Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (2) : 158-165    https://doi.org/10.1007/s11783-012-0479-7
RESEARCH ARTICLE
Removal of phenol by powdered activated carbon adsorption
Yan MA1, Naiyun GAO1(), Wenhai CHU1, Cong LI2
1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; 2. Institute of Municipal Engineering, Zhejiang University, Hangzhou 310058, China
 Download: PDF(164 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, the adsorption performance of powdered activated carbon (PAC) on phenol was investigated in aqueous solutions. Batch adsorption studies were performed to evaluate the effects of various experimental parameters like PAC type, PAC dose, initial solution pH, temperature and pre-oxidation on the adsorption of phenol by PAC and establish the adsorption kinetics, thermodynamics and isothermal models. The results indicated that PAC adsorption is an effective method to remove phenol from water, and the effects of all the five factors on adsorption of phenol were significant. The adsorption rate of phenol by PAC was rapid, and more than 80% phenol could be absorbed by PAC within the initial 10 min. The adsorption process can be well described by pseudo-second-order adsorption kinetic model with rate constant amounted to 0.0313, 0.0305 and 0.0241 mg·μg -1·min -1 with coal, coconut shell and bamboo charcoal. The equilibrium data of phenol absorbed onto PAC were analyzed by Langmuir, Freundlich and Tempkin adsorption isotherms and Freundlich adsorption isotherm model gave the best correlation with the experimental data. Thermodynamic parameters such as the standard Gibbs free energy (?Go), enthalpy (?Ho) and entropy (?So) obtained in this study indicated that the adsorption of phenol by PAC is spontaneous, exothermic and entropy decreasing.

Keywords phenol      powdered activated carbon      adsorption      kinetics      isotherms     
Corresponding Author(s): GAO Naiyun,Email:gaonaiyun@sina.com   
Issue Date: 01 April 2013
 Cite this article:   
Yan MA,Naiyun GAO,Wenhai CHU, et al. Removal of phenol by powdered activated carbon adsorption[J]. Front Envir Sci Eng, 2013, 7(2): 158-165.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0479-7
https://academic.hep.com.cn/fese/EN/Y2013/V7/I2/158
carbon typemesh numberiodine value/(mg·g -1)methylene blue value/(mg·g -1)specific surface area /(m2·g -1)
coal charcoal200800~1100130>900
coconut shell charcoal200900~1200130>1000
bamboo charcoal200900~1200135>1050
Tab.1  Main performance parameters of different PAC
Fig.1  Effect of different carbon types on absorption of phenol (PAC dose=20 mg·L, initial phenol concentration=1000 μg·L, stirring speed=160 r·min, temperature=25 °C)
Fig.2  Effect of different carbon doses on absorption of phenol
PAC dose/(mg·L -1)adsorption capacity /(μg·mg-1)
bamboo charcoalcoconut shell charcoalcoal charcoal
1024.9621.2220.14
2019.6716.5814.71
3015.6512.4912.06
4014.4611.8211.21
5013.1610.8610.29
Tab.2  Absorption capacity of PAC under different PAC doses
Fig.3  Effect of different initial solution pH values on absorption of phenol. (bamboo charcoal, initial phenol concentration=1000 μg·L, stirring speed=160 r·min, temperature=25 °C)
Fig.4  The effect of temperature on adsorption of phenol (bamboo charcoal, initial phenol concentration=1000 μg·L, stirring speed=160 r·min, temperature=25 °C)
Fig.5  Removal effect of phenol by PAC associated with potassium permanganate (potassium permanganate dosage=1 mg·L)
Fig.6  Intra-particle diffusion model of phenol adsorption by PAC at 25 °C (PAC dose=20 mg·L)
Adsorbentfirst-order kinetic modelpseudo-second-order kinetic modelintra-particle diffusion model
PAC typedose/(mg·L-1)qe/(μg·mg-1)k1/(min-1)R2qe/μg·mg-1k2/ (mg·μg-1·min -1)R2kp/(μg·mg-1·min -0.5)R2
bamboo charcoal2020.08540.57950.971821.74390.03130.99991.42900.4603
coconut shell charcoal2015.81350.32410.9597616.87190.03050.99991.25050.5939
coal charcoal2013.68330.28630.959114.98120.02410.99981.13500.6529
Tab.3  Pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intra-particle diffusion model kinetic parameters for phenol adsorption by PAC at 25 °C
temperature/KLangmuirFreundlichTempkin
qm /(·g·mg-1)aL/(L·mg -1)R2KF/(μg (1-1/n)·L 1/n·mg -1)1/nR2A/(L·mg -1)RT/zR2
28859.52381.06500.99420.20560.74560.99590.012112.04040.9647
29845.45451.18800.99110.19620.71700.99710.011110.17020.9711
30833.67001.29210.95700.16160.70830.97400.00958.81500.9203
Tab.4  Langmuir, Freundlich and Tempkin isotherm parameters for phenol adsorption by PAC
ΔG/(kJ·mol-1)ΔH/(kJ·mol-1)ΔS/(J·K-1·mol-1)
288 K298 K308 K
-9.94-9.62-9.34-18.59-30.05
Tab.5  Thermodynamic parameters for phenol adsorption onto PAC under different temperatures
1 Damjanovi? L, Raki? V, Rac V, Sto?i? D, Auroux A. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. Journal of Hazardous Materials , 2010, 184(1-3): 477–484
doi: 10.1016/j.jhazmat.2010.08.059 pmid:20855165
2 Lin S H, Juang R S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. Journal of Environmental Management , 2009, 90(3): 1336–1349
doi: 10.1016/j.jenvman.2008.09.003 pmid:18995949
3 Megharaj M, Pearson H W, Venkateswarlu K. Toxicity of phenol and three nitrophenols towards growth and metabolic activities of Nostoc linckia, isolated from soil. Archives of Environmental Contamination and Toxicology , 1991, 21(4): 578–584
doi: 10.1007/BF01183881
4 Nair R J, Sherief P M. Acute toxicity of phenol and long-term effects on food consumption and growth of juvenile rohu Labeo rohita (Ham.) under tropical condition. Asian Fisheries Science , 1998, 10(3): 179–268
5 Yang L, Wang Y, Song J, Zhao W, He X, Chen J, Xiao M. Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biology & Biochemistry , 2011, 43(5): 915–922
doi: 10.1016/j.soilbio.2011.01.001
6 Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials , 2008, 160(2-3): 265–288
doi: 10.1016/j.jhazmat.2008.03.045 pmid:18455866
7 Ahmaruzzaman M. Adsorption of phenolic compounds on low-cost adsorbents: a review. Advances in Colloid and Interface Science , 2008, 143(1-2): 48–67
doi: 10.1016/j.cis.2008.07.002 pmid:18786665
8 Kim T Y, Jin H J, Park S S, Kim S J, Cho S Y. Adsorption equilibrium of copper ion and phenol by powdered activated carbon, alginate bead and alginate-activated carbon bead. Journal of Industrial and Engineering Chemistry , 2008, 14(6): 714–719
doi: 10.1016/j.jiec.2008.07.004
9 Tancredi N, Medero N, M?ller F, Píriz J, Plada C, Cordero T. Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. Journal of Colloid and Interface Science , 2004, 279(2): 357–363
doi: 10.1016/j.jcis.2004.06.067 pmid:15464799
10 Fan J, Zhang J, Zhang C, Ren L, Shi Q. Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife. Desalination , 2011, 267(2-3): 139–146
doi: 10.1016/j.desal.2010.09.016
11 Bayer C, Follmann M, Melin T, Wintgens T, Laesson K, Almemark M.The ecological impact of membrane-based extraction of phenolic compounds-a life cycle assessment study. Water Science & Technology—WST , 2010, 62(4): 915–919
12 Zhang X J, Chen C, Ding J Q, Hou A X, Li Y, Niu Z B, Su X Y, Xu Y J, Laws E A. The 2007 water crisis in Wuxi, China: analysis of the origin. Journal of Hazardous Materials , 2010, 182(1-3): 130–135
doi: 10.1016/j.jhazmat.2010.06.006 pmid:20591562
13 Tan I A W, Ahmad A L, Hameed B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials , 2009, 164(2-3): 473–482
doi: 10.1016/j.jhazmat.2008.08.025 pmid:18818013
14 Dai M. Mechanism of adsorption for Dyes on activated carbon. Journal of Colloid and Interface Science , 1998, 198(1): 6–10
doi: 10.1006/jcis.1997.5254
15 Qing C. Study on the adsorption of lanthanum(III) from aqueous solution by bamboo charcoal. Journal of Rare Earths , 2010, 28(1): 125–131
16 Zeid N A, Nakhla G, Farooq S, Osei-Twum E. Activated carbon adsorption in oxidizing environments. Water Research , 1995, 29(2): 653–660
doi: 10.1016/0043-1354(94)00158-4
17 Langergren S, Svenska B K. Zur theorie der sogenannten adsorption geloester stoffe. Kungliga Svenska Vetenskapsa-kademiens , Handlingar , 1898, 24(4): 1–39
18 Srihari V, Das A. The kinetic and thermodynamic studies of phenol-sorption onto three agro-based carbons. Desalination , 2008, 225(1-3): 220–234
doi: 10.1016/j.desal.2007.07.008
19 Tan I A W, Hameed B H, Ahmad A L. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal , 2007, 127(1-3): 111–119
doi: 10.1016/j.cej.2006.09.010
20 Weber W J, Morris J C. Advances in water pollution research: removal of biologically-resistant polluants from waste waters by adsorption. In: Proceedings of the International Conference on Water Pollution Symposium. Pergamon, Oxford , 1962, 2: 231–266
21 Fernandes A N, Almeida C A P, Debacher N A, Sierra M M D S. Isotherm and thermodynamic data of adsorption of methylene blue from aqueous solution onto peat. Journal of Molecular Structure , 2010, 982(1-3): 62–65
doi: 10.1016/j.molstruc.2010.08.006
22 Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology , 2007, 98(1): 14–21
doi: 10.1016/j.biortech.2005.12.008 pmid:16427273
23 Sheha R R, Metwally E. Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. Journal of Hazardous Materials , 2007, 143(1-2): 354–361
doi: 10.1016/j.jhazmat.2006.09.041 pmid:17055154
24 Fu Q, Deng Y, Li H, Liu J, Hu H, Chen S, Sa T. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp.kurstaki by clay minerals. Applied Surface Science , 2009, 255(8): 4551–4557
doi: 10.1016/j.apsusc.2008.11.075
25 Su J, Lin H F, Wang Q P, Xie Z M, Chen Z L. Adsorption of phenol from aqueous solutions by organomontmorillonite. Desalination , 2011, 269(1-3): 163–169
doi: 10.1016/j.desal.2010.10.056
26 Fytianos K, Voudrias E, Kokkalis E. Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments. Chemosphere , 2000, 40(1): 3–6
doi: 10.1016/S0045-6535(99)00214-3 pmid:10665437
27 Haghseresht F, Lu G. Q.Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy & Fuels , 1998, 12(6): 1100–1107
doi: 10.1021/ef9801165
28 Li Y H, Di Z, Ding J, Wu D, Luan Z, Zhu Y. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research , 2005, 39(4): 605–609
doi: 10.1016/j.watres.2004.11.004 pmid:15707633
29 Yue Q Y, Li Q, Gao B Y, Yuan A J, Wang Y. Formation and characteristics of cationic-polymer/bentonite complexes as adsorbents for dyes. Applied Clay Science , 2007, 35(3-4): 268–275
doi: 10.1016/j.clay.2006.09.008
30 Vonopen B. Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils: processes, measurement and experience with the applicability of the modified OECD-Guideline 106. Chemosphere , 1991, 22(3-4): 285–304
doi: 10.1016/0045-6535(91)90318-8
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[4] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[5] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[6] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[7] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[8] Jianmei Zou, Jianzhi Huang, Huichun Zhang, Dongbei Yue. Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 5-.
[9] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[10] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[11] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[12] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[13] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[14] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[15] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed