): 125-133.
[3] Xianzhe LI,Ping JIANG,Yan ZHANG,Weichun MA. Development of a stationary carbon emission inventory for Shanghai using pollution source census data[J]. Front. Earth Sci., 2016, 10(4): 691-706.
[4] Xiangyu REN,Kai YANG,Yue CHE,Mingwei WANG,Lili ZHOU,Liqiao CHEN. Spatial and temporal assessment of the initial pattern of phytoplankton population in a newly built coastal reservoir[J]. Front. Earth Sci., 2016, 10(3): 546-559.
[5] Haishun XU,Liang CHEN,Bing ZHAO,Qiuzhuo ZHANG,Yongli CAI. Green stormwater infrastructure eco-planning and development on the regional scale: a case study of Shanghai Lingang New City, East China[J]. Front. Earth Sci., 2016, 10(2): 366-377.
[6] Weichun MA,Liguo ZHOU,Hao ZHANG,Yan ZHANG,Xiaoyan DAI. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai[J]. Front. Earth Sci., 2016, 10(1): 38-48.
[7] Qin NIE,Jianhua XU,Wang MAN. Long-range cross-correlation between urban impervious surfaces and land surface temperatures[J]. Front. Earth Sci., 2016, 10(1): 117-125.
[8] Qin NIE,Jianhua XU. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area[J]. Front. Earth Sci., 2015, 9(2): 276-285.
[9] Qing ZHAO, Wei GAO, Weining XIANG, Runhe SHI, Chaoshun LIU, Tianyong ZHAI, Hung-lung Allen HUANG, Liam E. GUMLEY, Kathleen STRABALA. Analysis of air quality variability in Shanghai using AOD and API data in the recent decade[J]. Front Earth Sci, 2013, 7(2): 159-168.
[10] Yibo LIU, Weimin JU, Honglin HE, Shaoqiang WANG, Rui SUN, Yuandong ZHANG. Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data[J]. Front Earth Sci, 2013, 7(1): 112-127.
[11] Dan YANG, Shihua QI, Ningombam Linthoingambi DEVI, Fang TIAN, Ziping HUO, Qingyuan ZHU, Jing WANG. Characterization of polycyclic aromatic hydrocarbons in PM2.5 and PM10 in Tanggu District, Tianjin Binhai New Area, China[J]. Front Earth Sci, 2012, 6(3): 324-330.
[12] Jun QI, Jia WEI, Changhong SUN, Tao PAN. A comparative QSPR study on aqueous solubility of polycyclic aromatic hydrocarbons by GA-SVM, GA-RBFNN and GA-PLS[J]. Front Earth Sci, 2011, 5(3): 245-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed