Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 711-733    https://doi.org/10.1007/s11707-021-0918-5
RESEARCH ARTICLE
Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China
Jing TIAN1, Shenglian GUO1(), Jiabo YIN1, Zhengke PAN2, Feng XIONG3, Shaokun HE1
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2. Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
3. Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430010, China
 Download: PDF(7302 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Climate change and land use/cover change (LUCC) can both exert great impacts on the generation processes of precipitation and runoff. However, previous studies usually neglected considering the contribution component of future LUCC in evaluating changes in hydrological cycles. In this study, an integrated framework is developed to quantify and partition the impact of climate change and LUCC on future runoff evolution. First, a daily bias correction (DBC) method and the Cellular Automaton-Markov (CA-Markov) model are used to project future climate and LUCC scenarios, and then future runoff is simulated by the calibrated Soil and Water Assessment Tool (SWAT) model with different climate and LUCC scenarios. Finally, the uncertainty of future runoff and the contribution rate of the two driving factors are systematically quantified. The Han River basin in China was selected as a case study. Results indicate that: 1) both climate change and LUCC will contribute to future runoff intensification, the variation of future runoff under combined climate and LUCC is larger than these under climate change or LUCC alone; 2) the projected uncertainty of median value of multi-models under RCP4.5 (RCP8.5) will reach 18.14% (20.34%), 12.18% (14.71%), 11.01% (13.95%), and 11.41% (14.34%) at Baihe, Ankang, Danjiangkou, and Huangzhuang stations, respectively; 3) the contribution rate of climate change to runoff at Baihe, Ankang, Danjiangkou, and Huangzhuang stations under RCP4.5 (RCP8.5) are 91%–98% (84%–94%), while LUCC to runoff under RCP4.5 (RCP8.5) only accounts for 2%–9% (6%–16%) in the annual scale. This study may provide useful adaptive strategies for policymakers on future water resources planning and management.

Keywords climate change      LUCC      runoff response      uncertainty analysis      contribution rate     
Corresponding Author(s): Shenglian GUO   
Online First Date: 26 January 2022    Issue Date: 29 December 2022
 Cite this article:   
Jing TIAN,Shenglian GUO,Jiabo YIN, et al. Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China[J]. Front. Earth Sci., 2022, 16(3): 711-733.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0918-5
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/711
Fig.1  Sketch image of the Han River basin.
ID Model name Institution Resolution
(Lon. ×Lat.)
Reference
G1 BCC-CSM1.1(m) BCC, China 1.125°×1.125° Wu (2012)
G2 BNU-ESM GCESS, China 2.8°×2.8° Ji et al. (2014)
G3 CanESM2 CCCMA, Canada 2.8°×2.8° Yu et al. (2020)
G4 CCSM4 NCAR, USA 1.25°×0.94° Silveira et al. (2019)
G5 CNRM-CM5 CNRM-CERFACS, Canada 1.4°×1.4° Chauvin et al. (2017)
G6 CSIRO-Mk3.6.0 CSIRO-QCCCE, Australia 1.8°×1.8° Zhang et al. (2017)
G7 GFDL-ESM2M NOAA-GFDL, USA 2.5°×2.0° Paymard et al. (2019)
G8 MRI-CGCM3 MRI, Japan 1.1°×1.1° Zhang et al. (2019)
G9 MPI-ESM-LR MPI-M, Germany 1.875°×1.875° Block et al. (2013)
G10 NorESM1-M NCC, Norway 2.5°×1.875° Frey et al. (2021)
Tab.1  The basic information of the selected ten GCMs
Fig.2  Flowchart of the procedure of future climate and LUCC impacts on future runoff.
Fig.3  Evaluation of precipitation and temperature simulation results of raw and corrected GCM outputs in the Han River basin.
Fig.4  Measured and simulated LUCC of Han River basin.
Parameter Description Sensitivity analysis Calibration
t-statistics p-value Fittedvalue
ALPHA_BF The extinction coefficient of base flow –2.34 0.02 0.5
CH_K2 Hydraulic conductivity coefficient of river 0.93 0.36 70.06
CH_N2 Manning coefficient of river 0.71 0.48 0.06
CN2 Runoff curve number Ⅱ for moisture condition 1.69 0.09 –0.18
GW_DELAY Delayed recharge time of aquifer (d) –1.95 0.05 184.35
GW_REVAP Evaporation coefficient of groundwater –0.93 0.36 0.1
GWQMN Depth of water in the shallow aquifer (mm) –1.03 0.31 0.46
ESCO Soil evaporation compensation coefficient –1.48 0.14 1.06
SFTMP Base temperature of snowmelt (°C) 2.07 0.04 –3.39
SOL_BD Wet bulk density (mg/m3) 3.68 0 0.26
SOL_AWC Soil available water content (mm) 1.49 0.14 0.38
SOL_K Saturated permeability coefficient of the
first soil layer (mm/h)
3.39 0 –0.43
Tab.2  Parameters sensitivity analysis and calibration results of the SWAT model
Fig.5  Calibration and validation results of the SWAT model.
Fig.6  Observed and simulated monthly runoff hydrographs at four hydrological stations.
Fig.7  Future climate change projected by the ten bias-corrected GCMs under RCP4.5.
The whole basin Base period Future (2021—2060)
(1966—2005) RCP4.5 RCP8.5
Average Average Change Average Change
Precipitation/mm 839.91 882.50 +42.59 890.80 +50.89
Tmax/°C 20.29 21.84 +1.55 22.39 +2.10
Tmin/°C 10.52 11.98 +1.46 12.48 +1.96
Tab.3  The annual average variation of GCMs ensemble of precipitation and temperature in the future periods.
Land use type Historical Future
2010 2020 2030 2040 2050
Farmland 35.2 34.5 34.2 33.9 33.7
Forest land 40.0 41.0 41.4 42.0 42.8
Grassland 19.2 18.6 18.3 17.7 16.7
Water bodies 2.8 2.8 2.8 2.8 2.8
Construction land 2.7 3.0 3.2 3.5 3.9
Bare land 0.1 0.1 0.1 0.1 0.1
Tab.4  Percentages of future LUCC type area in the Han River basin (%).
Fig.8  Comparison of simulated runoff of different stations over Han River basin under the base period and future climate change.
Period Baihe Ankang
Qb QFL variation Qb QFL variation
Annual 721 726 0.69% 542 545 0.55%
Flood season 1187 1201 1.17% 898 910 1.29%
Non-flood season 255 252 –1.28% 187 182 –2.60%
Period Danjiangkou Huangzhuang
Qb QFL variation Qb QFL variation
Annual 1127 1132 0.44% 1607 1609 0.12%
Flood season 1815 1832 0.93% 2451 2486 1.41%
Non-flood season 440 433 –1.55% 764 755 –1.22%
Tab.5  Changes of the projected runoff under LUCC in Han River basin (m3/s)
Fig.9  Annual and monthly runoff over Han River basin in 2021–2060 under climate change (RCP4.5) and LUCC.
Fig.10  Annual and monthly runoff over Han River basin in 2021–2060 under climate change (RCP8.5) and LUCC.
Fig.11  Uncertainty range of future daily precipitation and temperature over Han River basin.
Fig.12  Uncertainty range of future runoff projection of four hydrological stations over Han River basin.
Fig.13  Decomposition of HDSI standard index series at four stations based on future monthly runoff.
Scenarios Stations IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7
RCP4.5 Baihe 2.99 6.51 14.35 24.79 61.21 121.75 234.35
Ankang 2.84 6.50 16.87 30.91 60.09 120.08 /
Danjiangkou 2.77 6.49 16.52 27.54 60.25 118.76 /
Huangzhuang 2.83 6.10 11.60 26.30 60.09 236.66 /
RCP8.5 Baihe 2.85 6.24 11.52 19.06 48.32 81.17 /
Ankang 2.94 6.53 12.79 29.98 79.00 / /
Danjiangkou 2.68 6.12 11.81 20.14 46.80 116.32 /
Huangzhuang 2.71 6.26 12.01 20.70 48.97 103.97 120.02
Tab.6  Average period of IMF of four hydrological stations in the Han River (month)
Scenarios Stations Baihe Ankang Danjiangkou Huangzhuang
RCP4.5 Climate change 90.70 91.90 92.88 97.95
LUCC 9.30 8.10 7.12 2.05
Total 100.00 100.00 100.00 100.00
RCP8.5 Climate change 83.69 79.97 84.76 94.17
LUCC 16.31 20.03 15.24 5.83
Total 100.00 100.00 100.00 100.00
Tab.7  Annual contribution rate of future climate change and LUCC at four stations (%)
1 K C Abbaspour, J Yang, I Maximov, R Siber, K Bogner, J Mieleitner, J Zobrist, R Srinivasan (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol (Amst), 333(2–4): 413–430
https://doi.org/10.1016/j.jhydrol.2006.09.014
2 A Ahmadalipour, H Moradkhani, A Rana (2018). Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin. Clim Dyn, 50(1–2): 717–733
https://doi.org/10.1007/s00382-017-3639-4
3 M L Berihun, A Tsunekawa, N Haregeweyn, D T Meshesha, E Adgo, M Tsubo, T Masunaga, A A Fenta, D Sultan, M Yibeltal, K Ebabu (2019). Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Sci Total Environ, 689: 347–365
https://doi.org/10.1016/j.scitotenv.2019.06.338 pmid: 31277003
4 K Block, T Mauritsen (2013). Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J Adv Model Earth Syst, 5(4): 676–691
https://doi.org/10.1002/jame.20041
5 D Changnon, V A Gensini (2019). Changing spatiotemporal patterns of 5- and 10-Day Illinois heavy precipitation amounts, 1900–2018. J Appl Meteorol Climatol, 58(7): 1523–1533
https://doi.org/10.1175/JAMC-D-18-0335.1
6 F Chauvin, H Douville, A Ribes (2017). Atlantic tropical cyclones water budget in observations and CNRM-CM5 model. Clim Dyn, 49(11–12): 4009–4021
https://doi.org/10.1007/s00382-017-3559-3
7 I Chawla, P P Mujumdar (2015). Isolating the impacts of land use and climate change on streamflow. Hydrol Earth Syst Sci, 19(8): 3633–3651
https://doi.org/10.5194/hess-19-3633-2015
8 H Chen, S L Guo, C Y Xu, V P Singh (2007). Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J Hydrol (Amst), 344(3–4): 171–184
https://doi.org/10.1016/j.jhydrol.2007.06.034
9 J Chen, F P Brissette, D Chaumont, M Braun (2013). Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J Hydrol (Amst), 479: 200–214
https://doi.org/10.1016/j.jhydrol.2012.11.062
10 N Clerici, F Cote-Navarro, F J Escobedo, K Rubiano, J C Villegas (2019). Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci Total Environ, 685: 1181–1192
https://doi.org/10.1016/j.scitotenv.2019.06.275 pmid: 31390708
11 M H Costa, A Botta, J A Cardille (2003). Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol (Amst), 283(1–4): 206–217
https://doi.org/10.1016/S0022-1694(03)00267-1
12 I da Silveira, P Zuidema, B P Kirtman (2019). Fast SST error growth in the southeast Pacific Ocean: comparison between high and low-resolution CCSM4 retrospective forecasts. Clim Dyn, 53(9–10): 5237–5251
https://doi.org/10.1007/s00382-019-04855-5
13 L Frey, A M Bender, G Svensson (2021). Processes controlling the vertical aerosol distribution in marine stratocumulus regions- a sensitivity study using the climate model NorESM1-M. Atmos Chem Phys, 21(1): 577–595
https://doi.org/10.5194/acp-21-577-2021
14 P W Gassman, M R Reyes, C H Green, J G Arnold (2007). The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE, 50(4): 1211–1250
https://doi.org/10.13031/2013.23637
15 L Gu, J Chen, J B Yin, C-Y Xu (2020). Responses of precipitation and runoff to climate warming and implications for future drought changes in China. Earth’s Future, 8(10): e2020EF001718.
16 D J Guan, H F Li, T Inohae, W C Su, T Nagaie, K Hokao (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Modell, 222(20–22): 3761–3772
https://doi.org/10.1016/j.ecolmodel.2011.09.009
17 Y Guo, G Fang, Y P Xu, X Tian, J Xie (2020). Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Sci Total Environ, 710: 136275
https://doi.org/10.1016/j.scitotenv.2019.136275 pmid: 31923662
18 M W A Halmy, P E Gessler, J A Hicke, B B Salem (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr, 63: 101–112
https://doi.org/10.1016/j.apgeog.2015.06.015
19 N E Huang, Z Shen, S R Long, M C Wu, H H Shih, Q Zheng, N C Yen, C C Tung, H H Liu (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings Mathematical Physical & Engineering Conferences, 454: 903–995
20 N E Huang, Z Shen, S R Long (1999). A new view of nonlinear water waves: the Hilbert Spectrum 1. Annu Rev Fluid Mech, 31(1): 417–457
https://doi.org/10.1146/annurev.fluid.31.1.417
21 C Hyandye, L W Martz (2017). A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int J Remote Sens, 38(1): 64–81
https://doi.org/10.1080/01431161.2016.1259675
22 D Ji, L Wang, J Feng, Q Z Wu, M Z Zhou (2014). Description and basic evaluation of BNU-ESM version 1. Geoscientific Model Devel Discuss, 7(2): 1601–1647
23 M R Khazaei, B Zahabiyoun, B Saghafian (2012). Assessment of climate change impact on floods using weather generator and continuous rainfall-runoff model. Int J Climatol, 32(13): 1997–2006
https://doi.org/10.1002/joc.2416
24 S Kundu, D Khare, A Mondal (2017). Individual and combined impacts of future climate and land use changes on the water balance. Ecol Eng, 105: 42–57
https://doi.org/10.1016/j.ecoleng.2017.04.061
25 S Kusangaya, M L Warburton, E A van Garderen, G P W Jewitt (2014). Impacts of climate change on water resources in southern Africa: a review. Phys Chem Earth, 67–69: 47–54
https://doi.org/10.1016/j.pce.2013.09.014
26 S S Li, L Zhang, Y Du, Y H Zhang, C C Yan (2020). Anthropogenic impacts on streamflow-compensated climate change effect in the Hanjiang River basin, China. J Hydrol Eng, 25(1): 04019058
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001876
27 Y Li, J Chang, Y Wang, A Guo, L Luo, F Ma, J Fan(2019). Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrol Res, 50(1): 244–261
https://doi.org/10.2166/nh.2018.006
28 Z Liang, T Tang, B Li, T Liu, J Wang, Y Hu (2018). Long-term streamflow forecasting using SWAT through the integration of the random forests precipitation generator: case study of Danjiangkou Reservoir. Hydrol Res, 49(5): 1513–1527
https://doi.org/10.2166/nh.2017.085
29 B Lin, X Chen, H Yao, Y Chen, M Liu, L Gao, A James (2015). Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol Indic, 58: 55–63
https://doi.org/10.1016/j.ecolind.2015.05.031
30 G Luo, C Yin, X Chen, W Xu, L Lu (2010). Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: a case study of Sangong watershed in Xinjiang, China. Ecol Complex, 7(2): 198–207
https://doi.org/10.1016/j.ecocom.2010.02.001
31 H Memarian, S Kumar Balasundram, J Bin Talib, C Teh Boon Sung, A Mohd Sood, K Abbaspour (2012). Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J Geogr Inf Syst, 04(06): 542–554
https://doi.org/10.4236/jgis.2012.46059
32 S K Mishra, A Pandey, V P Singh (2012). Special issue on soil conservation service curve number (SCS-CN) methodology. J Hydrol Eng, 17(11): 1157
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000694
33 F S Mpelasoka, F H S Chiew (2009). Influence of rainfall scenario construction methods on runoff projections. J Hydrometeorol, 10(5): 1168–1183
https://doi.org/10.1175/2009JHM1045.1
34 P Paymard, F Yaghoubi, M Nouri, M Bannayan (2019). Projecting climate change impacts on rainfed wheat yield, water demand, and water use efficiency in northeast Iran. Theor Appl Climatol, 138(3–4): 1361–1373
https://doi.org/10.1007/s00704-019-02896-8
35 J Nouri, A Gharagozlou, R Arjmandi, S Faryadi, M Adl (2014). Predicting urban land use changes using a CA-Markov Model. Arab J Sci Eng, 39(7): 5565–5573
https://doi.org/10.1007/s13369-014-1119-2
36 S H Pan, D D Liu, Z L Wang, Q Zhao, H Zou, Y K Hou, P Liu, L H Xiong (2017). Runoff responses to climate and land use/cover changes under future scenarios. Water, 9(7): 475
https://doi.org/10.3390/w9070475
37 R G Pontius Jr, N Neeti (2010). Uncertainty in the difference between maps of future land change scenarios. Sustain Sci, 5(1): 39–50
https://doi.org/10.1007/s11625-009-0095-z
38 A Poska, E Sepp, S Veski, K Koppel (2008). Using quantitative pollen-based land-cover estimations and a spatial CA-Markov model to reconstruct the development of cultural landscape at Ruge, South Estonia. Veg Hist Archaeobot, 17(5): 527–541
https://doi.org/10.1007/s00334-007-0124-8
39 A S Richey, B F Thomas, M H Lo, J T Reager, J S Famiglietti, K Voss, S Swenson, M Rodell (2015). Quantifying renewable groundwater stress with GRACE. Water Resour Res, 51(7): 5217–5238
https://doi.org/10.1002/2015WR017349 pmid: 26900185
40 J Schmidli, C Frei, P L Vidale (2006). Downscaling from GC precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol, 26(5): 679–689
https://doi.org/10.1002/joc.1287
41 J Schuol, K C Abbaspour, R Srinivasan, H Yang (2008). Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J Hydrol (Amst), 352(1–2): 30–49
https://doi.org/10.1016/j.jhydrol.2007.12.025
42 N Senroy, S Suryanarayanan, P F Ribeiro (2007). An improved Hilbert–Huang method for analysis of time-varying waveforms in power quality. IEEE Trans Power Syst, 22(4): 1843–1850
https://doi.org/10.1109/TPWRS.2007.907542
43 M X Shen, J Chen, M J Zhuan, H Chen, C Y Xu, L H Xiong (2018). Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J Hydrol (Amst), 556: 10–24
https://doi.org/10.1016/j.jhydrol.2017.11.004
44 J J Shen, W P Yen, J O’Fallon (2003). Interpretation and application of Hilbert-Huang transformation for seismic performance analyses. In: 6th US Conference & Workshop on Lifeline Earthquake Engineering (TCLEE)
https://doi.org/10.1061/40687(2003)67
45 F Tao, M Yokozawa, Y Hayashi, E Lin (2003). Future climate change, the agricultural water cycle, and agricultural production in China. Agric Ecosyst Environ, 95(1): 203-215 2
https://doi.org/10.1016/S0167-8809(02)00093-2
46 J Teng, J Vaze, F H S Chiew, B Wang, J M Perraud (2012). Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. J Hydrometeorol, 13(1): 122–139
https://doi.org/10.1175/JHM-D-11-058.1
47 D Trolle, A Nielsen, H E Andersen, H Thodsen, J E Olesen, C D Børgesen, J C Refsgaard, T O Sonnenborg, I B Karlsson, J P Christensen, S Markager, E Jeppesen (2019). Effects of changes in land use and climate on aquatic ecosystems: coupling of models and decomposition of uncertainties. Sci Total Environ, 657: 627–633
https://doi.org/10.1016/j.scitotenv.2018.12.055 pmid: 30677929
48 M Umair, D Kim, M Choi (2019). Impacts of land use/land cover on runoff and energy budgets in an East Asia ecosystem from remotely sensed data in a community land model. Sci Total Environ, 684: 641–656
https://doi.org/10.1016/j.scitotenv.2019.05.244 pmid: 31158626
49 P D Wagner, S Kumar, K Schneider (2013). An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrol Earth Syst Sci, 17(6): 2233–2246
https://doi.org/10.5194/hess-17-2233-2013
50 L Wang, S L Guo, X J Hong, D D Liu, L H Xiong (2017). Projected hydrologic regime changes in the Poyang Lake Basin due to climate change. Front Earth Sci, 11(1): 95–113
https://doi.org/10.1007/s11707-016-0580-5
51 T A Woldesenbet, N A Elagib, L Ribbe, J Heinrich (2018). Catchment response to climate and land use changes in the Upper Blue Nile sub-basins, Ethiopia. Sci Total Environ, 644: 193–206
https://doi.org/10.1016/j.scitotenv.2018.06.198 pmid: 29981519
52 C H Wu, G R Huang (2015). Changes in heavy precipitation and floods in the upstream of the Beijiang River basin, south China. Int J Climatol, 35(10): 2978–2992
https://doi.org/10.1002/joc.4187
53 T Wu (2012). A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations. Clim Dyn, 38(3–4): 725–744
https://doi.org/10.1007/s00382-011-0995-3
54 Z H Wu, N E Huang (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proc Royal Soc, Math Phys Eng Sci, 460(2046): 1597–1611
https://doi.org/10.1098/rspa.2003.1221
55 L Yan, L H Xiong, D D Liu, T S Hu, C Y Xu (2017). Frequency analysis of nonstationary annual maximum flood series using the time-varying two-component mixture distributions. Hydrol Processes, 31(1): 69–89
https://doi.org/10.1002/hyp.10965
56 J Yin, F He, Y J Xiong, G Y Qiu (2017). Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol Earth Syst Sci, 21(1): 183–196
https://doi.org/10.5194/hess-21-183-2017
57 J Yin, P Gentine, S Zhou, S C Sullivan, R Wang, Y Zhang, S Guo (2018). Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat Commun, 9(1): 4389
https://doi.org/10.1038/s41467-018-06765-2 pmid: 30348951
58 B Yu, G Li, S Chen, H Lin (2020). The role of internal variability in climate change projections of North American surface air temperature and temperature extremes in CanESM2 large ensemble simulations. Clim Dyn, 55(3–4): 869–885
https://doi.org/10.1007/s00382-020-05296-1
59 D F Zhang, Z Y Han, Y Shi (2017). Comparison of climate projections between driving CSIRO-Mk3.6.0 and downscaling simulation of RegCM4.4 over China. Adv Clim Change Res, 8(4): 245–255
https://doi.org/10.1016/j.accre.2017.10.001
60 H Zhang, G H Huang, D Wang, X Zhang (2011). Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands. J Hydrol (Amst), 396(1–2): 94–103
https://doi.org/10.1016/j.jhydrol.2010.10.037
61 L Zhang, Z Nan, W Yu, Y Ge (2016a). Hydrological responses to land-use change scenarios under constant and changed climatic conditions. Environ Manage, 57(2): 412–431
https://doi.org/10.1007/s00267-015-0620-z pmid: 26429363
62 L Zhang, X L Chen, J Z Lu, X K Fu, Y F Zhang, D Liang, Q Q Xu (2019). Precipitation projections using a spatiotemporally distributed method: a case study in the Poyang Lake watershed based on the MRI-CGCM3. Hydrol Earth Syst Sci, 23(3): 1649–1666
https://doi.org/10.5194/hess-23-1649-2019
63 Q Zhang, J Y Liu, V P Singh, X H Gu, X H Chen (2016b). Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin, China. Hydrol Processes, 30(14): 2562–2576
https://doi.org/10.1002/hyp.10814
64 M M Zhao, Z B He, J Du, L F Chen, P F Lin, S Fang (2019). Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol Indic, 98: 29–38
https://doi.org/10.1016/j.ecolind.2018.10.052
65 F Zhou, Y Xu, Y Chen, C Y Xu, Y Gao, J Du (2013). Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J Hydrol (Amst), 485: 113–125
https://doi.org/10.1016/j.jhydrol.2012.12.040
66 D Zuo, Z Xu, W Yao, S Jin, P Xiao, D Ran (2016). Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci Total Environ, 544: 238–250
https://doi.org/10.1016/j.scitotenv.2015.11.060 pmid: 26657370
[1] Xiaocha WEI, Qiuwen ZHOU, Ya LUO, Mingyong CAI, Xu ZHOU, Weihong YAN, Dawei PENG, Ji ZHANG. Vegetation dynamics and its response to driving factors in typical karst regions, Guizhou Province, China[J]. Front. Earth Sci., 2021, 15(1): 167-183.
[2] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[3] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[4] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[5] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[6] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[7] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[8] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[9] Xin JIA, Shuangwen YI, Yonggang SUN, Shuangye WU, Harry F. LEE, Lin WANG, Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[10] Le Wang, Shenglian Guo, Xingjun Hong, Dedi Liu, Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
[11] David BRAND,Chathurika WIJEWARDANA,Wei GAO,K. Raja REDDY. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
[12] Guanghui DONG,Honggao LIU,Yishi YANG,Ying YANG,Aifeng ZHOU,Zhongxin WANG,Xiaoyan REN,Fahu CHEN. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China[J]. Front. Earth Sci., 2016, 10(4): 669-682.
[13] He ZHANG, Fulu TAO, Dengpan XIAO, Wenjiao SHI, Fengshan LIU, Shuai ZHANG, Yujie LIU, Meng WANG, Huizi BAI. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China[J]. Front. Earth Sci., 2016, 10(2): 315-327.
[14] Jing WU,Lichun TANG,Rayman MOHAMED,Qianting ZHU,Zheng WANG. Modeling and assessing international climate financing[J]. Front. Earth Sci., 2016, 10(2): 253-263.
[15] Zhuoran LIANG, Tingting GU, Zhan TIAN, Honglin ZHONG, Yuqi LIANG. Agro-climatic adaptation of cropping systems under climate change in Shanghai[J]. Front. Earth Sci., 2015, 9(3): 487-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed