Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (2) : 15    https://doi.org/10.1007/s11783-023-1615-2
RESEARCH ARTICLE
Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein
Samal Kaumbekova1, Mehdi Amouei Torkmahalleh1, Naoya Sakaguchi2, Masakazu Umezawa2, Dhawal Shah1()
1. Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, 010000, Kazakhstan
2. Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
 Download: PDF(7863 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● B[a]P, nicotine and phenanthrene molecules altered the secondary structure of Aβ42.

● β-content of the peptide was significantly enhanced in the presence of the PAHs.

● Nicotine made stable cluster with Aβ42 peptide via hydrogen bonds.

● Phenanthrene due to its small size, interfered with the Aβ42 monomer more strongly.

Recent studies have correlated the chronic impact of ambient environmental pollutants like polycyclic aromatic hydrocarbons (PAHs) with the progression of neurodegenerative disorders, either by using statistical data from various cities, or via tracking biomarkers during in-vivo experiments. Among different neurodegenerative disorders, PAHs are known to cause increased risk for Alzheimer’s disease, related to the development of amyloid beta (Aβ) peptide oligomers. However, the complex molecular interactions between peptide monomers and organic pollutants remains obscured. In this work, we performed an atomistic molecular dynamics study via GROMACS to investigate the structure of Aβ42 peptide monomer in the presence of benzo[a]pyrene, nicotine, and phenanthrene. Interestingly the results revealed strong hydrophobic, and hydrogen-bond based interactions between Aβ peptides and these environmental pollutants that resulted in the formation of stable intermolecular clusters. The strong interactions affected the secondary structure of the Aβ42 peptide in the presence of the organic pollutants, with almost 50 % decrease in the α-helix and 2 %–10 % increase in the β-sheets of the peptide. Overall, the undergoing changes in the secondary structure of the peptide monomer in the presence of the pollutants under the study indicates an enhanced formation of Aβ peptide oligomers, and consequent progression of Alzheimer’s disease.

Keywords Polycyclic aromatic hydrocarbons      Nicotine      toxicology      42 peptide      Alzheimer’s disease      Molecular dynamics simulations      Environmental pollution     
Corresponding Author(s): Dhawal Shah   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 05 September 2022
 Cite this article:   
Samal Kaumbekova,Mehdi Amouei Torkmahalleh,Naoya Sakaguchi, et al. Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein[J]. Front. Environ. Sci. Eng., 2023, 17(2): 15.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1615-2
https://academic.hep.com.cn/fese/EN/Y2023/V17/I2/15
System 42 B[a]P nicotine phenanthrene H2O Na+ Cl
42 1 0 0 0 10982 33 31
42 + B[a]P 1 1 0 0 10969 33 31
42 + nicotine 1 0 1 0 10984 33 31
42 + phenanthrene 1 0 0 1 10972 33 31
Tab.1  Number of molecules in the simulated systems of one Aβ42 peptide and one PAH
Fig.1  (A) Formation of clusters of Aβ42 monomer with B[a]P, nicotine and phenanthrene molecules, (B) change of the distances between center of masses of Aβ42 monomer and B[a]P, nicotine and phenanthrene molecules within the simulation time.
Fig.2  Time-evolution of secondary structure of Aβ42 monomer: (A) in the system with no pollutants, (B) in the presence of one B[a]P molecule, (C) in the presence of one nicotine molecule, (D) in the presence of phenanthrene molecule.
System Coil β-Sheet β-Bridge Bend Turn α-Helix 3- and 5-Helixes
42 0.29 0 0 0.14 0.14 0.42 0.01
42 + B[a]P 0.33 0.02 0.04 0.21 0.13 0.21 0.06
42 + nicotine 0.34 0 0 0.19 0.16 0.31 0
42 + phenanthrene 0.28 0.1 0.02 0.15 0.17 0.23 0.05
Tab.2  Secondary structure of Aβ42 peptide monomer in the systems under the study, averaged among last 20 ns of the molecular dynamics run
Fig.3  Representative snapshots of the systems under the study (water molecules and ions are not shown) with indicated Aβ1 of N-terminus and Aβ42 of C-terminus of: (A) Aβ42 monomer in the beginning of the simulations, (B) Aβ42 monomer in the end of 200 ns of the simulation in the absence of environmental pollutants, (C) Aβ42 monomer and B[a]P molecule in the end of molecular dynamics (MD) run, (D) Aβ42 monomer and nicotine molecule in the end of MD run, (E) Aβ42 monomer and phenanthrene molecule in the end of MD run. VMD coloring methods: 1. Secondary structure of peptide: beta sheet = yellow, bridge-beta = tan, alpha helix = purple, 3–10_Helix = blue, bend = cyan, turn = cyan, coil = white. 2. B[a]P molecule – grey, nicotine – blue, phenanthrene – black.
Fig.4  Distances between center of masses of the amino acid residues of Aβ42 monomer and B[a]P, nicotine and phenanthrene molecules averaged within the last 20 ns of the simulations.
Fig.5  Time-evolution of (A) root-mean square deviations, (B) radius of gyration, (C) solvent accessible surface area, (D) intrapeptide H-bonds of Aβ42 peptide monomer in the systems under study within the simulation time.
Fig.6  RMSF of aminoacid residues of Aβ42 peptide monomer (*: averaged among last 20 ns of the simulations that was 180–200 ns of the molecular dynamics run, **: in the range of 150–170 ns of the MD run).
1 M J VAbraham, D Van Der Spoel, E Lindahl, B Hess ( 2019). GROMACS User Manual Version 2019. 6
2 J F Aitken, K M Loomes, B Konarkowska, G J Cooper. (2003). Suppression by polycyclic compounds of the conversion of human amylin into insoluble amyloid. Biochemical Journal, 374( 3): 779– 784
https://doi.org/10.1042/bj20030422 pmid: 12812521
3 M Amouei Torkmahalleh, M Naseri, S Nurzhan, R Gabdrashova, Z Bekezhankyzy, A Gimnkhan, M Malekipirbazari, M Jouzizadeh, M Tabesh, H Farrokhi, et al. ( 2022). Human exposure to aerosol from indoor gas stove cooking and the resulting nervous system responses. Indoor Air, 32( 2): e12983
https://doi.org/10.1111/ina.12983 pmid: 35037300
4 W M Berhanu, U H Hansmann ( 2012). Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One, 7( 7): e41479
https://doi.org/10.1371/journal.pone.0041479 pmid: 22911797
5 L Calderón-Garcidueñas ( 2016). Smoking and cerebral oxidative stress and air pollution: a dreadful equation with particulate matter involved and one more powerful reason not to smoke anything! Journal of Alzheimer’s Disease , 54( 1): 109– 112
https://doi.org/10.3233/JAD-160510 pmid: 27447427
6 S Chakraborty, P Das ( 2017). Emergence of alternative structures in amyloid beta 1-42 monomeric landscape by n-terminal hexapeptide amyloid inhibitors . Scientific Reports, 7( 1): 9941(1:12)
https://doi.org/10.1038/s41598-017-10212-5 pmid: 28855598
7 G F Chen, T H Xu, Y Yan, Y R Zhou, Y Jiang, K Melcher, H E Xu. (2017). Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38( 9): 1205– 1235
https://doi.org/10.1038/aps.2017.28 pmid: 28713158
8 J Cho, J Sohn, J Noh, H Jang, W Kim, S K Cho, H Seo, G Seo, S K Lee, Y Noh , et al. ( 2020). Association between exposure to polycyclic aromatic hydrocarbons and brain cortical thinning: the Environmental Pollution-Induced Neurological EFfects (EPINEF) study. Science of the Total Environment, 737: 140097
https://doi.org/10.1016/j.scitotenv.2020.140097 pmid: 32783831
9 S de Gelder, H Sundh, T N M Pelgrim, J D Rasinger, L van Daal, G Flik, M H G Berntssen, P H M Klaren. (2018). Transepithelial transfer of phenanthrene, but not of benzo[a]pyrene, is inhibited by fatty acids in the proximal intestine of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 204 : 97– 105
https://doi.org/10.1016/j.cbpc.2017.11.006 pmid: 29223736
10 S C Edwards, W Jedrychowski, M Butscher, D Camann, A Kieltyka, E Mroz, E Flak, Z Li, S Wang, V Rauh, F Perera. (2010). Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environmental Health Perspectives, 118( 9): 1326– 1331
https://doi.org/10.1289/ehp.0901070 pmid: 20406721
11 D Gao, M Wu, C Wang, Y Wang, Z Zuo ( 2015). Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish ( Danio rerio ). Aquatic Toxicology (Amsterdam, Netherlands), 167: 200– 208
https://doi.org/10.1016/j.aquatox.2015.08.013 pmid: 26349946
12 S R Gerben, J A Lemkul, A M Brown, D R Bevan. (2014). Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer’s amyloid β-peptide. Journal of Biomolecular Structure and Dynamics, 32( 11): 1817– 1832
https://doi.org/10.1080/07391102.2013.838518 pmid: 24028075
13 O Hahad, J Lelieveld, F Birklein, K Lieb, A Daiber, T Münzel ( 2020). Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. International Journal of Molecular Sciences, 21( 12): 4306
https://doi.org/10.3390/ijms21124306 pmid: 32560306
14 I W Hamley. (2012). The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chemical Reviews, 112( 10): 5147– 5192
https://doi.org/10.1021/cr3000994 pmid: 22813427
15 B Hess, H Bekker, H J C Berendsen, J G E M Fraaije. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18( 12): 1463– 1472
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
16 H J Heusinkveld, T Wahle, A Campbell, R H S Westerink, L Tran, H Johnston, V Stone, F R Cassee, R P F Schins. (2016). Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology, 56 : 94– 106
https://doi.org/10.1016/j.neuro.2016.07.007 pmid: 27448464
17 J A Holme, B C Brinchmann, M Refsnes, M Låg, J Øvrevik ( 2019). Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environmental Health, 18( 1): 74
https://doi.org/10.1186/s12940-019-0514-2 pmid: 31439044
18 W Humphrey, A Dalke, K Schulten ( 1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14( 1): 33– 38, 27–28
https://doi.org/10.1016/0263-7855(96)00018-5 pmid: 8744570
19 P Ielpo, M R Taurino, R Buccolieri, C M Placentino, F Gallone, V Ancona, S Di Sabatino. (2018). Polycyclic aromatic hydrocarbons in a bakery indoor air: trends, dynamics, and dispersion. Environmental Science and Pollution Research International, 25( 29): 28760– 28771
https://doi.org/10.1007/s11356-018-1513-5 pmid: 29484623
20 S Jokar, M Erfani, O Bavi, S Khazaei, M Sharifzadeh, M Hajiramezanali, D Beiki, A Shamloo ( 2020). Design of peptide-based inhibitor agent against amyloid-β aggregation: molecular docking, synthesis and in vitro evaluation . Bioorganic Chemistry, 102: 104050
https://doi.org/10.1016/j.bioorg.2020.104050 pmid: 32663672
21 K P Kepp. (2012). Bioinorganic chemistry of Alzheimer’s disease. Chemical Reviews, 112( 10): 5193– 5239
https://doi.org/10.1021/cr300009x pmid: 22793492
22 N E Klepeis, W C Nelson, W R Ott, J P Robinson, A M Tsang, P Switzer, J V Behar, S C Hern, W H Engelmann. (2001). The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Biomolecular Structure and Dynamics, 11( 3): 231– 252
https://doi.org/10.1038/sj.jea.7500165 pmid: 11477521
23 H S Kwon, M H Ryu, C Carlsten. (2020). Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine, 52( 3): 318– 328
https://doi.org/10.1038/s12276-020-0405-1 pmid: 32203103
24 D Liu, Y Zhao, Y Qi, Y Gao, D Tu, Y Wang, H M Gao, H Zhou ( 2020). Benzo(a)pyrene exposure induced neuronal loss, plaque deposition, and cognitive decline in APP/PS1 mice. Journal of Neuroinflammation, 17( 1): 258
https://doi.org/10.1186/s12974-020-01925-y pmid: 32867800
25 A K Malde, L Zuo, M Breeze, M Stroet, D Poger, P C Nair, C Oostenbrink, A E Mark. (2011). An Automated force field Topology Builder (ATB) and repository: version 1.0. Journal of Chemical Theory and Computation, 7( 12): 4026– 4037
https://doi.org/10.1021/ct200196m pmid: 26598349
26 E M Mandelkow, E Mandelkow ( 2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harbor Perspectives in Medicine, 2( 7): a006247
https://doi.org/10.1101/cshperspect.a006247 pmid: 22762014
27 B Murray, B Sharma, G Belfort. (2017). N-terminal hypothesis for Alzheimer’s disease. ACS Chemical Neuroscience, 8( 3): 432– 434
https://doi.org/10.1021/acschemneuro.7b00037 pmid: 28186729
28 Z Naufal, L Zhiwen, L Zhu, G D Zhou, T McDonald, L Y He, L Mitchell, A Ren, H Zhu, R Finnell, K C Donnelly. (2010). Biomarkers of exposure to combustion by-products in a human population in Shanxi, China. Journal of Exposure Science & Environmental Epidemiology, 20( 4): 310– 319
https://doi.org/10.1038/jes.2009.19 pmid: 19277067
29 Q Niu, H Zhang, X Li, M Li. (2010). Benzo[a]pyrene-induced neurobehavioral function and neurotransmitter alterations in coke oven workers. Occupational and Environmental Medicine, 67( 7): 444– 448
https://doi.org/10.1136/oem.2009.047969 pmid: 19854696
30 G Oberdörster, Z Sharp, V Atudorei, A Elder, R Gelein, W Kreyling, C Cox. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16( 6–7): 437– 445
https://doi.org/10.1080/08958370490439597 pmid: 15204759
31 S W See, R Balasubramanian. (2008). Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment, 42( 39): 8852– 8862
https://doi.org/10.1016/j.atmosenv.2008.09.011
32 K Shang , Z Chen, Z Liu, L Song, W Zheng, B Yang, S Liu, L Yin ( 2021). Haze prediction model using deep recurrent neural network. Atmosphere (Basel), 12( 12): 1625
https://doi.org/10.3390/atmos12121625
33 C Sharma, S R Kim ( 2021). Linking oxidative stress and proteinopathy in Alzheimer’s disease. Antioxidants(Basel), 10( 8): 1231
https://doi.org/10.3390/antiox10081231 pmid: 34439479
34 B Strandberg, C Österman, H Koca Akdeva, J Moldanová, S Langer ( 2020). The use of polyurethane foam (PUF) passive air samplers in exposure studies to PAHs in Swedish seafarers. Polycyclic Aromatic Compounds, 42( 2): 448– 459
35 M Tolar, S Abushakra, M Sabbagh. (2020). The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers Dement, 16( 11): 1553– 1560
https://doi.org/10.1016/j.jalz.2019.09.075 pmid: 31706733
36 S Tomaselli, V Esposito, P Vangone, N A van Nuland, A M J J Bonvin, R Guerrini, T Tancredi, P A Temussi, D Picone. (2006). The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem, 7( 2): 257– 267
https://doi.org/10.1002/cbic.200500223 pmid: 16444756
37 R Verma, K S Patel, S K Verma. (2016). Indoor polycyclic aromatic hydrocarbon concentration in Central India. Polycyclic Aromatic Compounds, 36( 2): 152– 168
https://doi.org/10.1080/10406638.2014.957407
38 C Wallin, S B Sholts, N Österlund, J Luo, J Jarvet, P M Roos, L Ilag, A Gräslund, S K T S Wärmländer ( 2017). Alzheimer’s disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Scientific Reports, 7( 1): 14423 (1-14)
https://doi.org/10.1038/s41598-017-13759-5 pmid: 29089568
39 L M Young, A E Ashcroft, S E Radford. (2017). Small molecule probes of protein aggregation. Current Opinion in Chemical Biology, 39 : 90– 99
https://doi.org/10.1016/j.cbpa.2017.06.008 pmid: 28649012
40 Z Zhang, J Tian, W Huang, L Yin, W Zheng, S Liu ( 2021). A haze prediction method based on one-dimensional convolutional neural network. Atmosphere (Basel), 12( 10): 1327
https://doi.org/10.3390/atmos12101327
[1] FSE-22057-OF-KS_suppl_1 Download
[1] Qianqian Gao, Xiaojing Zhu, Qihuang Wang, Kaili Zhou, Xiaohui Lu, Zimeng Wang, Xiaofei Wang. Enrichment and transfer of polycyclic aromatic hydrocarbons (PAHs) through dust aerosol generation from soil to the air[J]. Front. Environ. Sci. Eng., 2023, 17(1): 10-.
[2] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[3] Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma. Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(4): 73-.
[4] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[5] Wei-Min Wu,Jun Yang,Craig S. Criddle. Microplastics pollution and reduction strategies[J]. Front. Environ. Sci. Eng., 2017, 11(1): 6-.
[6] E. Rohan Jayaratne, Buddhi Pushpawela, Lidia Morawska. Temporal evolution of charged and neutral nanoparticle concentrations during atmospheric new particle formation events and its implications for ion-induced nucleation[J]. Front. Environ. Sci. Eng., 2016, 10(5): 13-.
[7] Qiuying CHEN,Jingling LIU,Feng LIU,Binbin WANG,Zhiguo CAO. Biologic risk and source diagnose of 16 PAHs from Haihe River Basin, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 46-52.
[8] Wenyan LIANG,Lili SUI,Yuan ZHAO,Feizhen LI,Lijun LIU,Di XIE. Ecotoxicity assessment of soil irrigated with domestic wastewater using different extractions[J]. Front. Environ. Sci. Eng., 2015, 9(4): 685-693.
[9] XIA Tianxiang,JIANG Lin,JIA Xiaoyang,ZHONG Maosheng,LIANG Jing. Application of probabilistic risk assessment at a coking plant site contaminated by Polycyclic Aromatic Hydrocarbons[J]. Front.Environ.Sci.Eng., 2014, 8(3): 441-450.
[10] Kai LIU, Fengkui DUAN, Kebin HE, Yongliang MA, Yuan CHENG. Investigation on sampling artifacts of particle associated PAHs using ozone denuder systems[J]. Front Envir Sci Eng, 2014, 8(2): 284-292.
[11] Bin YAN, Cuihong DU, Meilan XU, Wenchao LIAO. Decolorization of azo dyes by a salt-tolerant Staphylococcus cohnii strain isolated from textile wastewater[J]. Front Envir Sci Eng, 2012, 6(6): 806-814.
[12] Osamu SHITAMICHI, Taiki MATSUI, Yamei HUI, Weiwei CHEN, Totaro IMASAKA. Determination of persistent organic pollutants by gas chromatography/laser multiphoton ionization/time-of-flight mass spectrometry[J]. Front Envir Sci Eng, 2012, 6(1): 26-31.
[13] Jinbao WU, Zongqiang GONG, Liyan ZHENG, Yanli YI, Jinghua JIN, Xiaojun LI, Peijun LI. Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel[J]. Front Envir Sci Eng Chin, 2010, 4(4): 387-394.
[14] Zhenyi ZHANG, Chihiro INOUE, Guanghe LI, . Impact of solids on biphasic biodegradation of phenanthrene in the presence of hydroxypropyl- &#946; -cyclodextrin (HPCD)[J]. Front.Environ.Sci.Eng., 2010, 4(3): 329-333.
[15] XIA Xinghui, HU Lijuan, MENG Lihong. Adsorption and partition of benzo(a)pyrene on sediments with different particle sizes from the Yellow River[J]. Front.Environ.Sci.Eng., 2007, 1(2): 172-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed