Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 329-336    https://doi.org/10.1007/s11783-013-0553-9
RESEARCH ARTICLE
Removal of Cu(II) ions from aqueous solution by activated carbon impregnated with humic acid
LIU Hanchao,FENG Suping1,(),ZHANG Nannan,DU Xiaolin,LIU Yongli
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
 Download: PDF(187 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Humic acid (HA) was impregnated onto powdered activated carbon to improve its Cu(II) adsorption capability. The optimum pH value for Cu(II) removal was 6. The maximum adsorption capacity of HA-impregnated activated carbon was up to 5.98 mg·g-1, which is five times the capacity of virgin activated carbon. The adsorption processes were rapid and accompanied by changes in pH. In using a linear method, it was determined that the equilibrium experimental data were better represented by the Langmuir isotherm than by the Freundlich isotherm. Surface charges and surface functional groups were studied through zeta potential and FTIR measurements to explain the mechanism behind the humic-acid modification that enhanced the Cu(II) adsorption capacity of activated carbon.

Keywords adsorption      humic acid      activated carbon      heavy metal ions     
Corresponding Author(s): FENG Suping   
Issue Date: 19 May 2014
 Cite this article:   
LIU Hanchao,FENG Suping,ZHANG Nannan, et al. Removal of Cu(II) ions from aqueous solution by activated carbon impregnated with humic acid[J]. Front.Environ.Sci.Eng., 2014, 8(3): 329-336.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0553-9
https://academic.hep.com.cn/fese/EN/Y2014/V8/I3/329
PACPAC–HA1PAC–HA2PAC–HA3PAC–HA4
Concentration of humic acid-impregnated AC /(g·L-1)00.9981.2882.0683.870
Surface area/(m2·g-1)1396.071285.551252.301120.521092.82
Cu(II) uptake rate /%9.1519.0920.7124.5934.95
Tab.1  
Fig.1  Distribution of copper species in an aqueous system as a function of pH
Fig.2  FTIR spectra of PAC and PAC-HA
Fig.3  Zeta-potentials of PAC and PAC-HA as a function of pH
Fig.4  Effect of solution pH on Cu(II) uptakes of materials and desorption ratios of humic acid bound on PAC-HA
Fig.5  Effect of contact time on Cu(II) uptake (a) and pH change during the adsorption (b)
Fig.6  Equilibrium isotherms of Cu(II) by PAC and PAC-HA at pH 6
isotherm modelparameterPACPAC–HA
Freundlich isothermKF0.9285.761
1/n0.20790.0317
R20.94820.6303
Langmuir isothermqm1.325.95
KL2.8693.33
RL0.072-0.4990.00148-0.0060
R20.98120.9997
Tab.2  
matrixTOC/(mg·L-1)UV254/cm-1Ca/(mg·L-1)Mg/(mg·L-1)Fe/(mg·L-1)Cu a)/(mg·L-1)PACPAC–HA
removal /%QPAC/(mg·g-1)removal /%QPAC-AC/(mg·g-1)
pure water0.1000006.0511.41.3847.35.72
tap water2.670.03542.525.50.056.1211.31.3645.95.62
groundwater2.070.022111.417.40.056.1510.61.3044.75.50
river water6.750.16774.819.60.056.0812.01.4644.45.42
pond water12.520.226107.523.50.086.2212.51.5642.85.32
Tab.3  
1 Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333(6169): 134-139
doi: 10.1038/333134a0 pmid: 3285219
2 Lacour S, Bollinger J C, Serpaud B, Chantron P, Arcos R. Removal of heavy metals in industrial wastewaters by ion-exchanger grafted textiles. Analytica Chimica Acta, 2001, 428(1): 121-132
doi: 10.1016/S0003-2670(00)01215-0
3 Vaca Mier M, López Callejas R, Gehr R, Jiménez Cisneros B E, Alvarez P J J. Heavy metal removal with Mexican clinoptilolite. Water Research, 2001, 35(2): 373-378
doi: 10.1016/S0043-1354(00)00270-0 pmid: 11228988
4 Dean J G, Bosqui F L, Lanouette K H. Heavy metals in/from wastewater. Environmental Science & Technology, 1972, 6(6): 512-518
5 Atkinson B W, Bux F, Kasan H C. Waste activated sludge remediation of metal-plating effluents. Water SA, 1998, 24(4): 355-359
6 Park D, Yun Y S, Ahn C K, Park J M. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere, 2007, 66(5): 939-946
doi: 10.1016/j.chemosphere.2006.05.068 pmid: 16837023
7 Aydiner C, Bayramoglu M, Kara S, Keskinler B, Ince O. Nickel removal from waters using surfactant-enhanced hybrid PAC/MF process. I. The influence of system-component variables. Industrial & Engineering Chemistry Research, 2006, 45(11): 3926-3933
8 Matsuura T. Progress in membrane science and technology for seawater desalination-a review. Desalination, 2001, 134(1-3): 47-54
doi: 10.1016/S0011-9164(01)00114-X
9 Üçer A, Uyanik A, Aygun S F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 2006, 47(3): 113-118
doi: 10.1016/j.seppur.2005.06.012
10 Jaramillo J, Gómez-Serrano V, Alvarez P M. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones. Journal of Hazardous Materials, 2009, 161(2-3): 670-676
doi: 10.1016/j.jhazmat.2008.04.009 pmid: 18495336
11 Ahn C K, Park D, Woo S H, Park J M. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. Journal of Hazardous Materials, 2009, 164(2-3): 1130-1136
doi: 10.1016/j.jhazmat.2008.09.036 pmid: 19022570
12 Issabayeva G, Aroua M K, Sulaiman N M N. Removal of lead from aqueous solutions on palm shell activated carbon. Bioresource Technology, 2006, 97(18): 2350-2355
doi: 10.1016/j.biortech.2005.10.023 pmid: 16321520
13 Chen J P, Wu S. Simultaneous adsorption of copper ions and humic acid onto an activated carbon. Journal of Colloid and Interface Science, 2004, 280(2): 334-342
doi: 10.1016/j.jcis.2004.08.029 pmid: 15533405
14 Sparks D L. Environmental Soil Chemistry. San Diego: Academic Press, 1995
15 Wall N A, Choppin G R. Humic acids coagulation: influence of divalent cations. Applied Geochemistry, 2003, 18(10): 1,573-1,582
16 Keirsse H, VanHoof F, Janssens J, Buekens A G. Adsorption of humic substances on activated carbon prepared from locally available waste materials. In: Proceedings of the 5th International Conference Chemistry for Protection of the Environment, Leuven, Belgium, 1985
17 Liu J F, Zhao Z S, Jiang G B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science & Technology, 2008, 42(18): 6949-6954
doi: 10.1021/es800924c pmid: 18853814
18 Yuan W, Zydney A L. Humic acid fouling during ultrafiltration. Environmental Science & Technology, 2000, 34(23): 5043-5050
doi: 10.1021/es0012366
19 Bai R B, Zhang X. Polypyrrole-coated granules for humic acid removal. Journal of Colloid and Interface Science, 2001, 243(1): 52-60
doi: 10.1006/jcis.2001.7843
20 Schmitt D, Saravia F, Frimmel F H, Schuessler W. NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation. Water Research, 2003, 37(15): 3541-3550
doi: 10.1016/S0043-1354(01)00525-5 pmid: 12867320
21 Faur-Brasquet C, Reddad Z, Kadirvelu K, Le Cloirec P. Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models. Applied Surface Science, 2002, 196(1-4): 356-365
doi: 10.1016/S0169-4332(02)00073-9
22 Wu C H, Lin C F, Ma H W, Hsi T Q. Effect of fulvic acid on the sorption of Cu and Pb onto gamma-Al2O3. Water Research, 2003, 37(4): 743-752
doi: 10.1016/S0043-1354(02)00391-3 pmid: 12531256
23 Üçer A, UyanikA, Cay S, Ozkan Y. Immobilisation of tannic acid onto activated carbon to improve Fe(III) adsorption. Separation and Purification Technology, 2005, 44(1): 11-17
doi: 10.1016/j.seppur.2004.11.011
24 Machida M, Aikawa M, Tatsumoto H. Prediction of simultaneous adsorption of Cu(II) and Pb(II) onto activated carbon by conventional Langmuir type equations. Journal of Hazardous Materials, 2005, 120(1-3): 271-275
doi: 10.1016/j.jhazmat.2004.11.029 pmid: 15811691
25 Acar F N, Eren Z. Removal of Cu(II) ions by activated poplar sawdust (Samsun clone) from aqueous solutions. Journal of Hazardous Materials, 2006, 137(2): 909-914
doi: 10.1016/j.jhazmat.2006.03.014 pmid: 16621263
26 Özçimen D, Ersoy-Meriçboyu A. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons. Journal of Hazardous Materials, 2009, 168(2-3): 1118-1125
doi: 10.1016/j.jhazmat.2009.02.148 pmid: 19342167
27 Rangel-Mendez J R, Streat M. Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH. Water Research, 2002, 36(5): 1244-1252
doi: 10.1016/S0043-1354(01)00343-8 pmid: 11902779
28 Webi T W, Chakravorti R K. Pore and solid diffusion models for fixed bed adsorbers. Am. Inst. Chem. Eng. J., 1974, 20(2): 228-238
doi: 10.1002/aic.690200204
29 Senthilkumaar S, Kalaamani P, Porkodi K, Varadarajan P R, Subburaam C V. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresource Technology, 2006, 97(14): 1618-1625
doi: 10.1016/j.biortech.2005.08.001 pmid: 16182523
30 Yen T F. Environmental Chemistry: Chemical Principles for Environmental Processes. New Jersey: Prentice Hall PTR, 1999
31 Hankins N P, Lu N, Hilal N. Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. Separation and Purification Technology, 2006, 51(1): 48-56
doi: 10.1016/j.seppur.2005.12.022
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[4] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[5] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[6] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[7] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[8] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[9] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[10] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[11] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[12] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[13] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[14] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[15] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed