Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (2) : 248-264    https://doi.org/10.1007/s11707-021-0883-z
RESEARCH ARTICLE
A rain-type adaptive optical flow method and its application in tropical cyclone rainfall nowcasting
Jiakai ZHU1, Jianhua DAI2()
1. Shanghai Meteorological Information and Technological Support Center, China Meteorological Administration, Shanghai 200030, China
2. Shanghai Central Meteorological Observatory, China Meteorological Administration, Shanghai 200030, China
 Download: PDF(28279 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A rain-type adaptive pyramid Kanade–Lucas–Tomasi (A-PKLT) optical flow method for radar echo extrapolation is proposed. This method introduces a rain-type classification algorithm that can classify radar echoes into six types: convective, stratiform, surrounding convective, isolated convective core, isolated convective fringe, and weak echoes. Then, new schemes are designed to optimize specific parameters of the PKLT optical flow based on the rain type of the echo. At the same time, the gradients of radar reflectivity in the fringe positions corresponding to all types of rain echoes are increased. As a result, corner points that are characteristic points used for PKLT optical flow tracking in the surrounding area will be increased. Therefore, more motion vectors are purposefully obtained in the whole radar echo area. This helps to describe the motion characteristics of the precipitation more precisely. Then, the motion vectors corresponding to each type of rain echo are merged, and a denser motion vector field is generated by an interpolation algorithm on the basis of merged motion vectors. Finally, the dense motion vectors are used to extrapolate rain echoes into 0–60-min nowcasts by a semi-Lagrangian scheme. Compared with other nowcasting methods for four landfalling typhoons in or near Shanghai, the new optical flow method is found to be more accurate than the traditional cross-correlation and optical flow methods, particularly showing a clear improvement in the nowcasting of convective echoes on the spiral rainbands of typhoons.

Keywords optical flow method      radar echo classification      adaptive      typhoon      nowcasting     
Corresponding Author(s): Jianhua DAI   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Online First Date: 01 June 2021    Issue Date: 26 August 2022
 Cite this article:   
Jiakai ZHU,Jianhua DAI. A rain-type adaptive optical flow method and its application in tropical cyclone rainfall nowcasting[J]. Front. Earth Sci., 2022, 16(2): 248-264.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0883-z
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I2/248
Fig.1  Schematic flow diagram of the A-PKLT optical flow radar echo extrapolation method. The procedure of traditional PKLT optical flow method is shown in the dashed rectangle.
Typhoon Name (ID) Ampil (1810) Jongdari (1812) Rumbia (1818) Lekima (1909)
Landfall date/Time 22 July, 2018
0430 UTC
03 August, 2018
0335 UTC
16 August, 2018
2005 UTC
9 August, 2019
1745 UTC
Landfall location Chongming, Shanghai Jinshan,
Shanghai
Pudong,
Shanghai
Wenling,
Zhejiang
Landfall center Pressure/hPa 982 988 982 930
Landfall max wind speed/(m·s-1) 28 23 23 52
Max rainfall in Shanghai/mm 118.1 104.4 154.4 276.1
Max hourly rainfall in Shanghai/mm 46.5 29.1 46.6 112.2
Data period 1107 UTC 21 Jul
1759 UTC 22 Jul
0204 UTC 02 Aug
1055 UTC 03 Aug
0030 UTC 16 Aug
1706 UTC 17 Aug
0000 UTC 9 Aug
0000 UTC 11 Aug
Radar scans 317 356 407 481
Tab.1  Summary of typhoon cases
Fig.2  0600-0700 UTC 1-h rainfall (a) and 0500–0800 UTC 3-h rainfall (b) in Shanghai on 10 August, 2019.
Fig.3  Nanhui radar 0.5° elevation angle reflectivity (dBZ, color shading) images from 0609 UTC on 9 August, to 1210 UTC on 10 August, 2019.
Fig.4  Diagram of declustering of the corner points in one box.
Fig.5  Nanhui radar reflectivity (dBZ, color shading) at a 0.5° elevation angle at 1259 UTC 9 August, 2019, overlaid with motion vectors (blue arrows) from (a) the PKLT and (b) A-PKLT optical flow methods. More motion vectors are captured in the interior areas of two spiral rainbands of Typhoon Lekima using the A-PKLT method than the traditional PKLT method.
Fig.6  Mean CSI scores of 6–60-min (lead time) nowcasts at 20–55 dBZ reflectivity levels based on the A-PKLT, PKLT, and TREC methods for four typhoon cases: a) Ampil, b) Jongdari, c) Rumbia, and d) Lekima.
Fig.7  Nanhui radar (a) reflectivity (dBZ, color shading) at a 0.5° elevation angle at 0027 UTC 22 July, 2018 and the 60-min reflectivity extrapolation at this time of (b) TREC, (c) PKLT, and (d) A-PKLT for Typhoon Ampil.
Fig.8  (a) Nanhui radar reflectivity (dBZ, color shading) at a 0.5° elevation angle at 1634 UTC on 2 August, 2018 for Typhoon Jongdari and (b) Qingpu radar reflectivity at a 0.5° elevation angle at 0130 UTC on 17 August, 2018 for Typhoon Rumbia.
Lead time min 20
dBZ
25
dBZ
30
dBZ
35
dBZ
40
dBZ
45
dBZ
50
dBZ
55
dBZ
Mean
6 0.85 0.81 0.75 0.64 0.49 0.36 0.19 0.08 0.52
12 0.80 0.76 0.68 0.57 0.41 0.27 0.13 0.04 0.46
18 0.77 0.71 0.64 0.51 0.35 0.22 0.09 0.03 0.42
24 0.73 0.68 0.60 0.47 0.31 0.18 0.07 0.02 0.38
30 0.71 0.65 0.56 0.44 0.27 0.15 0.05 0.01 0.36
36 0.68 0.62 0.53 0.40 0.24 0.13 0.04 0.01 0.33
42 0.66 0.60 0.50 0.38 0.22 0.11 0.03 0.01 0.31
48 0.64 0.57 0.48 0.35 0.20 0.10 0.03 0.00 0.30
54 0.61 0.55 0.45 0.33 0.18 0.08 0.02 0.00 0.28
60 0.59 0.53 0.43 0.30 0.17 0.08 0.02 0.00 0.27
Mean 0.70 0.65 0.56 0.44 0.28 0.17 0.07 0.02 0.36
Tab.2  Average CSI of the A-PKLT 6~60-min reflectivity nowcasts for Typhoon Lekima during 0011 UTC 9 August, – 0010 UTC 11 August, 2019
Fig.9  Same as in Fig. 7 but for Typhoon Lekima at 0641 UTC on 10 August, 2019.
Lead time min 20
dBZ
25
dBZ
30
dBZ
35
dBZ
40
dBZ
45
dBZ
50
dBZ
55
dBZ
Mean
6 0.00 0.01 0.01 0.02 0.04 0.05 0.03 0.02 0.02
12 0.00 0.01 0.01 0.03 0.05 0.06 0.04 0.01 0.03
18 0.01 0.00 0.02 0.02 0.05 0.06 0.02 0.01 0.02
24 0.00 0.01 0.02 0.02 0.05 0.05 0.02 0.01 0.02
30 0.00 0.01 0.01 0.03 0.04 0.04 0.01 0.00 0.02
36 0.00 0.00 0.00 0.01 0.03 0.04 0.01 0.00 0.01
42 0.00 0.00 0.00 0.02 0.03 0.03 0.01 0.01 0.01
48 0.00 -0.01 0.00 0.01 0.02 0.03 0.01 0.00 0.01
54 -0.01 -0.01 -0.01 0.01 0.02 0.02 0.00 0.00 0.00
60 -0.01 -0.01 -0.01 -0.01 0.02 0.03 0.01 0.00 0.00
Mean 0.00 0.00 0.01 0.02 0.04 0.04 0.02 0.01 0.02
Tab.3  As in Table 2, but for average CSI gain of A-PKLT against PKLT
Fig.10  a) As in Fig. 6(d), but for the period of 0423 – 0807 UTC on 10 August, 2019, and b) hourly CSI gains of the A-PKLT 40–50 dBZ reflectivity nowcasts against the PKLT method for Typhoon Lekima from 0000 UTC on 9 August, – 2300 UTC on 10 August, 2019.
Lead time min 20
dBZ
25
dBZ
30
dBZ
35
dBZ
40
dBZ
45
dBZ
50
dBZ
55
dBZ
Mean
6 0.01 0.01 0.02 0.04 0.05 0.06 0.06 0.04 0.04
12 0.00 0.02 0.03 0.04 0.06 0.08 0.07 0.06 0.05
18 0.01 0.02 0.02 0.04 0.07 0.07 0.08 0.05 0.05
24 0.01 0.01 0.02 0.04 0.06 0.07 0.09 0.04 0.04
30 0.01 0.02 0.02 0.04 0.06 0.07 0.09 0.04 0.04
36 0.01 0.01 0.01 0.03 0.06 0.08 0.09 0.03 0.04
42 0.00 0.01 0.01 0.03 0.05 0.08 0.08 0.02 0.04
48 0.00 0.01 0.01 0.03 0.05 0.08 0.08 0.03 0.04
54 0.00 0.00 0.01 0.03 0.05 0.07 0.07 0.02 0.03
60 -0.01 0.00 0.00 0.02 0.05 0.07 0.06 0.01 0.03
Mean 0.00 0.01 0.02 0.03 0.06 0.07 0.08 0.03 0.04
Tab.4  As in Table 3, but for the period during 0423–0807 UTC 10 August, 2019.
1 R Bechini, V Chandrasekar (2017). An enhanced optical flow technique for radar nowcasting of precipitation and winds. J Atmos Ocean Technol, 34(12): 2637–2658
https://doi.org/10.1175/JTECH-D-17-0110.1
2 J Y Bouguet (2000). Pyramidal Implementation of the Lucas Kanade Feature Tracker description of the algorithm. Intel Corporation: 1–9
3 N E H Bowler, C E Pierce, A Seed (2004). Development of a precipitation nowcasting algorithm based on optical flow techniques. J Hydrol (Amst), 288(1–2): 74–91
https://doi.org/10.1016/j.jhydrol.2003.11.011
4 K A Browning, C G Collier (1989). Nowcasting of precipitating systems. Rev Geophys, 27(3): 345–370
https://doi.org/10.1029/RG027i003p00345
5 C Y Cao, Y Z Chen, D H Liu, C Li, H Li, J J He (2015). The optical flow method and its application to nowcasting. Acta Meteorol Sin, 73(3): 471–480 (in Chinese)
6 L Chen, J H Dai, L Tao (2009). Application of an improved TREC algorithm (CoTREC) for precipitation nowcast. J Trop Meteorol, 25(1): 117–122 (in Chinese)
7 L S Chen, Y Li (2004). An overview on the study of the tropical cyclone rainfall. In: Proc. Inter. Conf. on Storms, Brisbane, Australian Meteorological and Oceanographic Society: 112–113
8 L S Chen, Y Li, Z Q Cheng (2010). An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv Atmos Sci, 27(5): 967–976
https://doi.org/10.1007/s00376-010-8171-y
9 P Y Chen, H Yu, M Xu, X T Lei, F Zeng (2019). A simplified index to assess the combined impact of tropical cyclone precipitation and wind on China. Front Earth Sci, 13(4): 672–681
https://doi.org/10.1007/s11707-019-0793-5
10 Y Z Chen, H P Lan, X L Chen, W H Zhang (2017). A nowcasting technique based on application of the particle filter blending algorithm. J Meteorol Res, 31(5): 931–945
https://doi.org/10.1007/s13351-017-6557-9
11 R K Crane (1979). Automatic cell detection and tracking. IEEE Trans Geosci Electron, 17(4): 250–262
https://doi.org/10.1109/TGE.1979.294654
12 T Crum, E J Ciardi, J B Boettcher, M Istok, A Stern (2013). How the wsr-88d and its new dual polarization capability can benefit the wind energy industry. In: 93rd American Meteorological Society Annual Meeting
13 J H Dai (2013). Analysis of thunderstorm development and evolution features and mechanism study for the Yangtze River Delta region. Dissertation for the Doctoral Degree. Nanjing: Nanjing University (in Chinese)
14 M Dixon, G Wiener (1993). TITAN: Thunderstorm identification, tracking, analysis, and nowcasting-A radar-based methodoloy. J Atmos Ocean Technol, 10(6): 785–797
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
15 S Z Dusan, M M Valery, V R Alexander (2006). Correlation coefficients between horizontally and vertically polarized returns from ground clutter. J Atmos Ocean Technol, 23(3): 381–394
https://doi.org/10.1175/JTECH1856.1
16 K Emanuel, L Center (2018). 100 Years of progress in tropical cyclone research. Meteorol Monographs, 59: 15.1–15.68
17 F Fabry (2015). Radar Meteorology: Principles and Practice. Cambridge: Cambridge University Press
18 U Germann, I Zawadzki (2002). Scale-dependence of the predictability of precipitation from continental radar images. Part I: description of the methodology. Mon Weather Rev, 130(12): 2859–2873
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
19 J J Gibson (1950). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin
20 L Han, H Q Wang, Y J Lin (2008). Application of optical flow method to nowcasting convective weather. Acta Scientiarum Naturalium Universitatis Pekinensis, 44(5): 751–755
21 R Houze Jr (2010). Clouds in tropical cyclones. Mon Weather Rev, 138(2): 293–344
https://doi.org/10.1175/2009MWR2989.1
22 J T Johnson, P L MacKeen, A Witt, E D Mitchell, G J Stumpf, M D Eilts, K W Thomas (1998). The storm cell identification and tracking (SCIT) algorithm: an enhanced WSR-88D algorithm. Weather Forecast, 13(2): 263–276
https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
23 B D Lucas, T Kanade (1981). An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, 121–130
24 S W Powell, R A Houze, S R Brodzik (2016). Rainfall-type categorization of radar echoes using polar coordinate reflectivity data. J Atmos Ocean Technol, 33(3): 523–538
https://doi.org/10.1175/JTECH-D-15-0135.1
25 R E Rinehart, E T Garvey (1978). Three-dimensional storm motion detection by conventional weather radar. Nature, 273(5660): 287–289
https://doi.org/10.1038/273287a0
26 J T Schaefer (1990). The critical success index as an indicator of warning skill. Weather Forecast, 5(4): 570–575
https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
27 J B Shi, C Tomasi (1994). Good features to track. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) Seattle: 593–600
28 M Steiner, R Houze Jr, S E Yuter (1995). Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J Appl Meteorol, 34(9): 1978–2007
https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
29 M Sun, J H Dai, Z H Yuan, L Tao (2015). An analysis of a back-propagating thunderstorm using the three-dimensional wind fields retrieved by the dual-Doppler radar data. Acta Meteorol Sin, 73(2): 247–262 (in Chinese)
30 J D Tuttle, G B Foote (1990). Determination of the boundary layer airflow from a single Doppler radar. J Atmos Ocean Technol, 7(2): 218–232
https://doi.org/10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2
31 H Wexler (1945). The structure of the September, 1944, Hurricane when off Cape Henry, Virginia. Bull Am Meteorol Soc, 26(5): 156–159
https://doi.org/10.1175/1520-0477-26.5.156
32 H Wexler (1947). Structure of hurricanes as determined by radar. Ann N Y Acad Sci, 48(8): 821–844
https://doi.org/10.1111/j.1749-6632.1947.tb38495.x
33 J Wilson (2004). Precipitation nowcasting: past, present and future. In: Sixth Int. Symp. on Hydrological Applications of Weather Radar, Melbourne, VIC, Australia, Centre for Australian Weather and Climate Research, 8
34 W C Woo, W K Wong (2017). Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere, 8(12): 48
https://doi.org/10.3390/atmos8030048
35 L H Yang, X Y Liu, Y H Chen (2017). Product analysis of correlation coefficient of dual polarization radar. Guangdong Meteorol, 39(3): 69–72 (in Chinese)
36 H Yu, L S Chen (2019). Impact assessment of landfalling tropical cyclones: introduction to the special issue. Front Earth Sci, 13(4): 669–671
https://doi.org/10.1007/s11707-019-0809-1
37 X D Yu, Y G Zheng (2020). Advances in severe convective weather research and operational service in China. J Meteorol Res, 34(2): 189–217
https://doi.org/10.1007/s13351-020-9875-2
38 X D Yu, X G Zhou, X M Wang (2012). The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteorol Sin, 70: 311–337 (in Chinese)
39 L Zhang, M Wei, N Li, S H Zhou (2014). Improved optical flow method application to extrapolate radar echo. Sci Technol Engineering, 14(32): 133–137 (in Chinese)
40 Q H Zhang, Q Wei, L S Chen (2010). Impact of landfalling tropical cyclones in Chinese mainland. Sci China Earth Sci, 53(10): 1559–1564
https://doi.org/10.1007/s11430-010-4034-8
41 Y G Zheng, K H Zhou, J Sheng, Y J Lin, F Y Tian, W Y Tang, Y Lan, W J Zhu (2015). Advances in techniques of monitoring, forecasting and warning of severe convective weather. J Applied Meteorol Sci, 26(6): 641–657 (in Chinese)
42 G B Zhou, S Z Gao (2019). Analysis of the August 2019 atmospheric circulation and weather. Meteorol Mont, 45(11): 1621–1628 (in Chinese)
[1] Siqi CHEN, Feng XU, Yu ZHANG, Guiling YE, Jianjun XU, Chunlei LIU. Sensitivity of Typhoon Lingling (2019) simulations to horizontal mixing length and planetary boundary layer parameterizations[J]. Front. Earth Sci., 2022, 16(2): 304-322.
[2] Jing ZHU, Yi LU, Fumin REN, John L McBRIDE, Longbin YE. Typhoon disaster risk zoning for China’s coastal area[J]. Front. Earth Sci., 2022, 16(2): 291-303.
[3] Zixi RUAN, Jiangnan LI, Fangzhou LI, Wenshi LIN. Effects of local and non-local closure PBL schemes on the simulation of Super Typhoon Mangkhut (2018)[J]. Front. Earth Sci., 2022, 16(2): 277-290.
[4] Fen XU, X. San LIANG. Drastic change in dynamics as Typhoon Lekima experiences an eyewall replacement cycle[J]. Front. Earth Sci., 2022, 16(1): 121-131.
[5] Cong ZHOU, Peiyan CHEN, Shifang YANG, Feng ZHENG, Hui YU, Jie TANG, Yi LU, Guoming CHEN, Xiaoqing LU, Xiping ZHANG, Jing SUN. The impact of Typhoon Lekima (2019) on East China: a postevent survey in Wenzhou City and Taizhou City[J]. Front. Earth Sci., 2022, 16(1): 109-120.
[6] He FANG, William PERRIE, Gaofeng FAN, Zhengquan LI, Juzhen CAI, Yue HE, Jingsong YANG, Tao XIE, Xuesong ZHU. High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR[J]. Front. Earth Sci., 2022, 16(1): 90-98.
[7] Shengming TANG, Yun GUO, Xu WANG, Jie TANG, Tiantian LI, Bingke ZHAO, Shuai ZHANG, Yongping LI. Validation of Doppler Wind Lidar during Super Typhoon Lekima (2019)[J]. Front. Earth Sci., 2022, 16(1): 75-89.
[8] Guomin CHEN, Xiping ZHANG, Qing CAO, Zhihua ZENG. Evaluation of forecast performance for Super Typhoon Lekima in 2019[J]. Front. Earth Sci., 2022, 16(1): 17-33.
[9] Seung-Woo LEE, Sung Hyun NAM, Duk-Jin KIM. Estimation of marine winds in and around typhoons using multi-platform satellite observations: Application to Typhoon Soulik (2018)[J]. Front. Earth Sci., 2022, 16(1): 175-189.
[10] Hiroshi TAKAGI, Atsuhei TAKAHASHI. Short-fetch high waves during the passage of 2019 Typhoon Faxai over Tokyo Bay[J]. Front. Earth Sci., 2022, 16(1): 206-219.
[11] Rong GUO, Hui YU, Zifeng YU, Jie TANG, Lina BAI. Application of the frequency-matching method in the probability forecast of landfalling typhoon rainfall[J]. Front. Earth Sci., 2022, 16(1): 52-63.
[12] Md. Rezuanul ISLAM, Hiroshi TAKAGI. Typhoon parameter sensitivity of storm surge in the semi-enclosed Tokyo Bay[J]. Front. Earth Sci., 2020, 14(3): 553-567.
[13] Gefei DENG, Yongming SHEN, Changping LI, Jun TANG. Computational investigation on hydrodynamic and sediment transport responses influenced by reclamation projects in the Meizhou Bay, China[J]. Front. Earth Sci., 2020, 14(3): 493-511.
[14] Linna ZHAO, Xuemei BAI, Dan QI, Cheng XING. BMA probability quantitative precipitation forecasting of land-falling typhoons in south-east China[J]. Front. Earth Sci., 2019, 13(4): 758-777.
[15] Jia ZHU, Jiong SHU, Xing YU. Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm[J]. Front. Earth Sci., 2019, 13(4): 721-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed