Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (1) : 131-139    https://doi.org/10.1007/s11783-011-0390-7
RESEARCH ARTICLE
A new polystyrene-latex-based and EPS-containing synthetic sludge
Ling-Ling Wang1, Shan Chen1, Hai-Ting Zheng2, Guo-Qing Sheng1, Zhi-Jun Wang1, Wen-Wei Li1, Han-Qing Yu1()
1. Department of Chemistry, University of Science & Technology of China, Hefei 230026, China; 2. Department of Polymer Science and Engineering, University of Science & Technology of China, Hefei 230026, China
 Download: PDF(532 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Since the living microorganisms in activated sludge continuously change, it is difficult to conduct controlled experiments and achieve reproducible results for evaluating sludge characteristics. Synthetic sludge, as a chemical surrogate to activated sludge, could be used to investigate the sludge physicochemical properties, and it is desirable to prepare synthetic sludge with similar structure and properties to real activated sludge to explore the flocculation and settlement processes in activated sludge systems. In this work, a high-strength synthetic sludge was prepared with functional polystyrene latex particles as the framework and extracellular polymeric substances (EPS) to modify its surface. The flocculation and settling characteristics of the microspheres and the prepared synthetic sludge were tested. Compared with other three functional polystyrene latex microspheres, the synthetic sludge prepared with EPS-modified polystyrene latex microspheres showed good settling characteristics and a significantly higher strength. They could be used for studying the physicochemical properties of activated sludge.

Keywords activated sludge      extracellular polymeric substances (EPS)      flocculation      polystyrene latex particles      synthetic sludge     
Corresponding Author(s): Yu Han-Qing,Email:hqyu@ustc.edu.cn   
Issue Date: 01 February 2012
 Cite this article:   
Ling-Ling Wang,Shan Chen,Hai-Ting Zheng, et al. A new polystyrene-latex-based and EPS-containing synthetic sludge[J]. Front Envir Sci Eng, 2012, 6(1): 131-139.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0390-7
https://academic.hep.com.cn/fese/EN/Y2012/V6/I1/131
Fig.1  Synthetic route of: (1) PS-SOH microspheres; (2) PS-COOH microspheres; (3) PS-Al microspheres; and (4) PS-EPS microspheres.
Fig.2  Synthetic sludge preparation procedure: Step 1. microspheres were suspended; Step 2. alginate and cellulose were added and stirred for 12 h; and Step 3. CaCl was dosed and synthetic sludge was formed
PS-CH2ClPS-SO3HPS-COOHPS-AlPS-EPS
zeta potential/mV-42.3-50.2-47.1-34.3-47.0
Std Dev.3.16.23.22.91.4
size/μm3.203.403.373.553.92
Std Dev.0.560.210.520.660.81
Tab.1  Zeta potentials and sizes of the PS-CHCl, PS-SOH, PS-COOH, PS-Al and PS-EPS particles
Fig.3  IR spectroscopy of PS-SOH, PS-COOH, PS-Al and PS-EPS microspheres
Fig.4  Settling properties of PS-SOH, PS-COOH, PS-Al and PS-EPS microspheres
Fig.5  Settling properties of four types of synthetic sludge and activated sludge: (a) time= 0; and (b) time= 10 min. Synthetic sludge was prepared with the PS-SOH, PS-COOH, PS-Al and PS-EPS microspheres from left to right, respectively
Fig.6  Images of the synthetic sludge with the four types of microspheres and activated sludge after 10-s settling: (a) PS-SOH; (b) PS-COOH; (c) PS-Al; (d) PS-EPS and (e) activated sludge
1 Casellas M, Dagot C, Pons M N, Guibaud G, Tixier N, Baudu M. Characterisation of the structural state of flocculent microorganisms in relation to the purificatory performances of sequencing batch reactors. Biochemical Engineering Journal , 2004, 21(2): 171–181
doi: 10.1016/j.bej.2004.04.007
2 Vogelaar J C T, de Keizer A, Spijker S, Lettinga G. Bioflocculation of mesophilic and thermophilic activated sludge. Water Research , 2005, 39(1): 37–46
doi: 10.1016/j.watres.2004.07.027 pmid:15607162
3 Sponza D T. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzyme and Microbial Technology , 2003, 32(3-4): 375–385
doi: 10.1016/S0141-0229(02)00309-5
4 Jorand F, Guicherd P, Urbain V, Manem J, Block J C. Hydrophobicity of activated-sludge flocs and laboratory-grown bacteria. Water Science and Technology , 1994, 30(11): 211–218
5 Choi Y G, Kim S H, Kim H J, Kim G D, Chung T H. Improvement of activated sludge dewaterability by humus soil induced bioflocculation. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering , 2004, 39(7): 1717–1728
doi: 10.1081/ESE-120037872 pmid:15242121
6 Sears K, Alleman J E, Barnard J L, Oleszkiewicz J A. Density and activity characterization of activated sludge flocs. Journal of Environmental Engineering , 2006, 132(10): 1235–1242
doi: 10.1061/(ASCE)0733-9372(2006)132:10(1235)
7 Hilligardt D, Hoffmann E. Particle size analysis and sedimentation properties of activated sludge flocs. Water Science and Technology , 1997, 36(4): 167–175
doi: 10.1016/S0273-1223(97)00436-8
8 Snidaro D, Zartarian F, Jorand F, Bottero J Y, Block J C, Manem J. Characterization of activated sludge flocs structure. Water Science and Technology , 1997, 36(4): 313–320
doi: 10.1016/S0273-1223(97)00447-2
9 Klausen M M, Thomsen T R, Nielsen J L, Mikkelsen L H, Nielsen P H. Variations in microcolony strength of probe-defined bacteria in activated sludge flocs. FEMS Microbiology Ecology , 2004, 50(2): 123–132
doi: 10.1016/j.femsec.2004.06.005 pmid:19712371
10 Schmid M, Thill A, Purkhold U, Walcher M, Bottero J Y, Ginestet P, Nielsen P H, Wuertz S, Wagner M. Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Research , 2003, 37(9): 2043–2052
doi: 10.1016/S0043-1354(02)00616-4 pmid:12691889
11 Wilén B M, Keiding K, Nielsen P H. Flocculation of activated sludge flocs by stimulation of the aerobic biological activity. Water Research , 2004, 38(18): 3909–3919
doi: 10.1016/j.watres.2004.06.027 pmid:15380981
12 ?rmeci B, Vesilind P A. Development of an improved synthetic sludge: a possible surrogate for studying activated sludge dewatering characteristics. Water Research , 2000, 34(4): 1069–1078
doi: 10.1016/S0043-1354(99)00251-1
13 Sanin F D, Vesilind P A. Synthetic sludge: a physical/chemical model in understanding bioflocculation. Water Environment Research , 1996, 68(5): 927–933
doi: 10.2175/106143096X127938
14 Abu-Orf M M, Dentel S K. Rheology as tool for polymer dose assessment and control. Journal of Environmental Engineering , 1999, 125(12): 1133–1141
doi: 10.1061/(ASCE)0733-9372(1999)125:12(1133)
15 Baudez J C, Ginisty P, Peuchot C, Spinosa L. The preparation of synthetic sludge for lab testing. Water Science and Technology , 2007, 56(9): 67–74
doi: 10.2166/wst.2007.714 pmid:18025733
16 Higgins M J, Novak J T. Characterization of exocellular protein and its role in bioflocculation. Journal of Environmental Engineering , 1997, 123(5): 479–485
doi: 10.1061/(ASCE)0733-9372(1997)123:5(479)
17 Nguyen T P, Hankins N P, Hilal N. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge. Journal of Hazardous Materials , 2007a, 139(2): 265–274
doi: 10.1016/j.jhazmat.2006.06.025 pmid:16839674
18 Nguyen T P, Hankins N P, Hilal N. A comparative study of the flocculation behaviour and final properties of synthetic and activated sludge in wastewater treatment. Desalination , 2007, 204(1-3): 277–295
doi: 10.1016/j.desal.2006.02.035
19 Zheng H, Hua D, Bai R, Hu K, An L, Pan C. Controlled/living free-radical copolymerization of 4-(azidocarbonyl) phenyl methacrylate with methyl acrylate under 60?Coγ-ray irradiation. Journal of Polymer Science. Part A , 2007, 45(13): 2609–2616
doi: 10.1002/pola.22018
20 Ye Q, Zhang Z C, Jia H T, He W D, Ge X W. Formation of monodisperse polyacrylamide particles by radiation-induced dispersion polymerization: particle size and size distribution. Journal of Colloid and Interface Science , 2002, 253(2): 279–284
doi: 10.1006/jcis.2002.8465 pmid:16290860
21 Brown M J, Lester J N. Comparison of bacterial extracellular polymer extraction methods. Applied and Environmental Microbiology , 1980, 40(2): 179–185
pmid:16345600
22 Sheng G P, Yu H Q, Yu Z. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Applied Microbiology and Biotechnology , 2005, 67(1): 125–130
doi: 10.1007/s00253-004-1704-5 pmid:15309338
23 Hussain S A, Demirci S, ?zbayo?lu G. Zeta potential measurements on three clays from Turkey and effects of clays on coal flotation. Journal of Colloid and Interface Science , 1996, 184(2): 535–541
doi: 10.1006/jcis.1996.0649 pmid:8978557
24 Chu C P, Lee D J. Comparison of dewaterability and floc structure of synthetic sludge with activated sludge. Environmental Technology , 2005, 26(1): 1–10
doi: 10.1080/09593332608618580 pmid:15747595
25 Eboigbodin K E, Biggs C A. Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules , 2008, 9(2): 686–695
doi: 10.1021/bm701043c pmid:18186609
26 Ivnitsky H, Katz I, Minz D, Shimoni E, Chen Y, Tarchitzky J, Semiat R, Dosoretz C G. Characterization of membrane biofouling in nanofiltration processes of wastewater treatment. Desalination , 2005, 185(1-3): 255–268
doi: 10.1016/j.desal.2005.03.081
27 Kazy S K, Sar P, Singh S P, Sen A K, D'Souza S F. Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World Journal of Microbiology & Biotechnology , 2002, 18(6): 583–588
doi: 10.1023/A:1016354713289
28 Engebretson R B, von Wandruszka R. Kinetic aspects of cation enhanced aggregation in aqueous humic acids. Environmental Science & Technology , 1998, 32(4): 488–493
doi: 10.1021/es970693s
[1] Zongqun Chen, Wei Jin, Hailong Yin, Mengqi Han, Zuxin Xu. Performance evaluation on the pollution control against wet weather overflow based on on-site coagulation/flocculation in terminal drainage pipes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 111-.
[2] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[3] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[4] Huan He, Qinjin Yu, Chaochao Lai, Chen Zhang, Muhan Liu, Bin Huang, Hongping Pu, Xuejun Pan. The treatment of black-odorous water using tower bipolar electro-flocculation including the removal of phosphorus, turbidity, sulfion, and oxygen enrichment[J]. Front. Environ. Sci. Eng., 2021, 15(2): 18-.
[5] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[6] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
[7] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[8] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[9] Ziming Zhao, Wenjun Sun, Madhumita B. Ray, Ajay K Ray, Tianyin Huang, Jiabin Chen. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(5): 75-.
[10] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
[11] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[12] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[13] Ran Yu, Shiwen Zhang, Zhoukai Chen, Chuanyang Li. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement[J]. Front. Environ. Sci. Eng., 2017, 11(1): 10-.
[14] Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON. Modification of the activated sludge model for chemical dosage[J]. Front. Environ. Sci. Eng., 2015, 9(4): 694-701.
[15] Zheng LI,Rong QI,Wei AN,Takashi MINO,Tadashi SHOJI,Willy VERSTRAETE,Jian GU,Shengtao LI,Shiwei XU,Min YANG. Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference[J]. Front. Environ. Sci. Eng., 2015, 9(3): 534-544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed