Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (1) : 125-133    https://doi.org/10.1007/s11707-017-0624-5
RESEARCH ARTICLE
Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China
Guan WANG1,2(), Yuan LIU3, Jiao CHEN1, Feifan REN4, Yuying CHEN1, Fangzhou YE3, Weiguo ZHANG2
1. School of Urban Construction and Environmental Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
3. Department of Geography, East China Normal University, Shanghai 200062, China
4. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(1185 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility ( c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

Keywords soil      pollution      magnetic susceptibility      heavy metals      Shanghai     
Corresponding Author(s): Guan WANG   
Just Accepted Date: 09 January 2017   Online First Date: 28 February 2017    Issue Date: 23 January 2018
 Cite this article:   
Guan WANG,Yuan LIU,Jiao CHEN, et al. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China[J]. Front. Earth Sci., 2018, 12(1): 125-133.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0624-5
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I1/125
Fig.1  Map showing Shanghai and the soil sampling sites in Baoshan District.
Fig.2  Vertical distribution of magnetic susceptibility (c) in soil profiles. The symbols ★ and ☆ represent soil samples from the top 25 cm layer and those below 25 cm, respectively.
Location Whole profile Layer1 (depth<25 cm) Layer2 (depth>25 cm)
  Range Mean±SD Range Mean±SD Range Mean±SD
Linjiang Park 42.4?120.5 64.2±19.9 50.4?120.5 74.5±17.4 42.4?48.1 45.0±2.0
Yuepu Park 29.7?116.5 60.2±29.3 38.2?116.5 74.7±26.7 29.7?38.8 33.4±3.1
Vegetable Field 11.2?78.1 25.9±20.6 15.1?78.1 40.6±22.6 11.2?16.5 13.1±1.3
Tab.1  Magnetic susceptibility (10?8 m3·kg?1) of three soil cores
Fig.3  Down core variations of heavy metal contents in soil profiles.
Location Cu CF-Cu Zn CF-Zn
Range Mean±SD Range Mean±SD Range Mean±SD Range Mean±SD
Background 23.5 75.8
Linjiang Park 29.4?42.5 35.1±4.2 1.18?1.70 1.41±0.17 98.9?148.3 116.1±16.4 1.22?1.83 1.43±0.21
Yuepu Park 21.9?32.0 25.9±3.0 0.88?1.28 1.04±0.12 73.6?160.7 106.2±26.3 0.91?1.98 1.31±0.33
Vegetable Field 20.6?35.3 26.0±4.0 0.83?1.41 1.04±0.15 77.1?153.2 94.8±21.7 0.95?1.89 1.17±0.29
Location Pb CF-Pb Cr CF-Cr
Range Mean±SD Range Mean±SD Range Mean±SD Range Mean±SD
Background 21.3 64.6
Linjiang Park 32.0?58.9 43.7±7.3 1.31?2.09 1.68±0.25 49.1?60.3 52.8±3.0 0.98?1.10 1.06±0.05
Yuepu Park 19.1?50.4 33.9±10.2 0.85?1.76 1.27±0.28 48.1?58.0 52.5±3.0 0.91?1.08 1.02±0.05
Vegetable Field 19.7?47.2 30.4±6.9 0.78?1.67 1.17±0.23 48.1?58.0 52.0±3.3 0.87?0.97 0.93±0.03
Tab.2  Heavy metal contents (mg/kg) and CF values of three sites soils
Fig.4  Down core variations of heavy metal enrichment factor (EF) values in soil profiles. The red EF value of 1.5 marks the pollution criteria.
Cu Zn Pb Cr EF-Cu EF-Zn EF-Pb EF-Cr PLI-CF PLI-EF
c 0.52 0.86 0.63 0.66 0.60 0.88 0.68 0.72 0.78 0.85
Tab.3  Correlation coefficients between c and heavy metal contents, EF values, PLI?CF and PLI?EF
Fig.5  Scatter plots of c versus EF value of heavy metals, Tomlinson pollution load index (PLI-CF), and modified Tomlinson pollution load index (PLI-EF).
Place Soil c
/(10?8 m3·kg?1)
Cu
/(mg·kg?1)
Zn
/(mg·kg?1)
Pb
/(mg·kg?1)
Reference
Baoshan
(Shanghai)
Park soil 30?121 21?43 69?161 18?59 This study
Agriculture soil 11?78 19?35 72?153 17?47
Xuzhou Industrial soil 47?775 17?80 53?380 16?120 Wang and Qin, 2005
Hangzhou Industrial soil 53?914 14?150 47?1250 20?493 Lu and Bai, 2006
Luoyang Industrial soil 111?1128 47?340 84?570 32?383 Lu et al., 2007
Tab.4  Comparison of c and heavy metal contents of soil profiles in Shanghai with other industrial soils in China
Fig.6  Comparison of the soil magnetic susceptibility profiles of Shanghai with those from other regions. (a) soil profile from Linjiang Park; (b) soil profile from Yuepu Park; (c) soil profile from the vegetable field; (d) soil profile from Luoyang (Lu et al., 2007); (e) soil profile from Nanjing (Duan et al., 2009); (f) soil profile from Xuzhou (Wang and Sun, 2008).
1 Angulo  E (1996). The Tomlinson pollution load index applied to heavy metal “Mussel-Watch” data: a useful index to assess coastal pollution.  Sci Total Environ, 187(1): 19–56
https://doi.org/10.1016/0048-9697(96)05128-5
2 Blaha  U, Appel   E, Stanjek  H (2008). Determination of anthropogenic boundary depth in industrially polluted soil and semi-quantification of heavy metal loads using magnetic susceptibility.  Environ Pollut, 156(2): 278–289
https://doi.org/10.1016/j.envpol.2008.02.013
3 Boyko  T, Scholger   R, Stanjek  H (2004). Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in situ measurements.  J Appl Geophys, 55(3‒4): 249–259
https://doi.org/10.1016/j.jappgeo.2004.01.002
4 Canbay  M, Aydin   A, Kurtulus  C (2010). Magnetic susceptibility and heavy-metal contamination in topsoils along the Izmit Gulf coastal area and IZAYTAS (Turkey).  J Appl Geophys, 70(1): 46–57
https://doi.org/10.1016/j.jappgeo.2009.11.002
5 Cao  L W,  Appel  E,  Hu  S Y,  Yin  G,  Lin  H,  Röslera  W (2015). Magnetic response to air pollution recorded by soil and dust-loaded leaves in a changing industrial environment.  Atmos Environ, 119: 304–313
https://doi.org/10.1016/j.atmosenv.2015.06.017
6 CEPA (Chinese Environmental Protection Administration) (1990). Elemental Background Values of Soils in China.Beijing: Environmental Science Press of China (in Chinese)
7 Chan  L S,  Yeung  C H,  Yim  W W S,  Or  O L (1998). Correlation between magnetic susceptibility and distribution of heavy metals in contaminated sea-floor sediments of Hong Kong Harbour.  Environmental Geology, 36(1‒2): 77–86
https://doi.org/10.1007/s002540050322
8 Dearing  J A,  Dann  R J L,  Hay  K,  Lees  J A,  Loveland  P J,  Maher  B A,  O'Grady  K (1996). Frequency-dependent susceptibility measurements of environmental materials.  Geophys J Int, 124(1): 228–240
https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
9 Duan  X M,  Hu  S Y,  Yan  H T (2009). Relationship between magnetic parameters and heavy element contents of arable soil around Meishan steel mill, Nanjing.  Sci China Ser D, 39(9): 1304–1312(in Chinese)
https://doi.org/10.1007/s11430-009-0165-1
10 Hanesch  M, Scholger   R (2002). Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements.  Environmental Geology, 42(8): 857–870
https://doi.org/10.1007/s00254-002-0604-1
11 Hay  K, Dearing   J A, Baban   S M J, Loveland   P (1997). A preliminary attempt to identify atmospherically-derived pollution particles in English topsoils from magnetic susceptibility measurements.  Phys Chem Earth, 22(1–2): 207–210
https://doi.org/10.1016/S0079-1946(97)00104-3
12 Heller  F, Strzyszcz   Z, Magiera  T (1998). Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland.  J Geophys Res Solid Earth, 103(B8): 17767–17774
https://doi.org/10.1029/98JB01667
13 Hoffmann  V, Knab   M, Appel  E (1999). Magnetic susceptibility mapping of roadside pollution.  J Geochem Explor, 66(1–2): 313–326
https://doi.org/10.1016/S0375-6742(99)00014-X
14 Hu  X F, Su   Y, Ye  R,  Li  X Q,  Zhang  G L (2007). Magnetic properties of the urban soils in Shanghai and their environmental implications.  Catena, 70(3): 428–436
https://doi.org/10.1016/j.catena.2006.11.010
15 Jordanova  D, Hoffmann   V, Fehr K T (2004). Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part).  Earth Planet Sci Lett, 221(1‒4): 71–89
https://doi.org/10.1016/S0012-821X(04)00074-3
16 Kapička  A,  Petrovský  E,  Ustjak  S,  Macháčková   K (1999). Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic.  J Geochem Explor, 66(1–2): 291–297
https://doi.org/10.1016/S0375-6742(99)00008-4
17 Lecoanet H, Léveque  F, Ambrosi J P (2003). Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France).  Environ Pollut, 122(2): 229–234
https://doi.org/10.1016/S0269-7491(02)00299-3
18 Liang  T, Chen   Y, Zhang  C S (2008). Intertidalite Sediment by using grid sampling method.  Environ Sci, 29(2): 421–427(in Chinese)
19 Lu  S G (2003). Chinese Soil Magnetism and Environment. Higher Education Press, Beijing (in Chinese)
20 Lu  S G, Bai   S Q (2006). Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China.  J Appl Geophys, 60(1): 1–12
https://doi.org/10.1016/j.jappgeo.2005.11.002
21 Lu  S G, Bai   S Q, Xue   Q F (2007). Magnetic properties as indicators of heavy metals pollution in urban topsoils: a case study from the city of Luoyang, China.  Geophys J Int, 171(2): 568–580
https://doi.org/10.1111/j.1365-246X.2007.03545.x
22 Pang  J H (1995). Change and evaluation of elements content in soil in Shanghai City.  Trop and Subtrop Soil Science, 4(1): 47–52(in Chinese)
23 Petrovský  E,  Kapička  A,  Jordanova  N,  Borůvka  L (2001). Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium.  J Appl Geophys, 48(2): 127–136
https://doi.org/10.1016/S0926-9851(01)00085-4
24 Petrovský  E,  Kapička  A,  Zapletal  K,  Šebestova  E,  Spanilá  T,  Dekkers  M J,  Rochette  P (1998). Correlation between magnetic parameters and chemical composition of lake sediments from northern Bohemia--Preliminary study.  Phys Chem Earth, 23(9–10): 1123–1126
https://doi.org/10.1016/S0079-1946(98)00139-6
25 Rudnick  R L,  Gao  S (2004). Composition of the Continental Crust. In: Treatise on Geochemistry. Amsterdam:Elsevier, 1–64
26 Schmidt  A, Yarnold   R, Hill  M,  Ashmore  M (2005). Magnetic susceptibility as proxy for heavy metal pollution: a site study.  J Geochem Explor, 85(3): 109–117
https://doi.org/10.1016/j.gexplo.2004.12.001
27 Sharma  A P,  Tripathi  B D (2008). Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment.  Environ Monit Assess, 138(1‒3): 31–39
https://doi.org/10.1007/s10661-007-9788-x
28 Shu  J, Dearing   J A, Morse   A P, Yu   L Z, Yuan   N (2001). Determining the sources of atmospheric particles in Shanghai, China, from magnetic and geochemical properties.  Atmos Environ, 35(15): 2615–2625
https://doi.org/10.1016/S1352-2310(00)00454-4
29 Sinex  S A,  Wright  D A (1988). Distribution of trace metals in the sediments and biota of Chesapeake Bay.  Mar Pollut Bull, 19(9): 425–431
https://doi.org/10.1016/0025-326X(88)90397-9
30 Taylor  S R,  McLennan  S M (1995). The geochemical evolution of the continental crust.  Rev Geophys, 33(2): 241–265
https://doi.org/10.1029/95RG00262
31 Wang  B, Xia   D S, Yu   Y, Jia  J,  Xu  S J (2013). Magnetic records of heavy metal pollution in urban topsoil in Lanzhou, China.  Chin Sci Bull, 58(3): 384–395
https://doi.org/10.1007/s11434-012-5404-8
32 Wang X S (2013). Magnetic properties and heavy metal pollution of soils in the vicinity of a cement plant, Xuzhou (China). J Appl Geophys, 98: 73–78
https://doi.org/10.1016/j.jappgeo.2013.08.008
33 Wang  X S,  Qin  Y (2005). Correlation between magnetic susceptibility and heavy metals in urban topsoil: a case study from the city of Xuzhou, China.  Environment Geology, 49(1): 10–18
https://doi.org/10.1007/s00254-005-0015-1
34 Wang  X S,  Sun  C (2008). Concentrations of anthropogenic Pt and Pd in urban roadside soils in Xuzhou, China.  Front Environ Sci Eng China, 2(4): 475–479
https://doi.org/10.1007/s11783-008-0071-3
35 Xia  D S,  Wang  B,  Yu  Y,  Jia  J,  Nie  Y,  Wang  X,  Xu  S (2014). Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan—A typical oasis city of Northwestern China.  Sci Total Environ, 485 – 486: 83–92
https://doi.org/10.1016/j.scitotenv.2014.03.070
36 Zhang  J, Liu   C L (2002). Riverine composition and estuarine geochemistry of particulate metals in China—Weatheringfeatures, anthropogenic impact and chemical fluxes.  Estuar Coast Shelf Sci, 54(6): 1051–1070
https://doi.org/10.1006/ecss.2001.0879
37 Zhang  W G,  Feng  H,  Chang  J N,  Qu  J G,  Xie  H X,  Yu  L Z (2009). Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes.  Environ Pollut, 157(5): 1533–1543
https://doi.org/10.1016/j.envpol.2009.01.007
[1] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[2] Shahla TASHAKKOR, Atefeh CHAMANI, Mozhgan Ahmadi NADOUSHAN, Minoo MOSHTAGHIE. Acoustics in urban parks: Does the structure of narrow urban parks matter in designing a calmer urban landscape?[J]. Front. Earth Sci., 2020, 14(3): 512-521.
[3] Yonghui WANG, Kexiang LIU, Zhaopeng WU, Li JIAO. Comparison and analysis of three estimation methods for soil carbon sequestration potential in the Ebinur Lake Wetland, China[J]. Front. Earth Sci., 2020, 14(1): 13-24.
[4] Jing MING, Xiawei LIAO, Xu ZHAO. Grey water footprint for global energy demands[J]. Front. Earth Sci., 2020, 14(1): 201-208.
[5] Mohammad Saeid MIRAKHORLO, Majid RAHIMZADEGAN. Evaluating estimated sediment delivery by Revised Universal Soil Loss Equation (RUSLE) and Sediment Delivery Distributed (SEDD) in the Talar Watershed, Iran[J]. Front. Earth Sci., 2020, 14(1): 50-62.
[6] Zhitao WU, Mingyue WANG, Hong ZHANG, Ziqiang DU. Vegetation and soil wind erosion dynamics of sandstorm control programs in the agro-pastoral transitional zone of northern China[J]. Front. Earth Sci., 2019, 13(2): 430-443.
[7] Jingjie ZANG, Yanyan LEI, Huan YANG. Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions[J]. Front. Earth Sci., 2018, 12(4): 862-876.
[8] Xiaoting WANG, Zhan’e YIN, Xuan WANG, Pengfei TIAN, Yonghua HUANG. A study on flooding scenario simulation of future extreme precipitation in Shanghai[J]. Front. Earth Sci., 2018, 12(4): 834-845.
[9] Yanhong LI, Mingliang ZHAO, Fadong LI. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake[J]. Front. Earth Sci., 2018, 12(3): 611-624.
[10] Yintao LU, Xinghua ZANG, Hong YAO, Shichao ZHANG, Shaobin SUN, Fang LIU. Assessment of trace metal contamination in groundwater in a highly urbanizing area of Shenfu New District, Northeast China[J]. Front. Earth Sci., 2018, 12(3): 569-582.
[11] Bilaşco ŞTEFAN, Roşca SANDA, Fodorean IOAN, Vescan IULIU, Filip SORIN, Petrea DĂNUŢ. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models[J]. Front. Earth Sci., 2018, 12(2): 311-324.
[12] Lijun WANG, Wendong TAO, Richard C. SMARDON, Xue XU, Xinwei LU. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China[J]. Front. Earth Sci., 2018, 12(2): 397-407.
[13] Teng NIE, Lei NIE, Zhen ZHOU, Zhanshan WANG, Yifeng XUE, Jiajia GAO, Xiaoqing WU, Shoubin FAN, Linglong CHENG. Exploring the heavy air pollution in Beijing in the fourth quarter of 2015: assessment of environmental benefits for red alerts[J]. Front. Earth Sci., 2018, 12(2): 361-372.
[14] Jianguo LI, Wenhui YANG, Qiang LI, Lijie PU, Yan XU, Zhongqi ZHANG, Lili LIU. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China[J]. Front. Earth Sci., 2018, 12(2): 339-348.
[15] Chen CHENG, Chunjuan BI, Dongqi WANG, Zhongjie YU, Zhenlou CHEN. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification[J]. Front. Earth Sci., 2018, 12(1): 63-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed