Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (2) : 236-242    https://doi.org/10.1007/s11783-010-0218-8
SHORT COMMUNICATION
Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel, Cristaria plicata, under laboratory conditions
Tianxiang XIA, Xuehua LIU()
Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(233 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Copper and zinc interaction on clearance from water and distribution in different tissues was investigated for the freshwater mussel, Cristaria plicata, under laboratory conditions. Clearance rate of Cu or Zn from water was highly dependent on exposure concentration. Interaction effect was most evident at 300 μg·L-1 Cu exposure and depressed the Zn clearance rate significantly (p<0.05). However, the presence of 100 μg·L-1 and 300 μg·L-1 Zn hardly affected the Cu clearance rate. The 300 μg·L-1 Cu presence enhanced Cu accumulation in each tissue most significantly (p<0.01), but caused Zn content to decrease in the gills by 62% (p<0.05), viscera by 49% (p<0.05) and foot by 31% (p<0.05), and increase in the mantle by 97% (p<0.05) and the muscles by 243% (p<0.05) for different Zn exposure treatments. The response of metal accumulation in various tissues of the test mussels indicated that Zn transferred from the gills, viscera and foot to the mantle and muscles might be one of the important characteristics of the Zn regulatory mechanism by leading to a narrow range of Zn concentration in the different tissues.

Keywords interaction      mussel      copper      zinc      clearance      distribution     
Corresponding Author(s): LIU Xuehua,Email:xuehua-hjx@tsinghua.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Tianxiang XIA,Xuehua LIU. Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel, Cristaria plicata, under laboratory conditions[J]. Front Envir Sci Eng Chin, 2011, 5(2): 236-242.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0218-8
https://academic.hep.com.cn/fese/EN/Y2011/V5/I2/236
Fig.1  Daily changes of Zn (a, b, c) and Cu (d, e, f) clearance rates (CR) by freshwater mussel during the 21 days exposure at each treatment. = 3
treatmentCu clearance rateZn clearance rate
Zn0Zn100Zn300Zn0Zn100Zn300
Cu0 vs Cu100&lt;**&lt;**&lt;**&gt;&gt;**&gt;
Cu0 vs Cu300&lt;**&lt;**&lt;**&gt;*&gt;**&gt;*
Tab.1  Paired-samples -test for Cu and Zn clearance rates by between the treatments at each level of Zn (a) or Cu (b) exposure. = 7
(a)
treatmentZn clearance rateCu clearance rate
Cu0Cu100Cu300Cu0Cu100Cu300
Zn0 vs Zn100&lt;*&lt;&lt;=&gt;&lt;
Zn0 vs Zn300&lt;**&lt;**&lt;*=&gt;&lt;**
Tab.2  (b)
tissuesource of variationDFCu mean squareFZn mean squareF
gillsCu2784392188**164642134**
Zn287256615*
Cu × Zn47221306511**
Error18361231
visceraCu29373163**10569776**
Zn22324*29572
Cu × Zn42665*29132
Error18571392
mantleCu27454401536**165952588**
Zn21029221**1126640**
Cu × Zn4859018**483517**
Error18485282
musclesCu2689511**157915352**
Zn2139**24585*
Cu × Zn4129**565913**
Error181448
footCu2252261**759481**
Zn2116887**
Cu × Zn411139215**
Error18193
Tab.3  Factorial analysis of variance testing the effect of Cu exposures and Zn exposures on the metal contents in each tissue of = 3
Fig.2  Zn contents in the tissue (a) gills, (b) viscera, (c) mantle, (d) muscles and (e) foot of exposed for 21 days at each treatment. = 3
Fig.3  Cu contents in the tissue (a) gills, (b) viscera, (c) mantle, (d) muscles and (e) foot of exposed for 21 days at each treatment. = 3
1 Wei F S, Chen J S, Wu Y Y, Zheng C J. Study on the soil background value in China. Chinese Journal of Environmental Sciences , 1991, 12(4): 12-19 (in Chinese)
2 Cheng S. Heavy metal pollution in China: origin, pattern and control.Environmental Science and Pollution Research International , 2003, 10(3): 192-198
doi: 10.1065/espr2002.11.141.1 pmid:12846382
3 Zhou Q, Zhang J, Fu J, Shi J, Jiang G. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta , 2008, 606(2): 135-150
doi: 10.1016/j.aca.2007.11.018 pmid:18082645
4 Lecoeur S, Videmann B, Berny P. Evaluation of metallothionein as a biomarker of single and combined Cd/Cu exposure in Dreissena polymorpha. Environmental research , 2004, 94(2): 184-191
doi: 10.1016/S0013-9351(03)00069-0 pmid:14757381
5 de Lafontaine Y, Gagné F, Blaise C, Costan G, Gagnon P, Chan H M.. Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St Lawrence River (Canada). Aquatic Toxicology , 2000, 50(1-2): 51-71
pmid:10930650
6 Kraak M H S, Scholten M C T, Peeters W H M, de Kock W C. Biomonitoring of heavy metals in the Western European Rivers Rhine and Meuse using the freshwater mussel Dreissena polymorpha. Environment Pollution , 1991, 74(2): 101-114
doi: 10.1016/0269-7491(91)90107-8 pmid:15092067
7 Philips D J H. Quantitative aquatic biological indicators: their use to monitor trace metal and organochlorine pollution. London: Applied Science Publishers, 1980
8 Wright D A. Trace metal and major ion interactions in aquatic animals. Marine Pollution Bulletin , 1995, 31(1-3): 8-18
doi: 10.1016/0025-326X(95)00036-M
9 Fraysse B, Baudin J P, Garnier-Laplace J, Adam C, Boudou A. Effects of Cd and Zn waterborne exposure on the uptake and depuration of 57Co, 110mAg and 134Cs by the Asiatic clam (Corbicula fluminea) and the zebra mussel (Dreissena polymorpha)—whole organism study. Environment Pollution , 2002, 118(3): 297-306
doi: 10.1016/S0269-7491(01)00305-0 pmid:12009126
10 Blackmore G, Wang W X. Uptake and efflux of Cd and Zn by the green mussel Perna viridis after metal preexposure. Environmental Science and Technology , 2002, 36(5): 989-995
doi: 10.1021/es0155534 pmid:11918030
11 Shi D, Wang W X. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn. Environment Pollution , 2004, 132(2): 265-277
doi: 10.1016/j.envpol.2004.04.023 pmid:15312939
12 Elliott N G, Swain R, Ritz D A. Metal interaction during accumulation by the mussel Mytilus edulis planulatus. Marine Biology , 1986, 93(3): 395-399
doi: 10.1007/BF00401107
13 Yang M S, Thompson J A J. Binding of endogenous copper and zinc to cadmium- induced metal-binding proteins in various tissues of Perna viridis. Archives of Environmental Contamination and Toxicology , 1996, 30(2): 267-273
doi: 10.1007/BF00215807
14 Gundacker C. Tissue-specific heavy metal (Cd, Pb, Cu, Zn) deposition in a natural population of the zebra mussel Dreissena polymorpha Pallas. Chemosphere , 1999, 38(14): 3339-3356
doi: 10.1016/S0045-6535(98)00567-0 pmid:10390846
15 Xia T X, Liu X H. Accumulation and distribution of copper and zinc in the freshwater mussel, Cristaria Plicata, exposed to individual and mixed metals. Asian Journal of Ecotoxicology , 2010, 5(2): 169-175 (in Chinese)
16 Masola B, Chibi M, Kandare E, Naik Y S, Zaranyika M F. Potential marker enzymes and metal-metal interactions in Helisoma duryi and Lymnaea natalensis exposed to cadmium. Ecotoxicology and Environmental Safety , 2008, 70(1): 79-87
doi: 10.1016/j.ecoenv.2007.06.013 pmid:17919723
17 Serafim A, Bebianno M J. Effect of a polymetallic mixture on metal accumulation and metallothionein response in the clam Ruditapes decussatus. Aquat. Toxicol ., 2010, 99(3):370-378 .
doi: 10.1016/j.aquatox.2010.05.016 pmid:20557954
18 Wang W X, Rainbow P S. Comparative approaches to understand metal bioaccumulation in aquatic animals. Comparative Biochemistry and Physiology ., 2008, 148(4): 315-323
doi: 10.1016/j.cbpc.2008.04.003
19 Perry S F, McDonald D G. Gas exchange. In: Evans D H (eds). The Physiology of Fishes . Boca Raton: CRC Press, 1993, 251-278
20 Kjoss V A, Wood C M, McDonald D G. Effects of different ligands on the bioaccumulation and subsequent depuration of dietary Cu and Zn in juvenile rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences , 2006, 63(2): 412-422
doi: 10.1139/f05-230
21 Loayza-Muro R, Elías-Letts R. Responses of the mussel Anodontites trapesialis (Unionidae) to environmental stressors: effect of pH, temperature and metals on filtration rate. Environment Pollution , 2007, 149(2): 209-215
doi: 10.1016/j.envpol.2007.01.003 pmid:17321653
22 Jana B B, Das S. Potential of freshwater mussel (Lamellidens marginalis) for cadmium clearance in a model system. Ecological Engineering , 1997, 8(3): 179-193
doi: 10.1016/S0925-8574(97)00259-0
23 Phillips D J H. The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Marine Biology , 1976, 38(1): 59-69
doi: 10.1007/BF00391486
24 K?gi J H R, Kojima Y. Chemistry and biochemistry of metallothionein. Experientia. Supplementum , 1987, 52: 25-61
pmid:2959513
25 Huang P C. Metallothionein structure: function interface. In: Suzuki K T, ImuraN, KimuraM (eds). Metallothionein Ш: Biological roles and medical implications . Swithland: Birkh?user, Basel, 1993: 407-426
26 Yap C K, Ismail A, Tan S G, Omar H. Accumulation, depuration and distribution of cadmium and zinc in the green-lipped mussel Perna viridis (Linnaeus) under laboratory conditions. Hydrobiologia , 2003, 498(1-3): 151-160
doi: 10.1023/A:1026221930811
27 Phillips D J H. Organochlorines and trace metals in green lipped mussels Perna viridis from Hong Kong waters: a test of indicator ability. Marine Ecology Progress Series , 1985, 21: 251-258
doi: 10.3354/meps021251
28 Rees J G, Setiapermana D, Sharp V A, Weeks J M, Williams T M. Evaluation of the impacts of land-based contaminants on the benthic faunas of Jakarta Bay, Indonesia. Oceanologica Acta , 1999, 22(6): 627-640
doi: 10.1016/S0399-1784(00)88954-9
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[3] Min Gao, Ziye Yang, Yajie Guo, Mo Chen, Tianlei Qiu, Xingbin Sun, Xuming Wang. The size distribution of airborne bacteria and human pathogenic bacteria in a commercial composting plant[J]. Front. Environ. Sci. Eng., 2021, 15(3): 39-.
[4] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[5] Miao Li, Jian Li, Yuchen Lu, Cenyang Han, Xiaoxuan Wei, Guangcai Ma, Haiying Yu. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(2): 24-.
[6] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[7] Zihao Li, Yang Geng, Lei Ma, Xiaoyin Chen, Junhua Li, Huazhen Chang, Johannes W. Schwank. Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption[J]. Front. Environ. Sci. Eng., 2020, 14(4): 65-.
[8] Chaojin Jiang, Xiaoqian Jiang, Lixun Zhang, Yuntao Guan. Enhanced debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by zero-valent zinc with ascorbic acid[J]. Front. Environ. Sci. Eng., 2020, 14(3): 47-.
[9] Chunhong Chen, Hong Liang, Dawen Gao. Community diversity and distribution of ammonia-oxidizing archaea in marsh wetlands in the black soil zone in North-east China[J]. Front. Environ. Sci. Eng., 2019, 13(4): 58-.
[10] Peng Hu, Changsheng Guo, Yan Zhang, Jiapei Lv, Yuan Zhang, Jian Xu. Occurrence, distribution and risk assessment of abused drugs and their metabolites in a typical urban river in north China[J]. Front. Environ. Sci. Eng., 2019, 13(4): 56-.
[11] Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma. Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 36-.
[12] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[13] Bo Zhang, Xilai Zheng, Tianyuan Zheng, Jia Xin, Shuai Sui, Di Zhang. The influence of slope collapse on water exchange between a pit lake and a heterogeneous aquifer[J]. Front. Environ. Sci. Eng., 2019, 13(2): 20-.
[14] Ling Sun, Hui Wang, Yuanqing Kan, Shiliang Wang. Distribution of phytoplankton community and its influence factors in an urban river network, East China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 13-.
[15] Dawen Gao, Xiaolong Wang, Hong Liang, Qihang Wei, Yuan Dou, Longwei Li. Anaerobic ammonia oxidizing bacteria: ecological distribution, metabolism, and microbial interactions[J]. Front. Environ. Sci. Eng., 2018, 12(3): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed