Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (12) : 159    https://doi.org/10.1007/s11783-022-1594-8
RESEARCH ARTICLE
Fluorescence detection of phosphate in an aqueous environment by an aluminum-based metal-organic framework with amido functionalized ligands
Peng Li1,2(), Lingqian Dong1,2, Han Jin3, Jingren Yang1, Yonghui Tu1, Chao Wang1,2, Yiliang He1,2
1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
3. Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(13324 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A novel Al-MOF was successfully synthesized by a facile solvothermal method.

● Al-MOF showed superior performance for phosphate detection.

● High selectivity and anti-interference for detection were demonstrated.

● The high coordination between Al-O and PO43− was the key in fluorescence sensing.

The on-site monitoring of phosphate is important for environmental management. Conventional phosphate detection methods are not appropriate to on-site monitoring owing to the use of complicated detection procedures, and the consequent high cost and maintenance requirements of the detection apparatus. Here, a highly sensitive fluorescence-based method for phosphate detection with a wide detection range was developed based on a luminescent aluminum-based metal-organic framework (Al-MOF). The Al-MOF was prepared by introducing amine functional groups to conventional MIL to enhance phosphate binding, and exhibited excellent fluorescence properties that originated from the ligand-to-metal charge transfer (LMCT). The detection limit was as low as 3.25 μmol/L (0.10 mg/L) and the detection range was as wide as 3–350 μmol/L (0.10–10.85 mg/L). Moreover, Al-MOF displayed specific recognition toward phosphate over most anions and metal cations, even for a high concentration of the co-existent ions. The mechanism of phosphate detection was analyzed through the characterization of the combination of Al-MOF and phosphate, and the results indicated the high affinity between Al-O and phosphate inhibited that the LMCT process and recovered the intrinsic fluorescence of NH2-H2BDC. The recovery of the developed detection method reached a satisfactory range of 85.1%–111.0%, and the feasibility of on-site phosphate detection was verified using a prototype sensor for tap water and lake water samples. It was demonstrated that the prepared Al-MOF is highly promising for on-site detection of phosphate in an aqueous environment.

Keywords Fluorescence      Metal-organic framework      Phosphate      Detection      Al-MOF     
Corresponding Author(s): Peng Li   
Issue Date: 11 July 2022
 Cite this article:   
Peng Li,Lingqian Dong,Han Jin, et al. Fluorescence detection of phosphate in an aqueous environment by an aluminum-based metal-organic framework with amido functionalized ligands[J]. Front. Environ. Sci. Eng., 2022, 16(12): 159.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1594-8
https://academic.hep.com.cn/fese/EN/Y2022/V16/I12/159
Fig.1  (a) XRD patterns of Al-MOF and Al-MOF after PO43– detection; (b) comparison of the FT-IR spectra of NH2-H2BDC, Al-MOF, and Al-MOF after PO43– detection.
Fig.2  (a) and (b) SEM image of Al-MOF; (c)–(e) TEM images of Al-MOF; (f)–(i) element mapping of Al, C, N, and O, respectively.
Fig.3  (a) Full range XPS spectra of Al-MOF and Al-MOF after PO43– detection; (b) XPS spectra of P 2p; (c) XPS spectra of Al 2p; (d) XPS spectra of Q1s; (e) the magnified O 1s XPS spectra of Al-MOF; (f) the magnified O 1s XPS spectra of Al-MOF after PO43– detection.
Materials Detection limit (μmol/L) Detection range (μmol/L) References
Eu-BTB 10 10–100 Xu et al., 2015
{[EuL(H2O)1.35(DMF)0.65]·1.9DMF}n 0.052 0.1-15 Cheng et al., 2018
{Eu2L3 (DMF)}·2DMF 6.62 3–30 Chandra Rao and Mandal, 2018
Eu@BUC-14 0.88 5–150 Zhang et al., 2019
UiO-66-NH2 1.25 5–150 Yang et al., 2015
Zr-UiO-66-N2H3 0.196 0.025–0.25 Das et al., 2019
RhB@UiO-66-NH2 2 80–400 Gao et al., 2018
ZnO QDs + MOFs 0.053 0.5–12 Zhao et al., 2014
Al-MOF 3.25 3–350 This work
Tab.1  Comparison of the phosphate detection capabilities of Al-MOF and other fluorescent materials
Fig.4  (a), (c) and (e) Fluorescence emission spectra of Al-MOF with the concentrations of 20, 100, and 200 mg/L in the presence of different concentrations of PO43– under λex=330 nm at room temperature. (b), (d) and (f) Linear plots of the fluorescence enhancement efficiency of Al-MOF with the concentrations of 20, 100, and 200 mg/L as a function of PO43– concentration.
Fig.5  (a) Comparison of the fluorescence of the Al-MOF (20 mg/L) in the presence of different anions (20 μmol/L); (b) effects of different coexistent anions (1 mmol/L; for SO42– and HCO3, the concentration is 10 mmol/L) on the fluorescence response of Al-MOF (20 mg/L) upon the addition of 20 μmol/L PO43–. F0 and F1 indicate the fluorescence intensity of Al-MOF without and with anions, respectively (λex=330 nm, λem=402 nm).
Fig.6  (a) Comparison of the fluorescence response of the Al-MOF (20 mg/L) towards different metal ions (20 μmol/L); (b) effects of different coexistent metal ions (1 mmol/L) on the fluorescence response of Al-MOF (20 mg/L) upon the addition of 20 μmol/L PO43–. F0 and F1 indicate the fluorescence intensity of Al-MOF without and with anions, respectively (λex=330 nm, λem=402 nm).
Samples Spiked (μmol/L) Measured (μmol/L)(mean ± standard deviation, n = 3) Recovery (%)
Deionized water 14.89 14.77 ± 0.54 99.2 ± 3.6
24.69 23.50 ± 0.02 95.2 ± 0.1
34.40 32.83 ± 1.04 95.4 ± 3.0
44.01 44.45 ± 1.61 101.0 ± 3.7
53.53 55.41 ± 0.14 103.5 ± 0.3
Tap water 18.58 16.49 ± 1.57 88.8 ± 8.4
30.77 26.18 ± 2.04 85.1 ± 6.6
42.81 38.75 ± 2.16 90.5 ± 5.0
54.71 50.95 ± 2.55 93.1 ± 4.7
66.47 61.27 ± 3.03 92.2 ± 4.6
Lake water 16.53 18.35 ± 3.07 111.0 ± 18.6
27.4 27.39 ± 3.88 100.0 ± 14.2
38.15 39.58 ± 5.02 103.7 ± 13.2
48.78 50.24 ± 3.53 103.0 ± 7.2
59.3 63.10 ± 3.49 106.4 ± 5.9
Tab.2  Results for on-site detection of phosphate in water samples
1 P Chandra Rao , S Mandal . (2018). Europium-based metal-organic framework as a dual luminescence sensor for the selective detection of the phosphate anion and Fe3+ ion in aqueous media. Inorganic Chemistry, 57( 19): 11855– 11858
https://doi.org/10.1021/acs.inorgchem.8b02017
2 B Chen , N W Ockwig , A R Millward , D S Contreras , O M Yaghi . (2005). High H2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie (International ed. in English), 44( 30): 4745– 4749
https://doi.org/10.1002/anie.200462787
3 B B Chen , R Sheng Li , M Li Liu , H Yan Zou , H Liu , C Z Huang . (2018). Highly selective detection of phosphate ion based on a single-layered graphene quantum dots-Al3+ strategy. Talanta, 178 : 172– 177
https://doi.org/10.1016/j.talanta.2017.09.007
4 W Chen , P Westerhoff , J A Leenheer , K Booksh . (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37( 24): 5701– 5710
https://doi.org/10.1021/es034354c
5 Y Cheng , H Zhang , B Yang , J Wu , Y Wang , B Ding , J Huo , Y Li . (2018). Highly efficient fluorescence sensing of phosphate by dual-emissive lanthanide MOFs. Dalton Trans, 47( 35): 12273– 12283
https://doi.org/10.1039/C8DT01515E
6 M Colina , P H E Gardiner . (1999). Simultaneous determination of total nitrogen, phosphorus and sulphur by means of microwave digestion and ion chromatography. Journal of Chromatography. A, 847( 1−2): 285– 290
https://doi.org/10.1016/S0021-9673(99)00024-2
7 C Dai , C X Yang , X P Yan . (2015). Ratiometric fluorescent detection of phosphate in aqueous solution based on near infrared fluorescent silver nanoclusters/metal-organic shell composite. Analytical Chemistry, 87( 22): 11455– 11459
https://doi.org/10.1021/acs.analchem.5b03086
8 Das A, Biswas S (2017). A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p-nitrophenol. Sensors and Actuators. B, Chemical, 250: 121−131
9 A Das , S Das , V Trivedi , S Biswas . (2019). A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. Dalton Trans, 48( 4): 1332– 1343
https://doi.org/10.1039/C8DT03964J
10 C Fan , X Lv , M Tian , Q Yu , Y Mao , W Qiu , H Wang , G Liu . (2020). A terbium(III)-functionalized zinc(II)-organic framework for fluorometric determination of phosphate. Mikrochimica Acta, 187( 1): 84
https://doi.org/10.1007/s00604-019-4066-5
11 G Férey . (2008). Hybrid porous solids: Past, present, future. Chemical Society Reviews, 37( 1): 191– 214
https://doi.org/10.1039/B618320B
12 N Gao , J Huang , L Y Wang , J Y Feng , P C Huang , F Y Wu . (2018). Ratiometric fluorescence detection of phosphate in human serum with a metal-organic frameworks-based nanocomposite and its immobilized agarose hydrogels. Applied Surface Science, 459 : 686– 692
https://doi.org/10.1016/j.apsusc.2018.08.092
13 He J, Wang J, Chen Y, Zhang J, Duan D, Wang Y, Yan Z (2014). A dye-sensitized Pt@UiO-66(Zr) metal-organic framework for visible-light photocatalytic hydrogen production. Chemical Communications (Cambridge, England), 50(53): 7063–706624848342
14 P Horcajada , R Gref , T Baati , P K Allan , G Maurin , P Couvreur , G Férey , R E Morris , C Serre . (2012). Metal-organic frameworks in biomedicine. Chemical Reviews, 112( 2): 1232– 1268
https://doi.org/10.1021/cr200256v
15 L Kröckel , H Lehmann , T Wieduwilt , M A Schmidt . (2014). Fluorescence detection for phosphate monitoring using reverse injection analysis. Talanta, 125 : 107– 113
https://doi.org/10.1016/j.talanta.2014.02.072
16 C M Li , Y F Li , J Wang , C Z Huang . (2010). Optical investigations on ATP-induced aggregation of positive-charged gold nanoparticles. Talanta, 81( 4−5): 1339– 1345
https://doi.org/10.1016/j.talanta.2010.02.032
17 Z P Li , Z W Huang , N Xie , X N Gao , Y T Fang , Z G Zhang . (2018). Preparation of Al2O3-coated expanded graphite with enhanced hydrophilicity and oxidation resistance. Ceramics International, 44( 14): 16256– 16264
https://doi.org/10.1016/j.ceramint.2018.06.017
18 R T Liu , L N Chi , X Z Wang , Y Wang , Y M Sui , T T Xie , H Arandiyan . (2019). Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs. Chemical Engineering Journal, 357 : 159– 168
https://doi.org/10.1016/j.cej.2018.09.122
19 Z Z Lu , R Zhang , Y Z Li , Z J Guo , H G Zheng . (2011). Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. Journal of the American Chemical Society, 133( 12): 4172– 4174
https://doi.org/10.1021/ja109437d
20 L Ma , C Abney , W Lin . (2009). Enantioselective catalysis with homochiral metal-organic frameworks. Chemical Society Reviews, 38( 5): 1248– 1256
https://doi.org/10.1039/b807083k
21 C Orellana-Tavra , R J Marshall , E F Baxter , I A Lázaro , A Tao , A K Cheetham , R S Forgan , D Fairen-Jimenez . (2016). Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization. Journal of Materials Chemistry. B, 4( 47): 7697– 7707
https://doi.org/10.1039/C6TB02025A
22 A K Saini , M Srivastava , V Sharma , V Mishra , S M Mobin . (2016). A highly selective, sensitive and reversible fluorescence chemosensor for Zn2+ and its cell viability. Dalton Trans, 45( 9): 3927– 3935
https://doi.org/10.1039/C5DT04945H
23 P Serra-Crespo , E V Ramos-Fernandez , J Gascon , F Kapteijn . (2011). Synthesis and Characterization of an amino functionalized MIL-101(Al): Separation and catalytic properties. Chemistry of Materials, 23( 10): 2565– 2572
https://doi.org/10.1021/cm103644b
24 B B Shi Y M Zhang T B Wei Q Lin H Yao P Zhang X M You ( 2014). A fluorescent and colorimetric chemosensor for dihydrogen phosphate ions based on 2-pyridine-1H-imidazo[4,5-b]phenazine-zinc ensemble. Sensors and Actuators. B, Chemical, 190: 555− 561
25 Y Song , Y Li , Y Liu , X Su , Q Ma . (2015). Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots. Talanta, 144 : 680– 685
https://doi.org/10.1016/j.talanta.2015.07.025
26 Z J Sun , J Z Jiang , Y F Li . (2015). A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system. The Analyst, 140( 24): 8201– 8208
https://doi.org/10.1039/C5AN01673H
27 B Wang , Q Yang , C Guo , Y Sun , L H Xie , J R Li . (2017). Stable Zr(IV)-based metal-organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS Applied Materials & Interfaces, 9( 11): 10286– 10295
https://doi.org/10.1021/acsami.7b00918
28 R Wang , Q Zhang , Y Zhang , H Shi , K T Nguyen , X Zhou . (2019). Unconventional split aptamers cleaved at functionally essential sites preserve biorecognition capability. Analytical Chemistry, 91( 24): 15811– 15817
https://doi.org/10.1021/acs.analchem.9b04115
29 L H Xie , X M Liu , T He , J R Li . (2018). Metal-organic frameworks for the capture of trace aromatic volatile organic compounds. Chem, 4( 8): 1911– 1927
https://doi.org/10.1016/j.chempr.2018.05.017
30 Xu H, Cao C S, Zhao B (2015). A water-stable lanthanide-organic framework as a recyclable luminescent probe for detecting pollutant phosphorus anions. Chemical Communications (Cambridge, England), 51(51): 10280–1028325940110
31 M M Xu , X J Kong , T He , X Q Wu , L H Xie , J R Li . (2018). A stable Zr(IV)-based metal-organic framework constructed from C=C bridged Di-isophthalate ligand for sensitive detection of Cr2O72– in water. Inorganic Chemistry, 57( 22): 14260– 14268
https://doi.org/10.1021/acs.inorgchem.8b02282
32 C X Yang , H B Ren , X P Yan . (2013). Fluorescent metal-organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution. Analytical Chemistry, 85( 15): 7441– 7446
https://doi.org/10.1021/ac401387z
33 J Yang Y Dai X Y Zhu Z Wang Y S Li Q X Zhuang J L Shi J L Gu ( 2015). Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3( 14): 7445− 7452
34 Y Zhang , S Sheng , S Mao , X Wu , Z Li , W Tao , I R Jenkinson . (2019). Highly sensitive and selective fluorescent detection of phosphate in water environment by a functionalized coordination polymer. Water Research, 163 : 114883
https://doi.org/10.1016/j.watres.2019.114883
35 Zhang Z, Zhao Y, Gong Q, Li Z, Li J (2013). MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity. Chemical communications (Cambridge, England), 49(7): 653–66123150882
36 D Zhao X Y Wan H J Song L Y Hao Y Y Su Y (2014) Lv. Metal-organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sensors and Actuators. B, Chemical, 197: 50− 57
37 L Zhu , X H Zhou , H C Shi . (2014a). A potentiometric cobalt-based phosphate sensor based on screen-printing technology. Frontiers of Environmental Science & Engineering, 8( 6): 945– 951
https://doi.org/10.1007/s11783-013-0615-z
38 Zhu X, Gu J, Wang Y, Li B, Li Y, Zhao W, Shi J (2014b). Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chemical Communications (Cambridge, England), 50(63): 8779–878224967656
[1] FSE-22042-OF-LP_suppl_1 Download
[1] Huan Xi, Fanlu Min, Zhanhu Yao, Jianfeng Zhang. Facile fabrication of dolomite-doped biochar/bentonite for effective removal of phosphate from complex wastewaters[J]. Front. Environ. Sci. Eng., 2023, 17(6): 71-.
[2] Jiachuang Shao, Penghui Shao, Mingming Peng, Min Li, Ziwei Yao, Xiuqin Xiong, Caiting Qiu, Yufan Zheng, Liming Yang, Xubiao Luo. A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions[J]. Front. Environ. Sci. Eng., 2023, 17(3): 33-.
[3] Wenping Zhang, Changsheng Guo, Jiapei Lv, Xu Li, Jian Xu. Organophosphate esters in sediment from Taihu Lake, China: Bridging the gap between riverine sources and lake sinks[J]. Front. Environ. Sci. Eng., 2022, 16(3): 30-.
[4] Athiyanam Venkatesan Ramya, Manoj Balachandran. Valorization of agro-industrial fruit peel waste to fluorescent nanocarbon sensor: Ultrasensitive detection of potentially hazardous tropane alkaloid[J]. Front. Environ. Sci. Eng., 2022, 16(3): 27-.
[5] Yicai Huang, Jiayuan Chen, Qiannan Duan, Yunjin Feng, Run Luo, Wenjing Wang, Fenli Liu, Sifan Bi, Jianchao Lee. A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning[J]. Front. Environ. Sci. Eng., 2022, 16(3): 38-.
[6] Shengdong Liu, Enxiang Shang, Jingnan Liu, Yining Wang, Nanthi Bolan, M.B. Kirkham, Yang Li. What have we known so far for fluorescence staining and quantification of microplastics: A tutorial review[J]. Front. Environ. Sci. Eng., 2022, 16(1): 8-.
[7] Zuyin Chen, Lihua Li, Lichong Hao, Yu Hong, Wencai Wang. Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(1): 2-.
[8] Xiao Deng, Yixuan Chen, Yang Yang, Liang Peng, Luo Si, Qingru Zeng. The implications of planting mode on cadmium uptake and remobilization in rice: Field experiments across growth stages[J]. Front. Environ. Sci. Eng., 2021, 15(6): 137-.
[9] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[10] Jinbiao Ma, Manman Du, Can Wang, Xinwu Xie, Hao Wang, Qian Zhang. Advances in airborne microorganisms detection using biosensors: A critical review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 47-.
[11] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[12] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[13] Muhammad Farooq Saleem Khan, Jing Wu, Cheng Cheng, Mona Akbar, Chuanyang Liu, Bo Liu, Jian Shen, Yu Xin. Insight into fluorescence properties of 14 selected toxic single-ring aromatic compounds in water: Experimental and DFT study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 42-.
[14] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[15] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed