Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (1) : 19-30    https://doi.org/10.1007/s11783-012-0424-9
RESEARCH ARTICLE
Effects of organic acids on Cd adsorption and desorption by two anthropic soils
Jingui WANG1,2, Jialong LV1,2(), Yaolong FU1,2
1. College of Resources and Environment, Northwest A&F University, Yangling 712100, China; 2. Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
 Download: PDF(335 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The objective of this experiment was to study the effects of malic, tartaric, oxalic, and citric acid on the adsorption and desorption characteristics of Cd by two typical anthropic soils (lou soil and irrigation-silted soil) in North-west China. Cadmium adsorption and desorption were studied under a range of temperatures (25°C, 30°C, 35°C, 40°C), organic acid concentrations (0.5–5.0 mmol·L-1), and pH values (2–8). The results showed that the Cd adsorption capacity of the lou soil was significantly greater than that of the irrigation-silted soil. Generally, Cd adsorption increased as the temperature increased. In the presence of NaNO3, the adsorption of Cd was endothermic with ΔH values of 31.365 kJ·mol-1 for lou soil and 28.278?kJ·mol-1 for irrigation-silted soil. The endothermic reaction indicated that H bonds were the main driving force for Cd adsorption in both soils. However, different concentrations of organic acids showed various influences on the two soils. In the presence of citric acid, chemical adsorption and van der Waals interactions were the main driving forces for Cd adsorption rather than H bonds. Although the types of organic acids and soil properties were different, the effects of the organic acids on the adsorption and desorption of Cd were similar in the two soils. The adsorption percentage of Cd generally decreased as organic acid concentrations increased. In contrast, the adsorption percentage increased as the pH of the initial solution increased. The exception was that adsorption percentage of Cd increased slightly as oxalic acid concentrations increased. In contrast, the desorption percentage of Cd increased with increasing concentrations of organic acids but decreased as the initial solution pH increased.

Keywords adsorption      desorption      cadmium      organic acids      temperature      anthropic soil     
Corresponding Author(s): LV Jialong,Email:ljlll@nwsuaf.edu.cn   
Issue Date: 01 February 2013
 Cite this article:   
Jingui WANG,Jialong LV,Yaolong FU. Effects of organic acids on Cd adsorption and desorption by two anthropic soils[J]. Front Envir Sci Eng, 2013, 7(1): 19-30.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0424-9
https://academic.hep.com.cn/fese/EN/Y2013/V7/I1/19
soil typeparent materialpHorganic matter/(g·kg-1)clay/(g·kg-1)cation exchange capacity/(cmol·kg-1)mineralogical composition
lou soilQ3eol8.0917.3620422.37illite>vermiculite
irrigation-silted soilQ4al-pl7.6515.2215211.23hydromica>chlorite
Tab.1  Basic properties of the soils in this study
organic acidchemical formulaligand formpKaa)
malic acidHO2CCH2CH(OH)CO2HH2L3.46, 5.10
tartaric acidHO2CCH(OH)CH(OH)CO2HH2L3.03, 4.46
oxalic acidHO2CCO2HH2L1.23, 4.19
citric acidHO2CCH= C(CO2H)(OH)CH2CO2H3L3.13, 4.78, 6.43
Tab.2  Selected properties of the low molecular weight organic acids used in this study
Fig.1  Isotherm of Cd adsorption by the lou soil and irrigation-silted soil in the absence of organic acids
Fig.1  Isotherm of Cd adsorption by the lou soil and irrigation-silted soil in the absence of organic acids
soil typeFreundlichQe=KfCe1/nLangmuirQe=Cmax?KLCe/(1+KLCe)
Kf1/nR2CmaxKLR2
lou soil649.380.5130.9892500.000.5000.974
irrigation-silted soil322.700.5440.9531666.670.2500.948
Tab.3  Freundlich and Langmuir parameters for Cd adsorption by the lou and irrigation-silted soils
soil typeorganic acid concentration/(mmol·L-1)temperature/KKcΔG/(kJ·mol-1)ΔH/(kJ·mol-1)ΔS/(kJ·mol-1)
lou soil029825.110-7.98631.3650.133
30337.412-9.124
30842.290-9.589
31347.154-10.028
irrigation- silted soil029811.579-6.06828.2780.115
30313.151-6.491
30816.554-7.187
31319.704-7.757
Tab.4  Thermodynamic parameters for Cd adsorption by the lou soil and the irrigation-silted soil in the absence of organic acid (the initial Cd concentration was 30 mg·L)
soil typetemperature/Kmalic acidtartaric acid
concentration/(mmol·L-1)KcΔG/(kJ·mol-1)ΔH/(kJ·mol-1)ΔS/(kJ·mol-1)concentration/(mmol·L-1)KcΔG/(kJ·mol-1)ΔH/(kJ·mol-1)ΔS/(kJ·mol-1)
lou soil2980.516.964-7.01433.8550.1370.516.626-6.96438.3870.151
30319.161-7.43917.610-7.226
30820.692-7.75824.510-8.192
31334.377-9.20534.088-9.183
2985.03.902-3.37324.9060.0955.021.438-7.59422.5000.101
3034.821-3.96223.938-7.999
3086.109-4.63429.457-8.663
3136.145-4.72532.445-9.055
irrigation-silted soil2980.57.842-5.10227.3200.1080.57.842-5.10225.5330.104
3039.027-5.54311.925-6.244
3089.145-5.66812.947-6.558
31314.091-6.88413.151-6.705
2985.01.997-1.71433.1760.1175.02.731-2.48984.1290.293
3032.731-2.53110.673-5.965
3083.386-3.12311.295-6.208
3133.785-3.46416.172-7.243
Tab.5  Thermodynamic parameters for Cd adsorption by the lou soil and irrigation-silted soil in the presence of malic or tartaric acid (0.5 or 5.0 mmol·L). The initial Cd concentration was 30 mg·L
soil typetemperature/Kmalic acidtartaric acid
concentration/(mmol·L-1)KcΔG/(kJ·mol-1)ΔH/(kJ·mol-1)ΔS/(kJ·mol-1)concentration/(mmol·L-1)KcΔG/(kJ·mol-1)ΔH/(kJ·mol-1)ΔS/(kJ·mol-1)
lou soil2980.520.082-7.43240.1630.1590.55.094-4.03472.8010.258
30321.901-7.7758.579-5.414
30833.247-8.97313.728-6.708
31341.493-9.69520.802-7.898
2985.082.565-10.93525.1750.1215.01.676-1.2808.9280.035
30389.634-11.3251.985-1.727
30895.774-11.6822.003-1.779
313139.187-12.8442.021-1.831
irrigation- silted soil2980.512.999-6.35513.1830.0650.56.231-4.53324.5670.098
30313.409-6.5407.472-5.066
30815.741-7.0589.145-5.668
31316.361-7.2739.866-5.957
2985.043.118-9.32524.2390.1135.01.791-1.4436.7290.028
30352.191-9.9631.933-1.660
30852.191-10.1271.997-1.771
31372.710-11.1552.046-1.863
Tab.6  Thermodynamic parameters for Cd adsorption by the lou soil and irrigation-silted soil in the presence of oxalic or citric acid (0.5 or 5.0 mmol·L). The initial Cd concentration was 30 mg·L
Fig.2  Effect of organic acids and temperature on Cd adsorption on the lou soil: (a) malic; (b) tartaric; (c) oxalic; (d) citric; and irrigation-silted soil: (e) malic; (f) tartaric; (g) oxalic; (h) citric at an initial Cd concentration of 30 mg·L. The organic acid concentrations were 0 (control), 0.5, and 5.0 mmol·L
Fig.2  Effect of organic acids and temperature on Cd adsorption on the lou soil: (a) malic; (b) tartaric; (c) oxalic; (d) citric; and irrigation-silted soil: (e) malic; (f) tartaric; (g) oxalic; (h) citric at an initial Cd concentration of 30 mg·L. The organic acid concentrations were 0 (control), 0.5, and 5.0 mmol·L
Fig.3  Percentage of Cd adsorption by the lou soil (a) and irrigation-silted soil (b) in the presence of organic acids at pH 5.0
Fig.3  Percentage of Cd adsorption by the lou soil (a) and irrigation-silted soil (b) in the presence of organic acids at pH 5.0
Fig.4  Effect of pH on Cd adsorption on lou soil (a) and irrigation-silted soil (b) in the presence of organic acids (2.0 mmol·L) or NaNO (control)
Fig.4  Effect of pH on Cd adsorption on lou soil (a) and irrigation-silted soil (b) in the presence of organic acids (2.0 mmol·L) or NaNO (control)
Fig.5  Effect of organic acid concentration on Cd desorption from lou soil (a) and irrigation-silted soil (b)
Fig.5  Effect of organic acid concentration on Cd desorption from lou soil (a) and irrigation-silted soil (b)
Fig.6  Effect of pH on Cd desorption from lou soil (a) and irrigation-silted soil (b) in the presence of organic acids (2.0 mmol·L) or NaNO (control)
Fig.6  Effect of pH on Cd desorption from lou soil (a) and irrigation-silted soil (b) in the presence of organic acids (2.0 mmol·L) or NaNO (control)
1 Naidu R, Harter R D. Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Science Society of America Journal , 1998, 62(3): 644–650
doi: 10.2136/sssaj1998.03615995006200030014x
2 Naidu R, Kookana R S, Sumner M E, Harter R D, Tiller K G. Cadmium sorption and transport in variable charge soils: a review. Journal of Environmental Quality , 1997, 26(3): 602–617
doi: 10.2134/jeq1997.00472425002600030004x
3 Tran Y T, Barry D A, Bajracharya K. Cadmium desorption in sand. Environment International , 2002, 28(6): 493–502
doi: 10.1016/S0160-4120(02)00077-6 pmid:12503915
4 Zhou D M, Chen H M, Wang S Q, Zheng C R. Effects of organic acids, o-phenylenediamine and pyrocatechol on cadmium adsorption and desorption in soil. Water, Air, and Soil Pollution , 2003, 145(1-4): 109–121
doi: 10.1023/A:1023636330221
5 Liao M. Effects of organic acids on adsorption of cadmium onto kaolinite, goethite, and bayerite. Pedosphere , 2006, 16(2): 185–191
doi: 10.1016/S1002-0160(06)60042-8
6 Zong L G, Xu X Y. Advance in studies of cadmium sorption and desorption in soils. Ecology & Environment , 2003, 12(3): 331–335 (in Chinese)
7 Chen H M, Zheng C R, Tu C, Zhu Y G. Heavy metal pollution in soils in China: status and countermeasures. Ambio , 1999, 28(2): 130–134
8 Robinson B, Russell C, Hedley M, Clothier B. Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agriculture Ecosystems & Environment , 2001, 87(3): 315–321
doi: 10.1016/S0167-8809(01)00146-3
9 Singh A K, Pandeya S B. Sorption and release of cadmium-fulvic acid complexes in sludge treated soils. Bioresource Technology , 1998, 66(2): 119–127
doi: 10.1016/S0960-8524(98)00035-2
10 Alloway B J. Heavy Metals in Soils. New York: Blackie Academic & Professional Publishers, 1995
11 Lee S Z, Allen H E, Huang C P, Sparks D L, Sanders P F, Peijnenburg W J G M. Predicting soil-water partition coefficients for cadmium. Environmental Science & Technology , 1996, 30(12): 3418–3424
doi: 10.1021/es9507933
12 Zhang G Y, Dong Y Y, Li X Y, Li Y, Li H J. Effects of oxalic acid and pH values on sorption of cadmium in minerals. Journal of Agro-Environmental Science , 2004, 23(3): 619–622 (in Chinese)
13 Nigam R, Srivastava S, Prakash S, Srivastava M M. Cadmium mobilisation and plant availability — the impact of organic acids commonly exuded from roots. Plant and Soil , 2001, 230(1): 107–113
doi: 10.1023/A:1004865811529
14 Jones D L. Organic acids in the rhizosphere-a critical review. Plant and Soil , 1998, 205(1): 25–44
doi: 10.1023/A:1004356007312
15 Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma , 2001, 99(3-4): 169–198
doi: 10.1016/S0016-7061(00)00102-6
16 Shan X Q, Lian J, Wen B. Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere , 2002, 47(7): 701–710
doi: 10.1016/S0045-6535(02)00032-2 pmid:12079065
17 Huang Q Y, Zhao Z H, Chen W L. Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals. Chemosphere , 2003, 52(3): 571–579
doi: 10.1016/S0045-6535(03)00238-8 pmid:12738294
18 Robert M, Berthelin J. Role of biological and biological factors in soil mineral weathering. In: Huang P M, Schnitzer M, eds. Interaction of Soil Minerals with Natural Organics and Microbes . Madison: Soil Science Society of America, 1986, 453–489
19 Stevenson F J, Fitch A. Chemistry of complexation of metal ions with soil solution organics. In: Huang P M, Schnitzer M, eds. Interaction of Soil Minerals with Natural Organics and Microbes . Madison: Soil Science Society of America, 1986, 29–58
20 Lu H L, Yan C L, Liu J C. Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environmental and Experimental Botany , 2007, 61(2): 159–166
doi: 10.1016/j.envexpbot.2007.05.007
21 Wang Y J, Chen J H, Cui Y X, Wang S Q, Zhou D M. Effects of low-molecular-weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles. Journal of Hazardous Materials , 2009, 162(2-3): 1135–1140
doi: 10.1016/j.jhazmat.2008.06.001 pmid:18614282
22 Khan A G, Kuek C, Chaudhry T M, Khoo C S, Hayes W J. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere , 2000, 41(1-2): 197–207
doi: 10.1016/S0045-6535(99)00412-9 pmid:10819202
23 Zhou D M, Wang S Q, Chen H M. Interaction of Cd and citric acid, EDTA in red soil. Journal of Environmental Sciences–China , 2001, 13(2): 153–156
pmid:11590733
24 Liao M, Xie X M. Cadmium release in contaminated soil due to organic acids. Pedosphere , 2004, 14(2): 223–228
25 Xu R K, Ji G L. Effect of anions of low-molecular-weight organic acids on adsorption and desorption of aluminum by and from a kaolinite at different pH. Soil Science , 2003, 168(1): 39–44
doi: 10.1097/00010694-200301000-00005
26 Evangelou M W H, Ebel M, Schaeffer A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere , 2006, 63(6): 996–1004
doi: 10.1016/j.chemosphere.2005.08.042 pmid:16337259
27 Dytrtová J J, ?estáková I, Jakl M, Navrátil T. Electrochemical detection of cadmium and lead complexes with low molecular weight organic acids. Electroanalysis , 2009, 21(3-5): 573–579
doi: 10.1002/elan.200804451
28 Floroiu R M, Davis A P, Torrents A. Cadmium adsorption on aluminum oxide in the presence of polyacrylic acid. Environmental Science & Technology , 2001, 35(2): 348–353
doi: 10.1021/es9913479 pmid:11347608
29 Fontes M P F, Gomes P C. Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. Applied Geochemistry , 2003, 18(6): 795–804
doi: 10.1016/S0883-2927(02)00188-9
30 McBride M B, Tyler L D, Hovde D A. Cadmium adsorption by soils and uptake by plants as affected by soil chemical properties. Soil Science Society of America Journal , 1981, 45(4): 739–744
doi: 10.2136/sssaj1981.03615995004500040013x
31 Huang L, Hu H Q, Li X Y, Li L Y. Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite. Applied Clay Science , 2010, 49(3): 281–287
doi: 10.1016/j.clay.2010.06.005
32 Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000 (in Chinese)
33 Serjeant E P, Dempsey B. Ionisation Constants of Organic Acids in Aqueous Solutions. Oxford: Pergamon, 1979
34 OECD. OECD Guideline for the Testing of Chemicals. Adsorption-Desorption Using a Batch Equilibrium Method. OECD Test Guideline . Paris: OECD Publications, 2000
35 Hooda P S, Alloway B J. Cadmium and lead sorption behaviour of selected English and Indian soils. Geoderma , 1998, 84(1): 121–134
doi: 10.1016/S0016-7061(97)00124-9
36 ROSS S M. Toxic Metals in Soil-Plant Systems. New York: John Wiley & Sons Ltd, 1994
37 Jain C K, Singhal D C, Sharma M K. Adsorption of zinc on bed sediment of River Hindon: adsorption models and kinetics. Journal of Hazardous Materials , 2004, 114(1-3): 231–239
doi: 10.1016/j.jhazmat.2004.09.001 pmid:15511595
38 Sari A, Tuzen M, Citak D, Soylak M. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials , 2007, 149(2): 283–291
doi: 10.1016/j.jhazmat.2007.03.078 pmid:17478040
39 di Vincenzo J P, Sparks D L. Slow sorption kinetics of pentachlorophenol on soil: concentration effects. Environmental Science & Technology , 1997, 31(4): 977–983
doi: 10.1021/es9601494
40 Zhang X L, Hong H L, Li Z H, Guan J F, Schulz L. Removal of azobenzene from water by kaolinite. Journal of Hazardous Materials , 2009, 170(2-3): 1064–1069
doi: 10.1016/j.jhazmat.2009.05.073 pmid:19523763
41 Meng Z F, Zhang Y P, Zhang Z Q. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials , 2008, 159(2-3): 492–498
doi: 10.1016/j.jhazmat.2008.02.045 pmid:18387736
42 Faghihian H, Nejati-Yazdinejad M. A comparative study of the sorption of Cd(II) and Pb(II) ions from aqueous solution by local bentonite and clinoptilolite. Adsorption Science and Technology , 2009, 27(1): 107–115
doi: 10.1260/026361709788921588
43 Song X P, Wang S W, Chen L, Zhang M L, Dong Y H. Effect of pH, ionic strength and temperature on the sorption of radionickel on Na-montmorillonite. Applied Radiation and Isotopes , 2009, 67(6): 1007–1012
doi: 10.1016/j.apradiso.2009.02.085 pmid:19328707
44 Xu D, Tan X L, Chen C L, Wang X K. Adsorption of Pb (II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science , 2008, 41(1-2): 37–46
doi: 10.1016/j.clay.2007.09.004
45 Sheng G D, Wang S W, Hu J, Lu Y, Li J X, Dong Y H, Wang X K. Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 339(1-3): 159–166
doi: 10.1016/j.colsurfa.2009.02.016
46 Cornell R M, Schindler P W. Infrared study of the adsorption of hudroxycarborylic acids on α-FeOOH and amorphous Fe(III)hydroxide. Colloid & Polymer Science , 1980, 258(10): 1171–1175
doi: 10.1007/BF01382462
47 Parfitt R L, Fraser A R, Farmer V C. Adsorption on hydrous oxides. III. Fulvic acid and humic acid on goethite, gibbsite and imogolite. Journal of Soil Science , 1977, 28(2): 289–296
doi: 10.1111/j.1365-2389.1977.tb02237.x
48 Hu H Q, Liu H L, He J Z, Huang Q Y. Effect of selected organic acids on cadmium sorption by variable- and permanent-charge soils. Pedosphere , 2007, 17(1): 117–123
doi: 10.1016/S1002-0160(07)60016-2
49 Tiller K G, Nayyar V K, Clayton P M. Specific and non-specific sorption of cadmium by soil clays as influenced by zinc and calcium. Australian Journal of Soil Research , 1979, 17(1): 17–28
doi: 10.1071/SR9790017
50 Parfitt R L, Farmer V C, Russell J D. Adsorption on hydrous oxides I. Oxalate and benzoate on goethite. Journal of Soil Science , 1977, 28(1): 29–39
doi: 10.1111/j.1365-2389.1977.tb02293.x
51 Zachara J M, Smith S C, McKinley J P, Resch C T. Cadmium sorption on specimen and soil smectites in sodium and calcium electrolytes. Soil Science Society of America Journal , 1993, 57(6): 1491–1501
doi: 10.2136/sssaj1993.03615995005700060017x
52 Forbes E A, Posner A M, Quirk J P. The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite. Journal of Soil Science , 1976, 27(2): 154–166
doi: 10.1111/j.1365-2389.1976.tb01986.x
53 Yao Y B, Xie T, Gao Y M. Handbook of Chemistry and Physics. Shanghai: Shanghai Science and Technology Press, 1985 (in Chinese)
54 Martell A E, Smith R M. Critical Stability Constants: Other Organic Ligands. New York: Plenum Press, 1977
55 Wang G. Influence of complexation on the adsorption of heavy metal ions. Progress in Soil Science , 1994, 22(6): 6–13 (in Chinese)
56 Padmanabham M. Adsorption-desorption behaviour of copper (II) at the goethite–solution interface. Australian Journal of Soil Research , 1983, 21(3): 309–320
doi: 10.1071/SR9830309
57 Pardo M T, Guadalix M E. Zinc sorption-desorption by two Andepts: effect of pH and support medium. European Journal of Soil Science , 1996, 47(2): 257–263
doi: 10.1111/j.1365-2389.1996.tb01397.x
58 Cao X D, Chen Y, Wang X R, Deng X H. Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere , 2001, 44(4): 655–661
doi: 10.1016/S0045-6535(00)00492-6 pmid:11482653
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Chen Wang, Jun Wang, Jianqiang Wang, Meiqing Shen. Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(2): 30-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Rencheng Zhu, Jingnan Hu, Liqiang He, Lei Zu, Xiaofeng Bao, Yitu Lai, Sheng Su. Effects of ambient temperature on regulated gaseous and particulate emissions from gasoline-, E10- and M15-fueled vehicles[J]. Front. Environ. Sci. Eng., 2021, 15(1): 14-.
[6] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[7] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[8] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[9] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[10] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[11] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[12] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[13] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[14] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[15] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed