Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (1) : 51-58    https://doi.org/10.1007/s11783-011-0206-9
RESEARCH ARTICLE
Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae
Fengyu ZAN1,2, Shouliang HUO2(), Beidou XI2, Xiulan ZHAO3
1. College of Environmental Science, Anhui Normal University, Wuhu 241000, China; 2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 3. College of Resource and Environment, Southwest University, Chongqing 400716, China
 Download: PDF(162 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The biosorption of Cd2+ and Cu2+ onto the immobilized Saccharomyces cerevisiae (S. cerevisiae) was investigated in this study. Adsorption kinetics, isotherms and the effect of pH were studied. The results indicated that the biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae was fast at initial stage and then became slow. The maximum biosorption of heavy metal ions on immobilized S. cerevisiae were observed at pH 4 for Cd2+ and Cu2+. by the pseudo-second-order model described the sorption kinetic data well according to the high correlation coefficient (R2) obtained. The biosorption isotherm was fitted well by the Langmuir model, indicating possible mono-layer biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae. Moreover, the immobilized S. cerevisiae after the sorption of Cd2+ and Cu2+ could be regenerated and reused.

Keywords Saccharomyces cerevisiae (S. cerevisiae)      biosorption      heavy metals      immobilization      desorption     
Corresponding Author(s): HUO Shouliang,Email:huoshouliang@126.com   
Issue Date: 01 February 2012
 Cite this article:   
Fengyu ZAN,Shouliang HUO,Beidou XI, et al. Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae[J]. Front Envir Sci Eng, 2012, 6(1): 51-58.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0206-9
https://academic.hep.com.cn/fese/EN/Y2012/V6/I1/51
Fig.1  Biosorption of Cd and Cu on immobilized at different contact times
Fig.1  Biosorption of Cd and Cu on immobilized at different contact times
qe exp/(mg·g-1)pseudo-first-order modelpseudo-second-order model
k1,ads / (g·mg-1· h-1)qe cal. /(mg·g-1)R2k2,ads×10-3 /(g·mg-1·h-1)qe cal./(mg·g-1)R2
Cd2+119.390.389103.480.8701.21125.000.978
Cu2+125.792.909117.040.89316.4123.460.998
Tab.1  Fitting of kinetic models for Cd and Cu biosorption by immobilized
Fig.2  Linearized pseudo-second-order kinetic model for Cdand Cu ions uptake by immobilized
Fig.2  Linearized pseudo-second-order kinetic model for Cdand Cu ions uptake by immobilized
Fig.3  Effect of pH on biosorption of Cd and Cu by immobilized
Fig.3  Effect of pH on biosorption of Cd and Cu by immobilized
Fig.4  Relationship between equilibrium concentration of heavy metal () and equilibrium biosorption capacity () on biosorption of Cd and Cu by immobilized
Fig.4  Relationship between equilibrium concentration of heavy metal () and equilibrium biosorption capacity () on biosorption of Cd and Cu by immobilized
Fig.5  Linearized Freundlich (a) and Langmuir (b) models for cadmium and copper uptake by immobilized applied to fit for the experimental data
Fig.5  Linearized Freundlich (a) and Langmuir (b) models for cadmium and copper uptake by immobilized applied to fit for the experimental data
Langmuir isothermal modelFreundlich isothermal model
b/(L·mg -1)Q0/(mg·g -1)R2nKF /(mg·g -1)R2
Cd2+0.057138.880.9811.8578.4070.913
Cu2+0.34275.750.9732.88215.2860.787
Tab.2  Isothermal models simulated of immobilized biosorbent for Cd and Cu by immobilized
recycling timesCdCu
(Qn/Q1)/ %(Qde/Qad..)/%Cin./Cde.(Qn/Q1)/%(Qde/Qad..)/ %Cin./Cde.
110084.852.6710098.232.37
2101.1976.563.06---
3102.7278.213.32---
Tab.3  Desorption effect of heavy metal from biomass with HCl as desorbent
1 Saygideger S, Gulnaz O, Istifli E S, Yucel N. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. Journal of Hazardous Materials , 2005, 126(1-3): 96–104
doi: 10.1016/j.jhazmat.2005.06.012 pmid:16051430
2 Malkoc E, Nuhoglu Y. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials , 2005, 127(1-3): 120–128
doi: 10.1016/j.jhazmat.2005.06.030 pmid:16125314
3 Mashitah M D, Azila Y, Bhatia S. Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresource Technology , 2008, 99(11): 4742–4748
doi: 10.1016/j.biortech.2007.09.062 pmid:17981460
4 Vasudevan P, Padmavathy V, Dhingra S C. Kinetics of biosorption of cadmium on Baker’s yeast. Bioresource Technology , 2003, 89(3): 281–287
doi: 10.1016/S0960-8524(03)00067-1 pmid:12798119
5 Aksu Z, Egretli G, Kutsal T. A comparative study for the biosorption characteristics of chromium(VI) on ca-alginate, agarose and immobilized C. vulgaris in a continous packed bed column. Journal of Environmental Science and Health , 1999, A32(2): 295–316
doi: 10.1080/10934529909376837
6 Say R, Denizli A, Arica M Y. Biosorption of cadmium(II), lead (II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology , 2001, 76(1): 67–70
doi: 10.1016/S0960-8524(00)00071-7 pmid:11315813
7 Ghorbani., Younesi H, Ghasempouri S M, Zinatizadeh A A, Amini M, Daneshi A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by S. cerevisiae. Chemical Engineering Journal , 2008, 145: 267–275
8 Dang V B H, Doan H D, Dang-Vu T, Lohi A. Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresource Technology , 2009, 100(1): 211–219
doi: 10.1016/j.biortech.2008.05.031 pmid:18599289
9 Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy , 1997, 44(3): 301–316
doi: 10.1016/S0304-386X(96)00059-X
10 Volesky B. Biosorption and me. Water Research , 2007, 41(18): 4017–4029
doi: 10.1016/j.watres.2007.05.062 pmid:17632204
11 Tunali S, Akar T, Ozcan A S, Kiran I, Ozcan A. Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Separation and Purification Technology , 2006, 47(3): 105–112
doi: 10.1016/j.seppur.2005.06.009
12 Vilar V J P, Botelho C M S, Loureiro J M, Boaventura R A R. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column. Bioresource Technology , 2008, 99(13): 5830–5838
doi: 10.1016/j.biortech.2007.10.007 pmid:18053711
13 Cochrane E L, Lu S, Gibb S W, Villaescusa I. A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. Journal of Hazardous Materials , 2006, 137(1): 198–206
doi: 10.1016/j.jhazmat.2006.01.054 pmid:16530940
14 Wang J L, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances , 2006, 24(5): 427–451
doi: 10.1016/j.biotechadv.2006.03.001 pmid:16737792
15 G?ksungur Y, üren S, Güven? U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology , 2005, 96(1): 103–109
doi: 10.1016/j.biortech.2003.04.002 pmid:15364087
16 Wang J L. Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry , 2002, 37(8): 847–850
doi: 10.1016/S0032-9592(01)00284-9
17 Vianna L L N, Andrade M C, Jacques R N. Screening ofwaste biomass from saccharomayces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentation for removal of Cu, Zn and Cd by biosorption, World Journal of Microbiology Biotechnology . 2000, 16: 437–440
18 ?zer A, ?zer D, Ekiz H I. The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladophora crispata. Adsorpt-J Int Adsorpt Soc , 2004, 10: 317–326
19 Bakkaloglu I, Butter T J, Evison L M, Holland F S, Hancock I C. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Science and Technology , 1998, 38(6): 269–277
doi: 10.1016/S0273-1223(98)00587-3
20 Matheickal J T, Yu Q. Biosorption of lead from aqueous solutions by marine algae Ecklonia radiata. Water Science and Technology , 1996, 34(9): 1–7
21 Chang J S, Huang J C, Chang C C, Tarn T J. Removal and recovery of lead fixed-bed biosorption with immobilized bacterial biomass.Water Science and Technology , 1998, 38(4-5): 171–178
22 Kratochvil D, Volesky B, Demopoulos G. Optimizing Cu removal/recovery in a biosorption column. Water Research , 1997, 31(9): 2327–1339
23 Arica M Y, Ka?ar Y, Gen? O. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology , 2001, 80(2): 121–129
doi: 10.1016/S0960-8524(01)00084-0 pmid:11563702
24 Bayramoglu G, Bektas S, Arica M Y. Biosorption of heavy metals on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Matererals . 2003, 101: 285–300.
25 Volesky B, Weber J, Park J M. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Resarch , 2003, 37: 297–306
26 Cussler E L. Diffusion-Mass Transfer in Fluid Systems (trans. Wang X Y, Jiang Z Y). 2th ed. Beijing: Chemical Industry Press, 2002, 199 (in Chinese)
27 Ho Y S, McKay G. The sorption of lead(II) ions on peat response to comment. Water Resarch , 1999, 33: 578–584
28 McKay G, Ho Y S. Pseudo-second-order model for sorption processes. Process Biochemstry , 1999, 34: 451–465
29 Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochemistry , 2002, 38(1): 89–99
doi: 10.1016/S0032-9592(02)00051-1
30 Cruz C, Costa A, Henriques C, Luna A. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. Biomass. Bioresource Technology , 2004, 91: 249–257
31 Sag Y, Kutsal T. The selective biosorption of chromium(VI) and copper(II) ions from binary metal mixtures by R. arrhizus. Process Biochemstry , 1996, 31: 561–572
32 Módenes A N, de Abreu Pietrobelli J M T, Espinoza-Qui?ones F R. Cadmium biosorption by non-living aquatic macrophytes Egeria densa. Water Science and Technology , 2009, 60(2): 293–300
33 de Abreu Pietrobelli J M T, Módenes A N, Espinoza-Qui?ones F R, Fagundes-Klen M R, Kroumov A. Removal of copper ions by non-living aquatic macrophytes egeria densa. International Journal Bioautomation , 2009, 12(1): 21–32
34 Saeed A, Iqbal M. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Research , 2003, 37(14): 3472–3480
doi: 10.1016/S0043-1354(03)00175-1 pmid:12834740
35 Kratochvil D, Volesky B. Biosorption of Cu from ferruginous wastewater by algal biomass. Water Resarch , 1998, 32(9): 2760–2768
36 Chu K H, Hashim M A, Phang S M, Samuel V B. Biosorption of cadmium by algal biomass: adsorption and desorption characteristics. Water Science and Technology , 1997, 35(7): 115–122
37 Pradhan S, Rai L C. Copper removal by immobilized M. aeruginosa in continuous flow columns at different bed heights: study of the adsorption/desorption cycle. World Journal of Microbiology Biotechnology , 2001, 17: 829–832
38 Lázaro N, Sevilla A L, Morales S, Marqúes A M. Heavy metal biosorption by gellan gum gel beads. Water Resarch , 2003, 37: 2118–2126
39 Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Resarch , 2003, 37: 4311–4330
[1] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[2] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
[3] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[4] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[5] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[6] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[7] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[8] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[9] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[10] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[11] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[12] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[13] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[14] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
[15] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed