Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (11) : 143    https://doi.org/10.1007/s11783-022-1578-8
RESEARCH ARTICLE
V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics
Juan Liu1, Guanjun Xu1, Xuejun Ruan1, Kejian Li1, Liwu Zhang1,2()
1. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(4742 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● V-shaped substrate was obtained for SERS analysis of microplastics (diameter ≈ 1 μm).

● Enhancement factor of V-shaped substrate can reach 20 in microplastics detection.

● V-shaped nanopore array can bring additional volume enhancement.

● V-shaped substrate was more economic in application compared to Klarite substrate.

Research on the microplastics (MPs) is developing towards smaller size, but corresponding methods for the rapid and accurate detection of microplastics, especially nanoplastics still present challenge. In this work, a novel surface and volume enhanced Raman spectroscopy substrate was developed for the rapid detection of microplastic particles below 5 μm. The gold nanoparticles (NPs) were deposited onto the surface and into the V-shaped nanopores of anodized aluminum oxide (AAO) through magnetron sputtering or ion sputtering, and then AuNPs@V-shaped AAO SERS substrate was obtained and studied for microplastic detection. SERS performance of AuNPs@V-shaped AAO SERS substrate was evaluated through the detection of polystyrene and polymethyl methacrylate microspheres. Results indicated that individual polystyrene sphere with a diameter of 1 μm can be well detected on AuNPs@V-shaped AAO SERS substrate, and the maximum enhancement factor (EF) can reach 20. In addition, microplastics in ambient atmospheric samples were collected and tested to verify the effectiveness of the AuNPs@V-shaped AAO SERS substrate in the real environment. This study provides a rapid, economic and simple method for detecting and identifying microplastics with small size.

Keywords SERS      V-shaped      AAO      Microplastic      Atmospheric aerosol     
Corresponding Author(s): Liwu Zhang   
Issue Date: 15 June 2022
 Cite this article:   
Juan Liu,Guanjun Xu,Xuejun Ruan, et al. V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(11): 143.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1578-8
https://academic.hep.com.cn/fese/EN/Y2022/V16/I11/143
Fig.1  Schematic illustration of the fabrication process of the AuNPs@V-shaped AAO SERS substrate and SERS measurement by Raman system.
Fig.2  Top-view SEM images of bare AAO template (a), AuNPs@V-shaped AAO SERS substrate, which was obtained through ion sputtering (b) and magnetron sputtering (c), respectively, and PS microspheres (diameter = 2 μm) on AuNPs@V-shaped AAO SERS substrate in different magnifications (d, e).
Fig.3  Energy-dispersive X-ray spectroscopy (EDS) map and energy spectrum of AuNPs@V-shaped AAO SERS substrate with microplastic particles. (a) Scanning area; (b) Energy spectrum of AuNPs@V-shaped AAO, which involved C, O, Al, Au corresponding to the peaks in sequence; (c) The EDS map of C, corresponding to the position of the microplastic particles in the scanning area (a); (d) The EDS map of Au, showing an effective and relatively uniform AuNPs depositing result.
Fig.4  (a) Raman spectra of PS microspheres of different sizes on silicon wafer (5 spectral acquisitions with 15 s acquisition time) (Inset: spectra from 600 to 2000 cm?1). (b) Optical microscopy images (bright-field microscopy, in reflection) of 1 μm, 2 μm, 5 μm PS microspheres placed on silicon wafer in a single particle manner. (c, d) Raman spectra of PS microspheres of different sizes detected by AuNPs@V-shaped AAO SERS substrate prepared by ion sputtering and magnetron sputtering, respectively. (e, f) Optical microscopy images of 1 μm, 2 μm, 5 μm PS microspheres placed on AuNPs@V-shaped AAO SERS substrate prepared by magnetron sputtering and ion sputtering, respectively. (g) Box and whisker plot of Enhancement Factors of PS microspheres as a function of size.
Fig.5  (a) Raman spectra of PMMA microspheres of different sizes on silicon wafer (5 spectral accumulations with 15 s acquisition time) (Inset: spectra from 600 to 900 cm?1). (b) Optical microscopy images of 2 μm, 5 μm PMMA microspheres placed on silicon wafer in a single particle manner. (c, d) Raman spectra of PMMA microspheres of different sizes detected by AuNPs@V-shaped AAO SERS substrate prepared by ion sputtering and magnetron sputtering, respectively. (e, f) Optical microscopy images of 2 μm, 5 μm PMMA microspheres placed on AuNPs@V-shaped AAO SERS substrate prepared by magnetron sputtering and ion sputtering, respectively. (g) Box and whisker plot of EFs of PMMA microspheres as a function of size.
Fig.6  (a) Optical, bright-field microscopy image of the particles identified as PS on AuNPs@V-shaped AAO SERS substrate (the size was about 2 μm × 2 μm); (b) Raman spectra of particles identified as PS from ambient atmospheric samples extracted in Shanghai (China) (5 spectral accumulations × 50 s acquisition time).
1 J R Anema , A G Brolo , A Felten , C Bittencourt . (2010). Surface-enhanced Raman scattering from polystyrene on gold clusters. Journal of Raman Spectroscopy, 41( 7): 745– 751
https://doi.org/10.1002/jrs.2504
2 C F Araujo , M M Nolasco , A M P Ribeiro , P J A Ribeiro-Claro . (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142 : 426– 440
https://doi.org/10.1016/j.watres.2018.05.060
3 M Bergmann , V Wirzberger , T Krumpen , C Lorenz , S Primpke , M B Tekman , G Gerdts . (2017). High quantities of microplastic in arctic deep-sea sediments from the HAUSGARTEN observatory. Environmental Science & Technology, 51( 19): 11000– 11010
https://doi.org/10.1021/acs.est.7b03331
4 A I Catarino , V Macchia , W G Sanderson , R C Thompson , T B Henry . (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237 : 675– 684
https://doi.org/10.1016/j.envpol.2018.02.069
5 G Chen , Q Feng , J Wang . (2020). Mini-review of microplastics in the atmosphere and their risks to humans. Science of the Total Environment, 703 : 135504
https://doi.org/10.1016/j.scitotenv.2019.135504
6 V Foulon , F Le Roux , C Lambert , A Huvet , P Soudant , I Paul-Pont . (2016). Colonization of polystyrene microparticles by vibrio crassostreae: Light and electron microscopic investigation. Environmental Science & Technology, 50( 20): 10988– 10996
https://doi.org/10.1021/acs.est.6b02720
7 Y Fu , C Kuppe , V K Valev , H Fu , L Zhang , J Chen . (2017). Surface-enhanced Raman spectroscopy: A facile and rapid method for the chemical component study of individual atmospheric aerosol. Environmental Science & Technology, 51( 11): 6260– 6267
https://doi.org/10.1021/acs.est.6b05910
8 S He , W Xie , S Fang , X Huang , D Zhou , Z Zhang , J Du , C Du , D Wang . (2019). Silver films coated inverted cone-shaped nanopore array anodic aluminum oxide membranes for SERS analysis of trace molecular orientation. Applied Surface Science, 488 : 707– 713
https://doi.org/10.1016/j.apsusc.2019.05.298
9 E J Heller , Y Yang , L Kocia , W Chen , S Fang , M Borunda , E Kaxiras . (2016). Theory of graphene raman scattering. ACS Nano, 10( 2): 2803– 2818
https://doi.org/10.1021/acsnano.5b07676
10 E Hendrickson , E C Minor , K Schreiner . (2018). Microplastic abundance and composition in western lake superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environmental Science & Technology, 52( 4): 1787– 1796
https://doi.org/10.1021/acs.est.7b05829
11 D Huang , J Tao , M Cheng , R Deng , S Chen , L Yin , R Li . (2021). Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. Journal of Hazardous Materials, 407 : 124399
https://doi.org/10.1016/j.jhazmat.2020.124399
12 A A Koelmans , A Bakir , G A Burton , C R Janssen . (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and Model-Supported reinterpretation of empirical studies. Environmental Science & Technology, 50( 7): 3315– 3326
https://doi.org/10.1021/acs.est.5b06069
13 A A Koelmans , N H Mohamed Nor , E Hermsen , M Kooi , S M Mintenig , J De France . (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155 : 410– 422
https://doi.org/10.1016/j.watres.2019.02.054
14 J Langer , de Aberasturi D Jimenez , J Aizpurua , R A Alvarez-Puebla , B Auguié , J J Baumberg , G C Bazan , S E J Bell , A Boisen , A G Brolo . et al.. (2020). Present and future of surface-enhanced Raman scattering. ACS Nano, 14( 1): 28– 117
https://doi.org/10.1021/acsnano.9b04224
15 K L Law , R C Thompson . (2014). Microplastics in the seas. Science, 345( 6193): 144– 145
https://doi.org/10.1126/science.1254065
16 Q T Lê , N H Ly , M K Kim , S H Lim , S J Son , K D Zoh , S W Joo . (2021). Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. Journal of Hazardous Materials, 402 : 123499
https://doi.org/10.1016/j.jhazmat.2020.123499
17 K Liu , T Wu , X Wang , Z Song , C Zong , N Wei , D Li . (2019). Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environmental Science & Technology, 53( 18): 10612– 10619
https://doi.org/10.1021/acs.est.9b03427
18 L Lv , L He , S Jiang , J Chen , C Zhou , J Qu , Y Lu , P Hong , S Sun , C Li . (2020). In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Science of the Total Environment, 728 : 138449
https://doi.org/10.1016/j.scitotenv.2020.138449
19 N H Mohamed Nor , M Kooi , N J Diepens , A A Koelmans . (2021). Lifetime accumulation of microplastic in children and adults. Environmental Science & Technology, 55( 8): 5084– 5096
https://doi.org/10.1021/acs.est.0c07384
20 T Nagaura , F Takeuchi , S Inoue . (2008). Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing. Electrochimica Acta, 53( 5): 2109– 2114
https://doi.org/10.1016/j.electacta.2007.09.016
21 J Parker , D Feldman , M Ashkin . (1967). Raman scattering by silicon and germanium. Physical Review, 155( 3): 712– 714
https://doi.org/10.1103/PhysRev.155.712
22 A Ragusa , A Svelato , C Santacroce , P Catalano , V Notarstefano , O Carnevali , F Papa , M C A Rongioletti , F Baiocco , S Draghi , E D’Amore , D Rinaldo , M Matta , E Giorgini . (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146 : 106274
https://doi.org/10.1016/j.envint.2020.106274
23 M C Rillig , A Lehmann . (2020). Microplastic in terrestrial ecosystems. Science, 368( 6498): 1430– 1431
https://doi.org/10.1126/science.abb5979
24 P Schwabl , S Köppel , P Königshofer , T Bucsics , M Trauner , T Reiberger , B Liebmann . (2019). Detection of various microplastics in human stool: A prospective case series. Annals of Internal Medicine, 7( 171): 453– 457
https://doi.org/10.7326/M19-0618
25 M E Seeley , B Song , R Passie , R C Hale . (2020). Microplastics affect sedimentary microbial communities and nitrogen cycling. Nature Communications, 11( 1): 2372
https://doi.org/10.1038/s41467-020-16235-3
26 G Shi , M Wang , Y Zhu , X Yan , S Pan , A Zhang . (2019). Nanoflower-like Ag/AAO SERS platform with quasi-photonic crystal nanostructure for efficient detection of goat serum. Current Applied Physics, 19( 11): 1276– 1285
https://doi.org/10.1016/j.cap.2019.08.013
27 M B Tekman , C Wekerle , C Lorenz , S Primpke , C Hasemann , G Gerdts , M Bergmann . (2020). Tying up loose ends of microplastic pollution in the arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environmental Science & Technology, 54( 7): 4079– 4090
https://doi.org/10.1021/acs.est.9b06981
28 R C Thompson Y Olsen R P Mitchell A Davis S J Rowland A W John D McGonigle A E Russell ( 2004). Lost at sea: where is all the plastic? Science, 304( 5672): 838
pmid: 15131299" target="_blank">15131299
29 C Wang , J Zhao , B Xing . (2021). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407 : 124357
https://doi.org/10.1016/j.jhazmat.2020.124357
30 L Wang , J Zhang , S Hou , H Sun . (2017). A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography–tandem mass spectrometry. Environmental Science & Technology Letters, 4( 12): 530– 534
https://doi.org/10.1021/acs.estlett.7b00454
31 X Wang , S Huang , S Hu , S Yan , B Ren . (2020). Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nature Reviews Physics, 2( 5): 253– 271
https://doi.org/10.1038/s42254-020-0171-y
32 G Xu , H Cheng , R Jones , Y Feng , K Gong , K Li , X Fang , M A Tahir , V K Valev , L Zhang . (2020). Surface-enhanced Raman spectroscopy facilitates the detection of microplastics < 1 μm in the environment. Environmental Science & Technology, 54( 24): 15594– 15603
https://doi.org/10.1021/acs.est.0c02317
33 Q Zhang , E G Xu , J Li , Q Chen , L Ma , E Y Zeng , H Shi . (2020a). A review of microplastics in table salt, drinking water, and air: Direct human exposure. Environmental Science & Technology, 54( 7): 3740– 3751
https://doi.org/10.1021/acs.est.9b04535
34 Y Zhang , S Pu , X Lv , Y Gao , L Ge . (2020b). Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials, 400 : 123110
https://doi.org/10.1016/j.jhazmat.2020.123110
35 J Zhao , J Lin , X Li , G Zhao , W Zhang . (2015). Silver nanoparticles deposited inverse opal film as a highly active and uniform SERS substrate. Applied Surface Science, 347 : 514– 519
https://doi.org/10.1016/j.apsusc.2015.04.050
36 X Zhu , W Huang , M Fang , Z Liao , Y Wang , L Xu , Q Mu , C Shi , C Lu , H Deng , R Dahlgren , X Shang . (2021). Airborne microplastic concentrations in five megacities of northern and southeast China. Environmental Science & Technology, 55( 19): 12871– 12881
https://doi.org/10.1021/acs.est.1c03618
[1] Weiyi Liu, Ting Pan, Hang Liu, Mengyun Jiang, Tingting Zhang. Adsorption behavior of imidacloprid pesticide on polar microplastics under environmental conditions: critical role of photo-aging[J]. Front. Environ. Sci. Eng., 2023, 17(4): 41-.
[2] Han Qu, Hongting Diao, Jiajun Han, Bin Wang, Gang Yu. Understanding and addressing the environmental risk of microplastics[J]. Front. Environ. Sci. Eng., 2023, 17(1): 12-.
[3] Wenwen Gong, Yu Xing, Lihua Han, Anxiang Lu, Han Qu, Li Xu. Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China[J]. Front. Environ. Sci. Eng., 2022, 16(9): 113-.
[4] Jie Wu, Jian Lu, Jun Wu. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(8): 104-.
[5] Xue Bai, Chang Li, Lingyu Ma, Pei Xin, Fengjie Li, Zhenjia Xu. Quantitative analysis of microplastics in coastal tidal-flat reclamation in Dongtai, China[J]. Front. Environ. Sci. Eng., 2022, 16(8): 107-.
[6] Ying Cai, Jun Wu, Jian Lu, Jianhua Wang, Cui Zhang. Fate of microplastics in a coastal wastewater treatment plant: Microfibers could partially break through the integrated membrane system[J]. Front. Environ. Sci. Eng., 2022, 16(7): 96-.
[7] Jinkai Xue, Seyed Hesam-Aldin Samaei, Jianfei Chen, Ariana Doucet, Kelvin Tsun Wai Ng. What have we known so far about microplastics in drinking water treatment? A timely review[J]. Front. Environ. Sci. Eng., 2022, 16(5): 58-.
[8] Yu Xia, Xuyang Zhang, Miao Zhang, Liming Chen, Xiaotong Tang, Yuhong Sun, Xiang Li. Plastic materials and water sources actively select and shape wastewater plastispheres over time[J]. Front. Environ. Sci. Eng., 2022, 16(11): 145-.
[9] Sen Dong, Peng Gao, Benhang Li, Li Feng, Yongze Liu, Ziwen Du, Liqiu Zhang. Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatment units in municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2022, 16(11): 142-.
[10] Yanhui Dai, Jian Zhao, Chunxiao Sun, Diying Li, Xia Liu, Zhenyu Wang, Tongtao Yue, Baoshan Xing. Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment[J]. Front. Environ. Sci. Eng., 2022, 16(10): 136-.
[11] Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 1-.
[12] Zuyin Chen, Lihua Li, Lichong Hao, Yu Hong, Wencai Wang. Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(1): 2-.
[13] Jian Lu, Jun Wu, Jianhua Wang. Metagenomic analysis on resistance genes in water and microplastics from a mariculture system[J]. Front. Environ. Sci. Eng., 2022, 16(1): 4-.
[14] Xianying Ma, Xinhui Zhou, Mengjie Zhao, Wenzhuo Deng, Yanxiao Cao, Junfeng Wu, Jingcheng Zhou. Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions[J]. Front. Environ. Sci. Eng., 2022, 16(1): 3-.
[15] Neha Badola, Ashish Bahuguna, Yoel Sasson, Jaspal Singh Chauhan. Microplastics removal strategies: A step toward finding the solution[J]. Front. Environ. Sci. Eng., 2022, 16(1): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed