|
|
Change of probability density distributions of summer temperatures in different climate zones |
Xinqiu OUYANG1, Weilin LIAO1(), Ming LUO1,2 |
1. Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China 2. Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong 999077, China |
|
|
Abstract Extreme events have become increasingly frequent worldwide which are reflected in diverse changes in the shape of the temperature probability density function. However, few studies have paid attention to the heterogeneity of temperature at the scale of climate zones. Here, we use the ERA5-land data set to explore interdecadal summer temperature changes and the distribution across different climate zones from 1981 to 2019. Comparing the minimum (Tmin) and maximum (Tmax) temperature of 1982–1991 and 2010–2019, the results imply that Tmin and Tmax in summer maintained a notable upward trend over the past 40 years, especially Tmin. The effects of a simple shift toward a warmer climate contributed most to all climate zones, while the standard deviation, skewness and kurtosis had minor effects on extreme temperature except for tropics. Quantile analysis shows that the probability of extreme events in all climate zones is increasing in frequency and intensity, especially Tmin and Tmax in temperate climate zone. Understanding diverse reasons for climate change can assist us with taking different measures to address extreme climate in distinct climate zones.
|
Keywords
Climate change
probability density function
extreme events
|
Corresponding Author(s):
Weilin LIAO
|
Online First Date: 16 May 2023
Issue Date: 15 July 2024
|
|
1 |
G B, Anderson M L Bell (2011). Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.Environ Health Perspect, 119(2): 210–218
https://doi.org/10.1289/ehp.1002313
pmid: 21084239
|
2 |
G B Anderson, K W Oleson, B Jones, R D Peng (2018). Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves. Clim Change, 146(3–4): 439–453
https://doi.org/10.1007/s10584-016-1776-0
pmid: 29628540
|
3 |
C S P, Araújo I A C E, Silva M, Ippolito C D G C Almeida (2022). Evaluation of air temperature estimated by ERA5-Land reanalysis using surface data in Pernambuco, Brazil.Environ Monit Assess, 194(5): 381
https://doi.org/10.1007/s10661-022-10047-2
pmid: 35441272
|
4 |
H E, Beck N E, Zimmermann T R, McVicar N, Vergopolan A, Berg E F Wood (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution.Sci Data, 5(1): 180214
https://doi.org/10.1038/sdata.2018.214
pmid: 30375988
|
5 |
D Carvalho, S Cardoso Pereira, A Rocha (2021). Future surface temperatures over Europe according to CMIP6 climate projections: an analysis with original and bias-corrected data. Clim Change, 167(1–2): 10
https://doi.org/10.1007/s10584-021-03159-0
|
6 |
D, Chan Q Wu (2015). Significant anthropogenic-induced changes of climate classes since 1950.Sci Rep, 5(1): 13487
https://doi.org/10.1038/srep13487
pmid: 26316255
|
7 |
W J, Conover M E, Johnson M M Johnson (1981). A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data.Technometrics, 23: 351–361
https://doi.org/10.1080/00401706.1981.10487680
|
8 |
R, Davy I, Esau A, Chernokulsky S, Outten S Zilitinkevich (2017). Diurnal asymmetry to the observed global warming.Int J Climatol, 37(1): 79–93
https://doi.org/10.1002/joc.4688
|
9 |
P M, Della-Marta M R, Haylock J, Luterbacher H Wanner (2007). Doubled length of western European summer heat waves since 1880.J Geophys Res, 112(D15): D15103
https://doi.org/10.1029/2007JD008510
|
10 |
A V, Dergunov O E Yakubailik (2020). Comparative analysis of data on air temperature based on current weather data sets for 2007–2019.IOP Conf Ser Earth Environ Sci, 548(3): 032034
https://doi.org/10.1088/1755-1315/548/3/032034
|
11 |
M G, Donat L V Alexander (2012). The shifting probability distribution of global daytime and night-time temperatures.Geophys Res Lett, 39(14): L14707
https://doi.org/10.1029/2012GL052459
|
12 |
T Gao, Q Zhang, M Luo (2020). Intensifying effects of El Niño events on winter precipitation extremes in southeastern china. Clim Dyn, 54(1–2): 631–648
https://doi.org/10.1007/s00382-019-05022-6
|
13 |
L A, Gil-Alana M Monge (2020). Global CO2 emissions and global temperatures: are they related.Int J Climatol, 40(15): 6603–6611
https://doi.org/10.1002/joc.6601
|
14 |
R, Grotjahn R, Black R, Leung M F, Wehner M, Barlow M, Bosilovich A Jr, Gershunov W J Jr, Gutowski J R, Gyakum R W, Katz Y Y, Lee Y K, Lim Prabhat (2016). North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends.Clim Dyn, 46: 1151–1184
https://doi.org/10.1007/s00382-015-2638-6
|
15 |
K Guirguis, A Gershunov, D R Cayan, D W Pierce (2018). Heat wave probability in the changing climate of the southwest us. Clim Dyn, 50(9–10): 3853–3864
https://doi.org/10.1007/s00382-017-3850-3
|
16 |
K H Hamed, A Ramachandra Rao (1998). A modified Mann-Kendall trend test for autocorrelated data. J Hydrol (Amst), 204(1–4): 182–196
https://doi.org/10.1016/S0022-1694(97)00125-X
|
17 |
J, Hansen M, Sato R Ruedy (2012). Perception of climate change.Proc Natl Acad Sci USA, 109(37): E2415–E2423
https://doi.org/10.1073/pnas.1205276109
pmid: 22869707
|
18 |
T, Hu Y Sun (2021). Anthropogenic influence on extreme temperatures in China based on CMIP6 models.Int J Climatol, 5(42): 2981–2995
|
19 |
J, Huang H, Yu X, Guan G, Wang R Guo (2016a). Accelerated dryland expansion under climate change.Nat Clim Chang, 6(2): 166–171
https://doi.org/10.1038/nclimate2837
|
20 |
K, Huang Y, Zhang J, Zhu Y, Liu J, Zu J Zhang (2016b). The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet plateau.Remote Sens (Basel), 8(10): 876
https://doi.org/10.3390/rs8100876
|
21 |
P, Huang S, Xie K, Hu G, Huang R Huang (2013). Patterns of the seasonal response of tropical rainfall to global warming.Nat Geosci, 6(5): 357–361
https://doi.org/10.1038/ngeo1792
|
22 |
X, Huang S, Han C Shi (2021). Multiscale assessments of three reanalysis temperature data systems over china.Agriculture, 11(12): 1292
https://doi.org/10.3390/agriculture11121292
|
23 |
C, Huntingford P D, Jones V N, Livina T M, Lenton P M Cox (2013). No increase in global temperature variability despite changing regional patterns.Nature, 500(7462): 327–330
https://doi.org/10.1038/nature12310
pmid: 23883935
|
24 |
IPCC (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. SPM: 1–20
|
25 |
C M, Jarque A K Bera (1987). A test for normality of observations and regression residuals.Int Stat Rev, 55(2): 163–172
https://doi.org/10.2307/1403192
|
26 |
N C, Johnson S P, Xie Y, Kosaka X Li (2018). Increasing occurrence of cold and warm extremes during the recent global warming slowdown.Nat Commun, 9(1): 1724
https://doi.org/10.1038/s41467-018-04040-y
pmid: 29712890
|
27 |
R, Katz B Brown (1992). Extreme events in a changing climate: variability is more important than averages.Clim Change, 21(3): 289–302
https://doi.org/10.1007/BF00139728
|
28 |
A D, King D J, Karoly B J Henley (2017). Australian climate extremes at 1.5°C and 2°C of global warming.Nat Clim Chang, 7(6): 412–416
https://doi.org/10.1038/nclimate3296
|
29 |
T R Knutson, J J Ploshay (2016). Detection of anthropogenic influence on a summertime heat stress index. Clim Change, 138(1–2): 25–39
https://doi.org/10.1007/s10584-016-1708-z
|
30 |
D, Li W, Liao A J, Rigden X, Liu D, Wang S, Malyshev E Shevliakova (2019). Urban heat island: aerodynamics or imperviousness?.Sci Adv, 5(4): eaau4299
https://doi.org/10.1126/sciadv.aau4299
pmid: 30949572
|
31 |
W, Liao X, Liu D, Li M, Luo D, Wang S, Wang J, Baldwin L, Lin X, Li K, Feng K, Hubacek X Yang (2018). Stronger contributions of urbanization to heat wave trends in wet climates.Geophys Res Lett, 45(20): L79679
https://doi.org/10.1029/2018GL079679
|
32 |
M, Linz G, Chen B, Zhang P Zhang (2020). A framework for understanding how dynamics shape temperature distributions.Geophys Res Lett, 47(4): e2019GL085684
https://doi.org/10.1029/2019GL085684
|
33 |
J, Liu D F T, Hagan Y Liu (2020). Global land surface temperature change (2003–2017) and its relationship with climate drivers: airs, MODIS, and ERA5-Land based analysis.Remote Sens (Basel), 13(1): 44
https://doi.org/10.3390/rs13010044
|
34 |
M, Luo N C Lau (2021). Increasing human‐perceived heat stress risks exacerbated by urbanization in China: a comparative study based on multiple metrics.Earth’s Future, 9(7): e2020EF001848
|
35 |
M, Luo N C, Lau Z, Liu S, Wu X Wang (2022). An observational investigation of spatiotemporally contiguous heatwaves in China from a 3D perspective.Geophysical Research Letters, 49(6): e2022GL097714
|
36 |
M, Luo N Lau (2020). Summer heat extremes in northern continents linked to developing ENSO events.Environ Res Lett, 15(7): 074042
https://doi.org/10.1088/1748-9326/ab7d07
|
37 |
M, Luo G, Ning F, Xu S, Wang Z, Liu Y Yang (2020). Observed heatwave changes in arid northwest China: physical mechanism and long-term trend.Atmos Res, 242(9): 105009
https://doi.org/10.1016/j.atmosres.2020.105009
|
38 |
F, Ma X, Yuan Y, Jiao P Ji (2020). Unprecedented Europe heat in June–July 2019: risk in the historical and future context.Geophys Res Lett, 47(11): 1–10
https://doi.org/10.1029/2020GL087809
|
39 |
H Mann (1945). Nonparametric test against trend.Econometrica, 13(3): 245
https://doi.org/10.2307/1907187
|
40 |
V, Masson-Delmotte P, Zhai A, Pirani S L , Connors C, Péan S, Berger N, Caud Y, Chen L, Goldfarb M I, Gomis M, Huang K, Leitzell E, Lonnoy J B R, Matthews T K, Maycock T, Waterfield O, Yelekçi R, Yu B Zhou (2021). IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press
|
41 |
K A, McKinnon C Deser (2018). Internal variability and regional climate trends in an observational large ensemble.J Clim, 31(17): 6783–6802
https://doi.org/10.1175/JCLI-D-17-0901.1
|
42 |
K A, McKinnon A, Rhines M P, Tingley P Huybers (2016). The changing shape of northern hemisphere summer temperature distributions.J Geophys Res Atmos, 121(15): 8849–8868
https://doi.org/10.1002/2016JD025292
|
43 |
D, Mitchell C, Heaviside S, Vardoulakis C, Huntingford G, Masato Guillod B, P P, Frumhoff A, Bowery D, Wallom M. Allen (2016). Attributing human mortality during extreme heat waves to anthropogenic climate change.Environ Res Lett, 7(7): 074006
https://doi.org/10.1088/1748-9326/11/7/074006
|
44 |
D G, Miralles A J, Teuling Heerwaarden C C, van De Arellano J Vilà-Guerau (2014). Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation.Nat Geosci, 7(5): 345–349
https://doi.org/10.1038/ngeo2141
|
45 |
S, Ogunjo O, Ife-Adediran E, Owoola I Fuwape (2019). Quantification of historical drought conditions over different climatic zones of Nigeria.Acta Geophys, 67(3): 879–889
https://doi.org/10.1007/s11600-019-00279-1
|
46 |
C, Qian X Zhang (2015). Human influences on changes in the temperature seasonality in mid- to high-latitude land areas.J Clim, 28(15): 5908–5921
https://doi.org/10.1175/JCLI-D-14-00821.1
|
47 |
A E, Raftery A, Zimmer D M W, Frierson R, Startz P Liu (2017). Less than 2°C warming by 2100 unlikely.Nat Clim Chang, 7(9): 637–641
https://doi.org/10.1038/nclimate3352
pmid: 30079118
|
48 |
C C, Routson N P, McKay D S, Kaufman M P, Erb H, Goosse B N, Shuman J R, Rodysill T Ault (2019). Mid-latitude net precipitation decreased with Arctic warming during the Holocene.Nature, 568(7750): 83–87
https://doi.org/10.1038/s41586-019-1060-3
pmid: 30918401
|
49 |
T W, Ruff J D Neelin (2012). Long tails in regional surface temperature probability distributions with implications for extremes under global warming.Geophys Res Lett, 39(4): L04704
https://doi.org/10.1029/2011GL050610
|
50 |
F, Saleem X, Zeng S, Hina A Omer (2021). Regional changes in extreme temperature records over Pakistan and their relation to pacific variability.Atmos Res, 250: 105407
https://doi.org/10.1016/j.atmosres.2020.105407
|
51 |
C, Schär P L, Vidale D L, Thi C, Frei C H, Berli M A, Liniger C Appenzeller (2004). The role of increasing temperature variability in European summer heatwaves.Nature, 427(6972): 328–332
https://doi.org/10.1038/nature02230
pmid: 14737162
|
52 |
T, Schneider I Held (2001). Discriminants of twentieth-century changes in earth surface temperatures.J Clim, 14(3): 249–254
https://doi.org/10.1175/1520-0442(2001)014<0249:LDOTCC>2.0.CO;2
|
53 |
P Stott (2016). How climate change affects extreme weather events.Science, 352(6293): 1517–1518
https://doi.org/10.1126/science.aaf7271
pmid: 27339968
|
54 |
J A Screen (2014). Arctic amplification decreases temperature variance in northern mid-to high-latitudes.Nat Clim Chang, 4(7): 577–582
https://doi.org/10.1038/nclimate2268
|
55 |
S C, Sheridan C C, Lee E T Smith (2020). A comparison between station observations and reanalysis data in the identification of extreme temperature events.Geophys Res Lett, 47(15): e2020GL88120
https://doi.org/10.1029/2020GL088120
|
56 |
C, Simolo M, Brunetti M, Maugeri T, Nanni A Speranza (2010). Understanding climate change–induced variations in daily temperature distributions over Italy.J Geophys Res, 115: D22110
https://doi.org/10.1029/2010JD014088
|
57 |
Y, Sun X, Zhang F W, Zwiers L, Song H, Wan T, Hu H, Yin G Ren (2014). Rapid increase in the risk of extreme summer heat in eastern China.Nat Clim Chang, 4(12): 1082–1085
https://doi.org/10.1038/nclimate2410
|
58 |
D, Tang X, Li X, Xu X, Liu H, Zhang H, Shi S, Liu H Zhang (2021). Does the belt and road initiative really increase CO2 emissions?.Ann Assoc Am Geogr, 4: 1–20
|
59 |
Q, Tang X, Zhang J A Francis (2014). Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere.Nat Clim Chang, 4(1): 45–50
https://doi.org/10.1038/nclimate2065
|
60 |
H, Tian Y, Zhou Z, Wang X, Huang E, Ge S, Wu P, Wang X, Tong P, Ran M Luo (2021). Effects of high-frequency temperature variabilities on the morbidity of chronic obstructive pulmonary disease: evidence in 21 cities of Guangdong, South China.Environ Res, 201: 111544
https://doi.org/10.1016/j.envres.2021.111544
pmid: 34157271
|
61 |
M P, Tingley P Huybers (2015). Heterogeneous warming of northern hemisphere surface temperatures over the last 1200 years.J Geophys Res Atmos, 120(9): 4040–4056
https://doi.org/10.1002/2014JD022506
|
62 |
J Tollefson (2015). .Is the 2 °C world a fantasy? Nature, 527(7579): 436–438
https://doi.org/10.1038/527436a
pmid: 26607526
|
63 |
M M, Vogel J, Zscheischler R, Wartenburger D, Dee S I Seneviratne (2019). Concurrent 2018 hot extremes across northern hemisphere due to human‐induced climate change.Earths Futur, 7(7): 692–703
https://doi.org/10.1029/2019EF001189
pmid: 31598535
|
64 |
R S, Vose D R, Easterling B Gleason (2005). Maximum and minimum temperature trends for the globe: an update through 2004.Geophysical Research Letters, 32(23): L23822
https://doi.org/10.1029/2005gl024379
|
65 |
X, Wang D, Jiang X Lang (2017). Future extreme climate changes linked to global warming intensity.Sci Bull (Beijing), 62(24): 1673–1680
https://doi.org/10.1016/j.scib.2017.11.004
|
66 |
Y, Wang L, Chen Z, Song Z, Huang E, Ge L, Lin M Luo (2019). Human-perceived temperature changes over south China: long-term trends and urbanization effects.Atmos Res, 215: 116–127
https://doi.org/10.1016/j.atmosres.2018.09.006
|
67 |
X, Wu S, Jin X Ouyang (2020). A full-polarization GNSS-R Delay-Doppler-Map (DDM) simulator for bare soil freeze/thaw process detection.Geoscience Letters, 7(1): 4
https://doi.org/10.1186/s40562-020-00154-8
|
68 |
Y, Xue J Shukla (1996). The influence of land surface properties on sahel climate. Part II. Afforestation.J Clim, 9(12): 3260–3275
https://doi.org/10.1175/1520-0442(1996)009<3260:TIOLSP>2.0.CO;2
|
69 |
P, Zhai B, Zhou Y Chen (2018). A review of climate change attribution studies.J Meteorol Res, 32(5): 671–692
https://doi.org/10.1007/s13351-018-8041-6
|
70 |
M, Zhang Y, Chen Y, Shen B Li (2019). Tracking climate change in central asia through temperature and precipitation extremes.J Geogr Sci, 29(1): 3–28
https://doi.org/10.1007/s11442-019-1581-6
|
71 |
Y, Zhang I, Held S Fueglistaler (2021). Projections of tropical heat stress constrained by atmospheric dynamics.Nat Geosci, 14(3): 133–137
https://doi.org/10.1038/s41561-021-00695-3
|
72 |
L, Zhao X, Lee R B, Smith K Oleson (2014). Strong contributions of local background climate to urban heat islands.Nature, 511(7508): 216–219
https://doi.org/10.1038/nature13462
pmid: 25008529
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|