Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (1) : 1-16    https://doi.org/10.1007/s11707-022-1006-1
Change of probability density distributions of summer temperatures in different climate zones
Xinqiu OUYANG1, Weilin LIAO1(), Ming LUO1,2
1. Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
2. Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong 999077, China
 Download: PDF(6325 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Extreme events have become increasingly frequent worldwide which are reflected in diverse changes in the shape of the temperature probability density function. However, few studies have paid attention to the heterogeneity of temperature at the scale of climate zones. Here, we use the ERA5-land data set to explore interdecadal summer temperature changes and the distribution across different climate zones from 1981 to 2019. Comparing the minimum (Tmin) and maximum (Tmax) temperature of 1982–1991 and 2010–2019, the results imply that Tmin and Tmax in summer maintained a notable upward trend over the past 40 years, especially Tmin. The effects of a simple shift toward a warmer climate contributed most to all climate zones, while the standard deviation, skewness and kurtosis had minor effects on extreme temperature except for tropics. Quantile analysis shows that the probability of extreme events in all climate zones is increasing in frequency and intensity, especially Tmin and Tmax in temperate climate zone. Understanding diverse reasons for climate change can assist us with taking different measures to address extreme climate in distinct climate zones.

Keywords Climate change      probability density function      extreme events     
Corresponding Author(s): Weilin LIAO   
Online First Date: 16 May 2023    Issue Date: 15 July 2024
 Cite this article:   
Xinqiu OUYANG,Weilin LIAO,Ming LUO. Change of probability density distributions of summer temperatures in different climate zones[J]. Front. Earth Sci., 2024, 18(1): 1-16.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1006-1
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I1/1
Fig.1  Distribution of climate zones and their corresponding regional averaged temperature in summer during 1981–2019. The red curves denote the averaged Tmax and the blue curves denote the averaged Tmin. The shadows denote temperature range within one standard deviation of each climate zone. 130 mm × 78.5 mm (600 dpi)
Fig.2  Temperature probability density distribution curves of global. The left panel is for daily Tmin and the right panel is for daily Tmax. μ denotes the mean, σ denotes the standard deviation, Sk denotes the skewness, K denotes the kurtosis. 125 mm × 44 mm (600 dpi)
Fig.3  The differences in moment statistics of (a) mean, (b) standard deviation, (c) skewness and (d) kurtosis between the two time periods of 1982–1991 and 2010–2019 for each grid box. The left panels for daily Tmin and the right panels for daily Tmax. Hatching indicates the difference between the two periods that are significant at the 90% confidence level. Two figures in each row share the same legend. 125 mm × 152 mm (600 dpi)
T Climate zone Δmean/°C Δstandard deviation/°C Δskewness Δkurtosis
Tmin Tropical + 0.436 + 0.012 − 0.039 + 0.323
Arid + 0.678 − 0.014 + 0.213 − 0.086
Temperate + 0.543 − 0.005 + 0.043 − 0.159
Cold + 0.850 − 0.111 + 0.033 − 0.041
Polar + 0.676 − 0.002 + 0.112 − 0.079
Tmax Tropical + 0.423 + 0.068 + 0.002 + 0.153
Arid + 0.680 − 0.002 + 0.063 + 0.263
Temperate + 0.535 + 0.006 + 0.197 − 0.900
Cold + 0.918 0.179 + 0.069 − 0.105
Polar + 0.682 − 0.022 + 0.184 − 0.111
Tab.1  The differences of order moments between the time period of 1982–1991 and 2010–2019 for Tmin and Tmax
Fig.4  Temperature probability density distribution of different climate zones. The left panels for daily Tmin and the right panels for daily Tmax. μ denotes the mean, σ denotes the standard deviation, Sk denotes the skewness, K denotes the kurtosis. Bold indicates the change is significant. The dashed lines represent the 95th percentiles distribution of based period. The purple shadow indicates the changing probability of extreme events caused by the rigid shift, the blue shadow indicates the negative effects and the purple in the box represents the positive effect caused by other parameters.
T Climate zone Threshold/(°C) 1982–1991 2010–2019 Probability changes
Tmin Tropical 22.86 4.89% 38.37% 33.48%
Arid 20.87 4.78% 33.48% 28.70%
Temperate 17.20 5.00% 40.98% 35.98%
Cold 13.77 4.67% 27.83% 23.16%
Polar 5.98 4.89% 31.30% 25.33%
Tmax Tropical 29.34 4.89% 16.30% 11.41%
Arid 30.78 4.89% 24.67% 19.78%
Temperate 24.39 4.89% 31.74% 26.85%
Cold 21.68 4.78% 28.15% 23.37%
Polar 13.03 4.89% 25.65% 20.76%
Tab.2  The probability changes of Tmin and Tmax extreme value in different climate zones
T Climate zone Probability changes Changes caused by the mean* Other parameters’ effects
Positive Negative
Tmin Tropical 33.48% 32.50% (97.07%) 3.80% − 2.82%
Arid 28.70% 29.57% (103.03%) 2.18% − 3.05%
Temperate 35.98% 35.00% (97.28%) 3.60% − 2.62%
Cold 23.16% 27.72% (119.69%) 0.22% − 4.78%
Polar 25.33% 23.70% (93.56%) 1.80% − 0.17%
Tmax Tropical 11.41% 8.48% (74.32%) 3.37% − 0.44%
Arid 19.78% 20.54% (103.84%) 2.18% − 2.94%
Temperate 26.85% 27.28% (101.60%) 3.91% − 4.34%
Cold 23.37% 26.74% (114.42%) 1.85% − 5.22%
Polar 20.76% 19.35% (93.21%) 2.18% − 0.77%
Tab.3  The probability changes decomposition in different climate zones
  Fig.A1 P value of Jarque-Bera test for raster distribution in 1982–1991 and 2010–2019. The left panels for daily Tmin and the right panels for daily Tmax. 122 mm × 80 mm (600 dpi)
  Fig.A2 The mMK test for global annual Tmin and Tmax in the past 40 years. The left panel is for daily Tmin and the right panel is for daily Tmax. 130 mm × 50 mm (600 dpi)
  Fig.A3 The differences in moment statistics of (a) mean, (b) standard deviation, (c) skewness and (d) kurtosis between the two time periods of 1982–1986 and 2015–2019 for each grid box. The left panels for daily Tmim and the right panels for daily Tmax. Hatching indicates the difference between the two periods that are significant at the 90% confidence level. Two figures in each row share the same legend. 140 mm × 170 mm (600 dpi)
T Climate zone Threshold/°C 1982–1991 2010–2019 Probability changes Changes caused by the mean
Tmin Tropical 22.87 4.57% 37.50% 32.93% 32.06%
Arid 20.80 6.20% 36.74% 30.54% 32.28%
Temperate 17.19 5.00% 41.63% 36.63% 35.11%
Cold 13.74 5.33% 29.24% 23.91% 27.93%
Polar 5.99 4.67% 29.67% 25.00% 23.16%
Tmax Tropical 29.40 3.70% 13.80% 10.10% 7.93%
Arid 30.73 5.76% 26.63% 20.87% 21.74%
Temperate 24.43 4.57% 29.35% 24.78% 24.45%
Cold 21.66 5.22% 29.35% 24.13% 26.63%
Polar 13.06 4.78% 24.78% 20.00% 18.48%
  Table A1 The probability changes of Tmin and Tmax extreme value in different climate zones
1 G B, Anderson M L Bell (2011). Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.Environ Health Perspect, 119(2): 210–218
https://doi.org/10.1289/ehp.1002313 pmid: 21084239
2 G B Anderson, K W Oleson, B Jones, R D Peng (2018). Classifying heatwaves: developing health-based models to predict high-mortality versus moderate United States heatwaves. Clim Change, 146(3–4): 439–453
https://doi.org/10.1007/s10584-016-1776-0 pmid: 29628540
3 C S P, Araújo I A C E, Silva M, Ippolito C D G C Almeida (2022). Evaluation of air temperature estimated by ERA5-Land reanalysis using surface data in Pernambuco, Brazil.Environ Monit Assess, 194(5): 381
https://doi.org/10.1007/s10661-022-10047-2 pmid: 35441272
4 H E, Beck N E, Zimmermann T R, McVicar N, Vergopolan A, Berg E F Wood (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution.Sci Data, 5(1): 180214
https://doi.org/10.1038/sdata.2018.214 pmid: 30375988
5 D Carvalho, S Cardoso Pereira, A Rocha (2021). Future surface temperatures over Europe according to CMIP6 climate projections: an analysis with original and bias-corrected data. Clim Change, 167(1–2): 10
https://doi.org/10.1007/s10584-021-03159-0
6 D, Chan Q Wu (2015). Significant anthropogenic-induced changes of climate classes since 1950.Sci Rep, 5(1): 13487
https://doi.org/10.1038/srep13487 pmid: 26316255
7 W J, Conover M E, Johnson M M Johnson (1981). A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data.Technometrics, 23: 351–361
https://doi.org/10.1080/00401706.1981.10487680
8 R, Davy I, Esau A, Chernokulsky S, Outten S Zilitinkevich (2017). Diurnal asymmetry to the observed global warming.Int J Climatol, 37(1): 79–93
https://doi.org/10.1002/joc.4688
9 P M, Della-Marta M R, Haylock J, Luterbacher H Wanner (2007). Doubled length of western European summer heat waves since 1880.J Geophys Res, 112(D15): D15103
https://doi.org/10.1029/2007JD008510
10 A V, Dergunov O E Yakubailik (2020). Comparative analysis of data on air temperature based on current weather data sets for 2007–2019.IOP Conf Ser Earth Environ Sci, 548(3): 032034
https://doi.org/10.1088/1755-1315/548/3/032034
11 M G, Donat L V Alexander (2012). The shifting probability distribution of global daytime and night-time temperatures.Geophys Res Lett, 39(14): L14707
https://doi.org/10.1029/2012GL052459
12 T Gao, Q Zhang, M Luo (2020). Intensifying effects of El Niño events on winter precipitation extremes in southeastern china. Clim Dyn, 54(1–2): 631–648
https://doi.org/10.1007/s00382-019-05022-6
13 L A, Gil-Alana M Monge (2020). Global CO2 emissions and global temperatures: are they related.Int J Climatol, 40(15): 6603–6611
https://doi.org/10.1002/joc.6601
14 R, Grotjahn R, Black R, Leung M F, Wehner M, Barlow M, Bosilovich A Jr, Gershunov W J Jr, Gutowski J R, Gyakum R W, Katz Y Y, Lee Y K, Lim Prabhat (2016). North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends.Clim Dyn, 46: 1151–1184
https://doi.org/10.1007/s00382-015-2638-6
15 K Guirguis, A Gershunov, D R Cayan, D W Pierce (2018). Heat wave probability in the changing climate of the southwest us. Clim Dyn, 50(9–10): 3853–3864
https://doi.org/10.1007/s00382-017-3850-3
16 K H Hamed, A Ramachandra Rao (1998). A modified Mann-Kendall trend test for autocorrelated data. J Hydrol (Amst), 204(1–4): 182–196
https://doi.org/10.1016/S0022-1694(97)00125-X
17 J, Hansen M, Sato R Ruedy (2012). Perception of climate change.Proc Natl Acad Sci USA, 109(37): E2415–E2423
https://doi.org/10.1073/pnas.1205276109 pmid: 22869707
18 T, Hu Y Sun (2021). Anthropogenic influence on extreme temperatures in China based on CMIP6 models.Int J Climatol, 5(42): 2981–2995
19 J, Huang H, Yu X, Guan G, Wang R Guo (2016a). Accelerated dryland expansion under climate change.Nat Clim Chang, 6(2): 166–171
https://doi.org/10.1038/nclimate2837
20 K, Huang Y, Zhang J, Zhu Y, Liu J, Zu J Zhang (2016b). The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet plateau.Remote Sens (Basel), 8(10): 876
https://doi.org/10.3390/rs8100876
21 P, Huang S, Xie K, Hu G, Huang R Huang (2013). Patterns of the seasonal response of tropical rainfall to global warming.Nat Geosci, 6(5): 357–361
https://doi.org/10.1038/ngeo1792
22 X, Huang S, Han C Shi (2021). Multiscale assessments of three reanalysis temperature data systems over china.Agriculture, 11(12): 1292
https://doi.org/10.3390/agriculture11121292
23 C, Huntingford P D, Jones V N, Livina T M, Lenton P M Cox (2013). No increase in global temperature variability despite changing regional patterns.Nature, 500(7462): 327–330
https://doi.org/10.1038/nature12310 pmid: 23883935
24 IPCC (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. SPM: 1–20
25 C M, Jarque A K Bera (1987). A test for normality of observations and regression residuals.Int Stat Rev, 55(2): 163–172
https://doi.org/10.2307/1403192
26 N C, Johnson S P, Xie Y, Kosaka X Li (2018). Increasing occurrence of cold and warm extremes during the recent global warming slowdown.Nat Commun, 9(1): 1724
https://doi.org/10.1038/s41467-018-04040-y pmid: 29712890
27 R, Katz B Brown (1992). Extreme events in a changing climate: variability is more important than averages.Clim Change, 21(3): 289–302
https://doi.org/10.1007/BF00139728
28 A D, King D J, Karoly B J Henley (2017). Australian climate extremes at 1.5°C and 2°C of global warming.Nat Clim Chang, 7(6): 412–416
https://doi.org/10.1038/nclimate3296
29 T R Knutson, J J Ploshay (2016). Detection of anthropogenic influence on a summertime heat stress index. Clim Change, 138(1–2): 25–39
https://doi.org/10.1007/s10584-016-1708-z
30 D, Li W, Liao A J, Rigden X, Liu D, Wang S, Malyshev E Shevliakova (2019). Urban heat island: aerodynamics or imperviousness?.Sci Adv, 5(4): eaau4299
https://doi.org/10.1126/sciadv.aau4299 pmid: 30949572
31 W, Liao X, Liu D, Li M, Luo D, Wang S, Wang J, Baldwin L, Lin X, Li K, Feng K, Hubacek X Yang (2018). Stronger contributions of urbanization to heat wave trends in wet climates.Geophys Res Lett, 45(20): L79679
https://doi.org/10.1029/2018GL079679
32 M, Linz G, Chen B, Zhang P Zhang (2020). A framework for understanding how dynamics shape temperature distributions.Geophys Res Lett, 47(4): e2019GL085684
https://doi.org/10.1029/2019GL085684
33 J, Liu D F T, Hagan Y Liu (2020). Global land surface temperature change (2003–2017) and its relationship with climate drivers: airs, MODIS, and ERA5-Land based analysis.Remote Sens (Basel), 13(1): 44
https://doi.org/10.3390/rs13010044
34 M, Luo N C Lau (2021). Increasing human‐perceived heat stress risks exacerbated by urbanization in China: a comparative study based on multiple metrics.Earth’s Future, 9(7): e2020EF001848
35 M, Luo N C, Lau Z, Liu S, Wu X Wang (2022). An observational investigation of spatiotemporally contiguous heatwaves in China from a 3D perspective.Geophysical Research Letters, 49(6): e2022GL097714
36 M, Luo N Lau (2020). Summer heat extremes in northern continents linked to developing ENSO events.Environ Res Lett, 15(7): 074042
https://doi.org/10.1088/1748-9326/ab7d07
37 M, Luo G, Ning F, Xu S, Wang Z, Liu Y Yang (2020). Observed heatwave changes in arid northwest China: physical mechanism and long-term trend.Atmos Res, 242(9): 105009
https://doi.org/10.1016/j.atmosres.2020.105009
38 F, Ma X, Yuan Y, Jiao P Ji (2020). Unprecedented Europe heat in June–July 2019: risk in the historical and future context.Geophys Res Lett, 47(11): 1–10
https://doi.org/10.1029/2020GL087809
39 H Mann (1945). Nonparametric test against trend.Econometrica, 13(3): 245
https://doi.org/10.2307/1907187
40 V, Masson-Delmotte P, Zhai A, Pirani S L , Connors C, Péan S, Berger N, Caud Y, Chen L, Goldfarb M I, Gomis M, Huang K, Leitzell E, Lonnoy J B R, Matthews T K, Maycock T, Waterfield O, Yelekçi R, Yu B Zhou (2021). IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press
41 K A, McKinnon C Deser (2018). Internal variability and regional climate trends in an observational large ensemble.J Clim, 31(17): 6783–6802
https://doi.org/10.1175/JCLI-D-17-0901.1
42 K A, McKinnon A, Rhines M P, Tingley P Huybers (2016). The changing shape of northern hemisphere summer temperature distributions.J Geophys Res Atmos, 121(15): 8849–8868
https://doi.org/10.1002/2016JD025292
43 D, Mitchell C, Heaviside S, Vardoulakis C, Huntingford G, Masato Guillod B, P P, Frumhoff A, Bowery D, Wallom M. Allen (2016). Attributing human mortality during extreme heat waves to anthropogenic climate change.Environ Res Lett, 7(7): 074006
https://doi.org/10.1088/1748-9326/11/7/074006
44 D G, Miralles A J, Teuling Heerwaarden C C, van De Arellano J Vilà-Guerau (2014). Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation.Nat Geosci, 7(5): 345–349
https://doi.org/10.1038/ngeo2141
45 S, Ogunjo O, Ife-Adediran E, Owoola I Fuwape (2019). Quantification of historical drought conditions over different climatic zones of Nigeria.Acta Geophys, 67(3): 879–889
https://doi.org/10.1007/s11600-019-00279-1
46 C, Qian X Zhang (2015). Human influences on changes in the temperature seasonality in mid- to high-latitude land areas.J Clim, 28(15): 5908–5921
https://doi.org/10.1175/JCLI-D-14-00821.1
47 A E, Raftery A, Zimmer D M W, Frierson R, Startz P Liu (2017). Less than 2°C warming by 2100 unlikely.Nat Clim Chang, 7(9): 637–641
https://doi.org/10.1038/nclimate3352 pmid: 30079118
48 C C, Routson N P, McKay D S, Kaufman M P, Erb H, Goosse B N, Shuman J R, Rodysill T Ault (2019). Mid-latitude net precipitation decreased with Arctic warming during the Holocene.Nature, 568(7750): 83–87
https://doi.org/10.1038/s41586-019-1060-3 pmid: 30918401
49 T W, Ruff J D Neelin (2012). Long tails in regional surface temperature probability distributions with implications for extremes under global warming.Geophys Res Lett, 39(4): L04704
https://doi.org/10.1029/2011GL050610
50 F, Saleem X, Zeng S, Hina A Omer (2021). Regional changes in extreme temperature records over Pakistan and their relation to pacific variability.Atmos Res, 250: 105407
https://doi.org/10.1016/j.atmosres.2020.105407
51 C, Schär P L, Vidale D L, Thi C, Frei C H, Berli M A, Liniger C Appenzeller (2004). The role of increasing temperature variability in European summer heatwaves.Nature, 427(6972): 328–332
https://doi.org/10.1038/nature02230 pmid: 14737162
52 T, Schneider I Held (2001). Discriminants of twentieth-century changes in earth surface temperatures.J Clim, 14(3): 249–254
https://doi.org/10.1175/1520-0442(2001)014<0249:LDOTCC>2.0.CO;2
53 P Stott (2016). How climate change affects extreme weather events.Science, 352(6293): 1517–1518
https://doi.org/10.1126/science.aaf7271 pmid: 27339968
54 J A Screen (2014). Arctic amplification decreases temperature variance in northern mid-to high-latitudes.Nat Clim Chang, 4(7): 577–582
https://doi.org/10.1038/nclimate2268
55 S C, Sheridan C C, Lee E T Smith (2020). A comparison between station observations and reanalysis data in the identification of extreme temperature events.Geophys Res Lett, 47(15): e2020GL88120
https://doi.org/10.1029/2020GL088120
56 C, Simolo M, Brunetti M, Maugeri T, Nanni A Speranza (2010). Understanding climate change–induced variations in daily temperature distributions over Italy.J Geophys Res, 115: D22110
https://doi.org/10.1029/2010JD014088
57 Y, Sun X, Zhang F W, Zwiers L, Song H, Wan T, Hu H, Yin G Ren (2014). Rapid increase in the risk of extreme summer heat in eastern China.Nat Clim Chang, 4(12): 1082–1085
https://doi.org/10.1038/nclimate2410
58 D, Tang X, Li X, Xu X, Liu H, Zhang H, Shi S, Liu H Zhang (2021). Does the belt and road initiative really increase CO2 emissions?.Ann Assoc Am Geogr, 4: 1–20
59 Q, Tang X, Zhang J A Francis (2014). Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere.Nat Clim Chang, 4(1): 45–50
https://doi.org/10.1038/nclimate2065
60 H, Tian Y, Zhou Z, Wang X, Huang E, Ge S, Wu P, Wang X, Tong P, Ran M Luo (2021). Effects of high-frequency temperature variabilities on the morbidity of chronic obstructive pulmonary disease: evidence in 21 cities of Guangdong, South China.Environ Res, 201: 111544
https://doi.org/10.1016/j.envres.2021.111544 pmid: 34157271
61 M P, Tingley P Huybers (2015). Heterogeneous warming of northern hemisphere surface temperatures over the last 1200 years.J Geophys Res Atmos, 120(9): 4040–4056
https://doi.org/10.1002/2014JD022506
62 J Tollefson (2015). .Is the 2 °C world a fantasy? Nature, 527(7579): 436–438
https://doi.org/10.1038/527436a pmid: 26607526
63 M M, Vogel J, Zscheischler R, Wartenburger D, Dee S I Seneviratne (2019). Concurrent 2018 hot extremes across northern hemisphere due to human‐induced climate change.Earths Futur, 7(7): 692–703
https://doi.org/10.1029/2019EF001189 pmid: 31598535
64 R S, Vose D R, Easterling B Gleason (2005). Maximum and minimum temperature trends for the globe: an update through 2004.Geophysical Research Letters, 32(23): L23822
https://doi.org/10.1029/2005gl024379
65 X, Wang D, Jiang X Lang (2017). Future extreme climate changes linked to global warming intensity.Sci Bull (Beijing), 62(24): 1673–1680
https://doi.org/10.1016/j.scib.2017.11.004
66 Y, Wang L, Chen Z, Song Z, Huang E, Ge L, Lin M Luo (2019). Human-perceived temperature changes over south China: long-term trends and urbanization effects.Atmos Res, 215: 116–127
https://doi.org/10.1016/j.atmosres.2018.09.006
67 X, Wu S, Jin X Ouyang (2020). A full-polarization GNSS-R Delay-Doppler-Map (DDM) simulator for bare soil freeze/thaw process detection.Geoscience Letters, 7(1): 4
https://doi.org/10.1186/s40562-020-00154-8
68 Y, Xue J Shukla (1996). The influence of land surface properties on sahel climate. Part II. Afforestation.J Clim, 9(12): 3260–3275
https://doi.org/10.1175/1520-0442(1996)009<3260:TIOLSP>2.0.CO;2
69 P, Zhai B, Zhou Y Chen (2018). A review of climate change attribution studies.J Meteorol Res, 32(5): 671–692
https://doi.org/10.1007/s13351-018-8041-6
70 M, Zhang Y, Chen Y, Shen B Li (2019). Tracking climate change in central asia through temperature and precipitation extremes.J Geogr Sci, 29(1): 3–28
https://doi.org/10.1007/s11442-019-1581-6
71 Y, Zhang I, Held S Fueglistaler (2021). Projections of tropical heat stress constrained by atmospheric dynamics.Nat Geosci, 14(3): 133–137
https://doi.org/10.1038/s41561-021-00695-3
72 L, Zhao X, Lee R B, Smith K Oleson (2014). Strong contributions of local background climate to urban heat islands.Nature, 511(7508): 216–219
https://doi.org/10.1038/nature13462 pmid: 25008529
[1] Zhiguang LI, Yaqing DONG, Haoyu ZHANG, Hongxiao SUN, Danyang JIA, Shikai SONG, Yuanjie ZHAO. Climate change in the Hongliujing area of Lop Nur over the past 200 years revealed by the stable oxygen isotopes of Tamarix cones[J]. Front. Earth Sci., 2023, 17(4): 970-980.
[2] Jing TIAN, Shenglian GUO, Jiabo YIN, Zhengke PAN, Feng XIONG, Shaokun HE. Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China[J]. Front. Earth Sci., 2022, 16(3): 711-733.
[3] Xiaocha WEI, Qiuwen ZHOU, Ya LUO, Mingyong CAI, Xu ZHOU, Weihong YAN, Dawei PENG, Ji ZHANG. Vegetation dynamics and its response to driving factors in typical karst regions, Guizhou Province, China[J]. Front. Earth Sci., 2021, 15(1): 167-183.
[4] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[5] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[6] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[7] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[8] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[9] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[10] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[11] Xin JIA, Shuangwen YI, Yonggang SUN, Shuangye WU, Harry F. LEE, Lin WANG, Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[12] Le Wang, Shenglian Guo, Xingjun Hong, Dedi Liu, Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
[13] David BRAND,Chathurika WIJEWARDANA,Wei GAO,K. Raja REDDY. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
[14] Guanghui DONG,Honggao LIU,Yishi YANG,Ying YANG,Aifeng ZHOU,Zhongxin WANG,Xiaoyan REN,Fahu CHEN. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China[J]. Front. Earth Sci., 2016, 10(4): 669-682.
[15] He ZHANG, Fulu TAO, Dengpan XIAO, Wenjiao SHI, Fengshan LIU, Shuai ZHANG, Yujie LIU, Meng WANG, Huizi BAI. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China[J]. Front. Earth Sci., 2016, 10(2): 315-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed