Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 678-695    https://doi.org/10.1007/s11707-021-0941-6
RESEARCH ARTICLE
The capability of Sentinel-2 image and FieldSpec3 for detecting lithium-containing minerals in central Iran
Kazem RANGZAN1(), Mostafa KABOLIZADEH1, Sajad ZAREIE1, Adel SAKI2, Danya KARIMI1
1. Department of Remote Sensing and GIS, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
2. Department of Geology, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
 Download: PDF(10154 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To date, there are very few studies about the spectroscopy of lithium-containing minerals (LCMs) in the scientific community. The main objective of this study is to investigate the capability of Sentinel-2 image and FieldSpec3 spectro-radiometer in terms of mapping five important LCMs, including spodumene, lepidolite, amblygonite, petalite, and eucryptite. Therefore, first the FieldSpec3 spectro-radiometer was used to create the spectral curves of the LCMs. Then, accurate spectral analysis and comparison of the studied LCMs were performed using The Spectral Geologist (TSG) and the Prism software. These two software can show even slight difference in absorption features of different LCMs, which can discriminate and identify these minerals. Lithium-bearing rocks show absorption features at ~365, ~2200, and ~2350 nm and reflective features at ~550–770 nm. These features are consistent with Sentinel-2 bands. Therefore, the created spectral curves were utilized for calibration of Sentinel-2 optical image to detect and map the potential zones of the rock units containing minerals mentioned above in a part of the central Iranian terrane. By using the Spectral Angle Mapper (SAM) classifier module, the potential areas were demarcated. Out of the five LCMs, petalite and spodumene showed more extensive coverage in the study area. Generally speaking, the largest concentration of those LCMs can be seen in southern and centraleastern parts of the study area. The comparison between spectral curves of reference and classified minerals confirmed the high capability of Sentinel-2 image for LCMs mapping. ASTER image classification results also confirmed the presence of the LCMs, but it cannot distinguish the LCMs type successfully.

Keywords FieldSpec3 spectro-radiometer      lithium containing minerals      Sentinel-2      ASTER      Iran     
Corresponding Author(s): Kazem RANGZAN   
Online First Date: 26 April 2022    Issue Date: 29 December 2022
 Cite this article:   
Kazem RANGZAN,Mostafa KABOLIZADEH,Sajad ZAREIE, et al. The capability of Sentinel-2 image and FieldSpec3 for detecting lithium-containing minerals in central Iran[J]. Front. Earth Sci., 2022, 16(3): 678-695.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0941-6
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/678
Fig.1  Location of the study area and geological setting.
Sampling site Sample No. Elements/10−6 Lithium-containing minerals
Ba Li Be Ga Nb
Yazd Shirkuh 1 60 40 < 3 10 - amblygonite, spodumene, lepidolite
2 45 60 < 3 12 < 30
3 250 50 7 14 -
Robat-e-Posht-e-Badam 4 45 60 4 11 - amblygonite, petalite, lepidolite
5 55 40 5 40 11
6 250 120 12 100 11
Chadormaloo 7 60 40 < 3 18 - amblygonite, spodumene, lepidolite
8 400 60 4 30 < 15
9 180 40 6 11 -
Eastern Jandag 10 45 120 < 13 12 - amblygonite, spodumene, lepidolite, petalite
11 40 120 13 35 -
12 35 80 9 10 < 30
Tab.1  Spectrographic analysis results of the central Iranian terrane pegmatites (Alamdar et al., 2008)
Fig.2  The studied LCMs available in the mineralogical museum of the Department of Geology: (a) spodumene, (b) lepidolite, (c) petalite, (d) amblygonite, and (e) eucryptite.
Lithium-containing minerals Theoretical amount of Li% (w/w) Formula Maximum concentration in the world
Range Center
Spodumene 3.3–1.9 2.6 LiAlS i 2O6 Australia
Lepidolite 3.6–1.53 2.565 KLiA l1.5(F,OH, O0.5)2(AlSi3 O10) Zimbabwe
Amblygonite 4.2–3.5 3.85 LiAlP O 4(F,OH) Canada, Brazil, Surinam
Petalite 2.1–1.6 1.85 LiAlS i 4O10 Zimbabwe
Eucryptite 2.34 LiAlSi O 4 Zimbabwe
Tab.2  LCMs characteristics (Meshram et al., 2014) and their formula
Fig.3  The stacked spectra of LCMs using the TSG software.
Fig.4  The stacked spectra of the continuum removed LCM using the TSG software.
Fig.5  Spectral similarity matching of (a) amblygonite, (b) eucryptite, (c) petalite, (d) lepidolite, (e) spodumene using the TSG software.
Fig.6  Analyzing the identified minerals in the lithium samples using the TSG.
Fig.7  Lithium absorption range indifferent LCM using the TSG.
Fig.8  Analyzing and identifying Li element absorption in (a) amblygonite, (b) eucryptite, (c) petalite, (d) lepidolite, and (e) spodumene using the Prism software (all the numbers mentioned in (a)–(e) are summarized in Table 3).
Lithium-containing minerals Absorbers Absorption area/(µm×ref) FWHM/nm Absorption depth Absorption center/nm Absorption range/nm
Spodumene lithium 0.0002861 12.7 0.0205 362 352−377
OH 0.009 34.3 0.2423 1410 1355–1458
H2O 0.019 60.3 0.2731 1913 1865–2050
Hydroxyl combination 0.021 58.5 0.3477 2202 2132–2262
Lepidolite lithium 0.0004908 10.4 0.0461 357 352–371
OH 0.024 38.9 0.5758 1408 1350–1455
H2O 0.0013 30.8 0.0392 1906 1869–1935
Hydroxyl combination 0.032 52.2 0.5864 2194 2137–2250
Amblygonite lithium 0.0002383 16.7 0.0137 370 353–388
OH 0.041776 105 0.3849 1451 1300–1530
H2O 0.04776 121.7 0.3858 1946 1860–2090
Hydroxyl combination 0.01384 77.2 0.2043 2145 2100–2237
Eucryptite lithium 0.0000021 2 0.0011 360 352–362
OH 0.04043 88.2 0.4038 1423 1350–1600
H2O 0.05815 97 0.6099 1915 1840–2040
Hydroxyl combination 0.00967 46.2 0.1860 2208 2140–2255
Petalite lithium 0.0003154 25.1 0.0136 372 355–391
OH 0.00750 40 0.1758 1410 1348–1450
H2O 0.02586 101.3 0.2536 1915 1855–2056
Hydroxyl combination - 41.6 0.2427 2202 2120–2245
Tab.3  The results obtained by analyzing the absorption characteristics of LCM using the Prism software
Fig.9  The SAM output using S2A image.
# Satellite images Wavelength/nm # Bands Spatial resolution/m
1 Sentinel-2 443–2190 13 10–60
2 ASTER 520–2430 14 15–90
Tab.4  Specifications of the used satellite images
Fig.10  The absorption center of OH in the LCMs.
Fig.11  The absorption center of H2O in LCM.
Fig.12  The outputs of the SAM classification method displayed on Google Earth: (a) some of the locations of LCMs (b)–(e).
Eucryptitie Ambligonite Spodumene Petalite Lepidolite
SAM 80 70 90 90
SID 20 50 10 20 20
Tab.5  Accuracy assessment of the SAM and SID results (%)
Fig.13  The similarity matching of (a) eucryptite, (b) amblygonite, (c) spodumene, and (d) petalite.
Fig.14  LCM mapping using the SID classifier and Sentinel-2 image.
Fig.15  The similarity matching of (a) eucryptite, (b) amblygonite, (c) spodumene, (d) petalite, and (e) lepidolite.
Fig.16  LCM mapping using ASTER image: (a) 5114 RGB, (a1, b1) zoomed parts of LCM mapping based on 5114 RGB, (a2, b2) SAM outputs using S2A image, (c) 2113 RGB, (c1, d1) zoomed parts of LCM mapping based on 2113RGB,(c2, d2) SAM outputs using S2A image, (e) 1613 RGB, (e1, f1) zoomed parts of LCM mapping based on 1613RGB, (e2, f2) SAM outputs using S2A image.
Fig.17  LCM mapping: (a) amblygonite mapping using 12/9 ASTER band ratio, (b) lepidolite mapping using 6/2 ASTER band ratio, and (c) spodumene mapping using 1/3 ASTER band ratio.
Fig.18  The similarity matching of (a) amblygonite, (b) spodumene, and (c) lepidolite.
1 S Afsharifar, K Rangzan. ( 2014). Evaluation of spectral absorption depth of Zagros Dolomite using FieldSpec3, SAMS and Prism software. In: 32 international Congress of Earth Sciences (in Persian),
2 K Alamdar, A H Kuhsari, A Ansari. ( 2008). A preliminary study on the potential of Lithium on Iran’s pegmatite rocks. In: 16th Iranian Conference of Crystallography and Mineralogy (in Persian),
3 SM Amidi, R Michel. ( 1985). Cenozoic magmatism of the Surk area (Central Iranian terrane) stratigraphy, petrography, geochemistry, and their geodynamic implications. Geology Alpine, 61
4 M Berberian, G C P King. ( 1981). Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci, 18( 2): 210– 265
https://doi.org/10.1139/e81-019
5 N J Birch, D Robinson, R A Inie, R P Hullin. ( 1978). Lithium-6 stable isotope determination by atomic absorption spectroscopy and its application to pharmacokinetic studies in man. J Pharm Pharmacol, 30( 1): 683– 685
https://doi.org/10.1111/j.2042-7158.1978.tb13364.x
6 J Cardoso-Fernandes, A C Teodoro, A Lima. ( 2019a). Remote sensing data in lithium (Li) exploration: a new approach for the detection of Li-bearing pegmatites. Int J Appl Earth Obs Geoinf, 76: 10– 25
https://doi.org/10.1016/j.jag.2018.11.001
7 J Cardoso-Fernandes, A Lima, E Roda-Robles, A C Teodoro. ( 2019b). Constraints and potentials of remote sensing data/techniques applied to lithium (Li)-pegmatites. Can Mineral, 57( 5): 723– 725
https://doi.org/10.3749/canmin.AB00004
8 J Cardoso-Fernandes, A C Teodoro, A Lima, M Perrotta, E Roda-Robles. ( 2020). Detecting lithium (Li) mineralizations from space: current research and future perspectives. Appl Sci (Basel), 10( 5): 1785
https://doi.org/10.3390/app10051785
9 J Cardoso-Fernandes, J Silva, F Dias, A Lima, A C Teodoro, O Barrès, J Cauzid, M Perrotta, E Roda-Robles, M A Ribeiro. ( 2021). Tools for remote exploration: a lithium (Li) dedicated spectral library of the Fregeneda–Almendra Aplite–Pegmatite field. Data, 6( 3): 33– 43
https://doi.org/10.3390/data6030033
10 M Cao, K Qin, G Li, N J Evans, P Hollings, M Maisch, A Kappler. ( 2017). Mineralogical evidence for crystallization conditions and petrogenesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit (western Junggar, NW China): Mössbauer spectroscopy, EPM and LA-(MC)-ICPMS analyses. Ore Geo Rev, 86: 382– 403
https://doi.org/10.1016/j.oregeorev.2017.02.033
11 R N Clark. ( 1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. Man Remot Sens, 3: 3– 58
12 E A Cloutis, R L Klima, L Kaletzke, A Coradini, L F Golubeva, L A McFadden, D I Shestopalov, F Vilas. ( 2010). The 506 nm absorption feature in pyroxene spectra: nature and implications for spectroscopy-based studies of pyroxene-bearing targets. Icarus, 207( 1): 295– 313
https://doi.org/10.1016/j.icarus.2009.11.025
13 M Delaloye, J Jenny, G Stampfli. ( 1981). K-Ar dating in the eastern Elburz (Iran). Tectonophysics, 79( 1−2): T27– T36
https://doi.org/10.1016/0040-1951(81)90230-4
14 M Derakhshi, H Ghasemi, T Sahami. ( 2014). Geology and petrology of the SoltanMaydan basaltic complex in north–northeast of Shahrudm Eastern Alborz, North of Iran. Geoscience, 23: 63– 76
15 Y Du, C Chang, H Ren, C Chang, J O Jensen, F D’Amico. ( 2004). New hyperspectral discrimination measure for spectral characterization. Opt Eng, 43( 8): 1777– 1786
https://doi.org/10.1117/1.1766301
16 Y Gao, L Bagas, K Li, M Jin, Y Liu, J Teng. ( 2020). Newly discovered Triassic lithium deposits in the Dahongliutan area, northwest China: a case study for the detection of lithium-bearing pegmatite deposits in rugged terrains using remote-sensing data and images. Front Earth Sci, 8: 591966
https://doi.org/10.3389/feart.2020.591966
17 M Ghorbani. ( 2016). Economic Geology of Iran, Mineral Deposits and Natural Resources Springer. Geol, 569
18 A Guha, K V Kumar, A Porwal, K Rani, K C Sahoo, S A Kumar, P G Diwakar. ( 2018). Reflectance spectroscopy and ASTER based mapping of rock-phosphate in parts of Paleoproterozoic sequences of Aravalli group of rocks, Rajasthan, India. Ore Geol Rev, 108: 83– 87
19 T G Kendall. ( 2017). An investigation of infrared spectral features related to the presence of lithium in micas, east Kemptville tin deposit, Nova Scotia. Dissertation for the Bachelor’s Degree. Halifax: Saint Mary’s University,
20 S Kuching. ( 2007). The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis. J Computer Sci, 3( 6): 419– 423
https://doi.org/10.3844/jcssp.2007.419.423
21 F A Kruse. ( 2010). Mineral mapping using spectroscopy: from field measurements to airborne and satellite-based imaging spectrometry. In: Proc ASARS Symp,
22 D Liu, L Han. ( 2017). Spectral curve shape matching using derivatives in hyperspectral images. IEEE Geosci Remote Sens Lett, 14( 4): 504– 508
https://doi.org/10.1109/LGRS.2017.2651060
23 P Meshram, B D Pandey, T R Mankhand. ( 2014). Extraction of Lithium from primary and secondary sources by pre-treatment, leaching, and separation: a comprehensive review. Hydrometallurgy, 150: 192– 208
https://doi.org/10.1016/j.hydromet.2014.10.012
24 S Noda, Y Yamaguchi. ( 2017). Estimation of surface iron oxide abundance with suppression of grain size and topography effects. Ore Geo Rev, 83: 312– 320
https://doi.org/10.1016/j.oregeorev.2016.12.019
25 C Pohl, J L Van Genderen. ( 2016). Remote Sensing Image Fusion: A Practical Guide. Boca Raton: CRC Press,
26 K Rangzan, M Kabolizadeh, D Karimi, A Saberi. ( 2019). Applied Mineral Spectroscopy. Ahvaz: Shahid Chamran University of Ahvaz (in Persian),
27 K Rangzan, S Beyranvand, H Pourkaseb, H Ranjbar, A Zarasvandi. ( 2020). Applying spectral analysis for identification of alteration zones in north Saveh area. Iran J Spectral Imag, 9
28 C Rossi, S Spittle, M Bayaraa, A Pandey, N Henry. ( 2018). An earth observation framework for the lithium exploration. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, 1616– 1619
29 I M Rahmati. ( 2010). Metamorphism and geotectonic position of the ShoturKuh Complex, Central Iranian Block. Dissertation for the Doctoral Degree. Prague: Charles University,
30 H E Shah, A Ashja Ardalan, M H Emami, M H Razavi. ( 2014). The petrology and geochemistry of granitoid rocks of Troud area in southwest of Shahrood. Iranian J Earth Sci, 6: 64– 77
31 A Soltani. ( 2000). Geochemistry and geochronology of I-type granitoid rocks in northeastern of Central Iranian terraneplace. Dissertation for the Doctoral Degree. Wollongong: University of Wollongong,
32 J Stocklin. ( 1968). Structural history and tectonics of Iran: a review. AAPG Bull, 52( 7): 1229– 1258
33 M C Tappert, B Rivard, D Giles, R Tappert, A Mauger. ( 2013). The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geo Rev, 53: 26– 38
https://doi.org/10.1016/j.oregeorev.2012.12.006
34 N Zaini. ( 2009). Calcite-Dolomite mapping to assess dolomitization patterns using laboratory spectra and hyperspectral remote sensing. Dissertation for the Master’s Degree. Southampton: University of Southampton (UK),
35 G Zheng, C Jiao, S Zhou, G Shang. ( 2016). Analysis of soil chronosequence studies using reflectance spectroscopy. Int J Remote Sens, 37( 8): 1881– 1901
https://doi.org/10.1080/01431161.2016.1163751
[1] Peiyuan CHEN, Lina GUO, Chen LI, Yi TONG. Karstification characteristics of the Cenomanian–Turonian Mishrif Formation in the Missan Oil Fields, southeastern Iraq, and their effects on reservoirs[J]. Front. Earth Sci., 2022, 16(2): 435-445.
[2] Jing ZHU, Yi LU, Fumin REN, John L McBRIDE, Longbin YE. Typhoon disaster risk zoning for China’s coastal area[J]. Front. Earth Sci., 2022, 16(2): 291-303.
[3] Cong ZHOU, Peiyan CHEN, Shifang YANG, Feng ZHENG, Hui YU, Jie TANG, Yi LU, Guoming CHEN, Xiaoqing LU, Xiping ZHANG, Jing SUN. The impact of Typhoon Lekima (2019) on East China: a postevent survey in Wenzhou City and Taizhou City[J]. Front. Earth Sci., 2022, 16(1): 109-120.
[4] Jianwei LV, Songhang ZHANG, Ning YANG, Chunbo FU, Xinlu YAN, Yang LI. Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China[J]. Front. Earth Sci., 2021, 15(4): 737-753.
[5] Rahmatollah Niakan LAHIJI, Naghmeh Mobarghaee DINAN, Houman LIAGHATI, Hamidreza GHAFFARZADEH, Alireza VAFAEINEJAD. Scenario-based estimation of catchment carbon storage: linking multi-objective land allocation with InVEST model in a mixed agriculture-forest landscape[J]. Front. Earth Sci., 2020, 14(3): 637-646.
[6] Shan LIU, Fengli ZHANG, Shiying WEI, Qingbo LIU, Na LIU, Yun SHAO, Steven J. BURIAN. Building damage mapping based on Touzi decomposition using quad-polarimetric ALOS PALSAR data[J]. Front. Earth Sci., 2020, 14(2): 401-412.
[7] Yang GAO, Yongxiang HUANG, Hongyang LIN, Zhenyu SUN, Jia ZHU, Jianyu HU. Surface currents measured by GPS drifters in Daya Bay and along the eastern Guangdong coast[J]. Front. Earth Sci., 2020, 14(2): 376-383.
[8] Wanben WU, Wei WANG, Michael E. Meadows, Xinfeng YAO, Wei PENG. Cloud-based typhoon-derived paddy rice flooding and lodging detection using multi-temporal Sentinel-1&2[J]. Front. Earth Sci., 2019, 13(4): 682-694.
[9] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[10] S. ÖZTÜRK. Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value[J]. Front. Earth Sci., 2018, 12(1): 215-236.
[11] Jahanbakhsh DANESHIAN, Leila RAMEZANI DANA. Foraminiferal biostratigraphy of the Miocene Qom Formation, northwest of the Qom, Central Iran[J]. Front. Earth Sci., 2018, 12(1): 237-251.
[12] Haishun XU, Liang CHEN, Bing ZHAO, Qiuzhuo ZHANG, Yongli CAI. Green stormwater infrastructure eco-planning and development on the regional scale: a case study of Shanghai Lingang New City, East China[J]. Front. Earth Sci., 2016, 10(2): 366-377.
[13] Dandi QIN, Jianhong WANG, Yu LIU, Changming DONG. Eddy analysis in the Eastern China Sea using altimetry data[J]. Front. Earth Sci., 2015, 9(4): 709-721.
[14] Craig L. Patterson, Jeffrey Q. Adams. Emergency response planning to reduce the impact of contaminated drinking water during natural disasters[J]. Front Earth Sci, 2011, 5(4): 341-349.
[15] Furong LI, Yan ZHAO, Jinghui SUN, Wenwei ZHAO, Xiaoli GUO, Ke ZHANG. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau[J]. Front Earth Sci, 2011, 5(3): 252-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed