Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (8) : 96    https://doi.org/10.1007/s11783-023-1696-y
RESEARCH ARTICLE
NiB2O4 (B = Mn or Co) catalysts for NH3-SCR of NOx at low-temperature in microwave field
Liyun Song1(), Shilin Deng1, Chunyi Bian1, Cui Liu1, Zongcheng Zhan2, Shuangye Li1, Jian Li1, Xing Fan1, Hong He1()
1. Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
2. Qingdao Huashijie Environment Technology Co., Ltd., Qingdao 266510, China
 Download: PDF(5065 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Microwave-assisted catalytic NH3-SCR reaction over spinel oxides is carried out.

● SCR reaction temperature is tremendously lowered in microwave field.

● NO conversion of NiMn2O4 is highly up to 90.6% at 70°C under microwave heating.

Microwave-assisted selective catalytic reduction of nitrogen oxides (NOx) was investigated over Ni-based metal oxides. The NiMn2O4 and NiCo2O4 catalysts were synthesized by the co-precipitation method and their activities were evaluated as potential candidate catalysts for low-temperature NH3-SCR in a microwave field. The physicochemical properties and structures of the catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), N2-physisorption, NO adsorption-desorption in the microwave field, H2-temperature programmed reduction (H2-TPR) and NH3-temperature programmed desorption (NH3-TPD). The results verified that microwave radiation reduced the reaction temperature required for NH3-SCR compared to conventional heating, which needed less energy. For the NiMn2O4 catalyst, the catalytic efficiency exceeded 90% at 70 °C and reached 96.8% at 110 °C in the microwave field. Meanwhile, the NiMn2O4 also exhibited excellent low-temperature NH3-SCR reaction performance under conventional heating conditions, which is due to the high BET specific surface area, more suitable redox property, good NO adsorption-desorption in the microwave field and rich acidic sites.

Keywords Microwave field      Spinel oxides      NOx      Selective catalytic reduction     
Corresponding Author(s): Liyun Song,Hong He   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 01 March 2023
 Cite this article:   
Liyun Song,Shilin Deng,Chunyi Bian, et al. NiB2O4 (B = Mn or Co) catalysts for NH3-SCR of NOx at low-temperature in microwave field[J]. Front. Environ. Sci. Eng., 2023, 17(8): 96.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1696-y
https://academic.hep.com.cn/fese/EN/Y2023/V17/I8/96
Fig.1  XRD patterns of NiMn2O4 and NiCo2O4 catalysts.
Fig.2  SEM images of NiMn2O4 (a, b) and NiCo2O4 (c, d) catalysts.
SampleABET (m2/g)Pore volume (cm3/g)Pore size (nm)
NiMn2O485.20.3211.3
NiCo2O453.90.3718.2
Tab.1  BET specific surface area, pore volume and pore size of the catalysts
Fig.3  (a) N2 adsorption-desorption isotherms and (b) BJH pore size distribution of the NiMn2O4 and NiCo2O4 catalysts.
CatalystsReduction temperature (°C)H2 consumption (mmol/g)
TαTβTγαβγα + β + γ
NiCo2O4213325/2.7113.09/15.80
NiMn2O42073144280.816.042.819.66
Tab.2  Reduction peak temperature and H2 consumption of NiCo2O4 and NiMn2O4 catalysts
Fig.4  H2-TPR profiles of the NiMn2O4 and NiCo2O4 catalysts.
Fig.5  The NO adsorption-desorption profiles of the (a) NiMn2O4 and (b) NiCo2O4 samples under microwave irradiation.
Fig.6  Heating behavior of the NiMn2O4 and NiCo2O4 catalyst under microwave heating without flowing air.
Fig.7  (a) NH3-SCR activity of the catalyst under microwave heating (MH) and conventional heating (CH); NH3-SCR activity of the (b) NiMn2O4 and (c) NiCo2O4 catalysts under microwave heating.
Fig.8  The stability test of NiMn2O4 catalyst (a) under conventional heating and (b) in a microwave field; SO2 & H2O resistance test of NiMn2O4 catalyst (c) by conventional heating and (d) in a microwave field.
CatalystsDesorption peak temperature (°C)Acid amount (a.u.)
NiCo2O4961300
NiMn2O4891983
Tab.3  Quantitative analysis of NH3-TPD of NiCo2O4 and NiMn2O4 catalysts
Fig.9  NH3-TPD profiles of the NiMn2O4 and NiCo2O4 catalysts.
1 F M Auxilia , S Ishihara , S Mandal , T Tanabe , G Saravanan , G V Ramesh , N Umezawa , T Hara , Y Xu , S Hishita . et al.. (2014). Low-temperature remediation of NO catalyzed by interleaved CuO nanoplates. Advanced Materials, 26(26): 4481–4485
https://doi.org/10.1002/adma.201306055
2 J Chen , S Guo , M Omran , L Gao , H Zheng , G Chen . (2022). Microwave-assisted preparation of nanocluster rutile TiO2 from titanium slag by NaOH-KOH mixture activation. Advanced Powder Technology, 33(5): 103549
https://doi.org/10.1016/j.apt.2022.103549
3 A Díaz-Ortiz , P Prieto , La Hoz A De . (2019). A critical overview on the effect of microwave irradiation in organic synthesis. Chemical Record (New York, N.Y.), 19(1): 85–97
https://doi.org/10.1002/tcr.201800059
4 C Fang , D Zhang , S Cai , L Zhang , L Huang , H Li , P Maitarad , L Shi , R Gao , J Zhang . (2013). Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale, 5(19): 9199–9207
https://doi.org/10.1039/c3nr02631k
5 F Gao , X Tang , H Yi , S Zhao , W Zhu , Y Shi . (2020). Mn2NiO4 spinel catalyst for high-efficiency selective catalytic reduction of nitrogen oxides with good resistance to H2O and SO2 at low temperature. Journal of Environmental Sciences (China), 89: 145–155
https://doi.org/10.1016/j.jes.2019.10.010
6 X Gao , X Wu , J Qiu . (2018). High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers-carbon nanotubes and Fe3O4 nanoparticles. Advanced Electronic Materials, 4(5): 1700565
https://doi.org/10.1002/aelm.201700565
7 S Hamzehlouia , J Shabanian , M Latifi , J Chaouki . (2018). Effect of microwave heating on the performance of catalytic oxidation of n-butane in a gas-solid fluidized bed reactor. Chemical Engineering Science, 192: 1177–1188
https://doi.org/10.1016/j.ces.2018.08.054
8 L Han , S Cai , M Gao , J Y Hasegawa , P Wang , J Zhang , L Shi , D Zhang . (2019). Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chemical Reviews, 119(19): 10916–10976
https://doi.org/10.1021/acs.chemrev.9b00202
9 Y Han , J Mu , X Li , J Gao , S Fan , F Tan , Q Zhao . (2018). Triple-shelled NiMn2O4 hollow spheres as an efficient catalyst for low-temperature selective catalytic reduction of NOx with NH3. Chemical Communications (Cambridge), 54(70): 9797–9800
https://doi.org/10.1039/C8CC03625J
10 T Y Huang , G L Huang , C Y Zhang , B W Zhuang , B X Liu , L Y Su , J Y Ye , M Xu , M Kuang , X Y Xie . (2020). Supramolecular photothermal nanomedicine mediated distant tumor inhibition via PD-1 and TIM-3 blockage. Frontiers in Chemistry, 8: 1
https://doi.org/10.3389/fchem.2020.00001
11 M N Khan , L Han , P Wang , J He , B Yang , T Yan , L Shi , D Zhang . (2020). SO2-tolerant NOx reduction over ceria-based catalysts: shielding effects of hollandite Mn-Ti oxides. Chemical Engineering Journal, 397: 125535
https://doi.org/10.1016/j.cej.2020.125535
12 H J Kitchen , S R Vallance , J L Kennedy , N Tapia-Ruiz , L Carassiti , A Harrison , A G Whittaker , T D Drysdale , S W Kingman , D H Gregory . (2014). Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. Chemical Reviews, 114(2): 1170–1206
https://doi.org/10.1021/cr4002353
13 D Lan , M Qin , R Yang , S Chen , H Wu , Y Fan , Q Fu , F Zhang . (2019). Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. Journal of Colloid and Interface Science, 533: 481–491
https://doi.org/10.1016/j.jcis.2018.08.108
14 H Li , C Yang , S Zhang , A Zhang , Z Sun , X Zhang , L Jin , Z Song . (2022). Indium modified MnOx for high-efficient NH3-SCR De-NOx: promotional role of indium and its catalytic performance. Journal of Environmental Chemical Engineering, 10(3): 107462
https://doi.org/10.1016/j.jece.2022.107462
15 H Liu , J Yang , X Qiao , Y Jin , B Fan . (2020). Microwave plasma-assisted catalytic reduction of NO by active coke over transition-metal oxides. Energy & Fuels, 34(4): 4384–4392
https://doi.org/10.1021/acs.energyfuels.0c00189
16 J Liu , H Liang , Y Zhang , G Wu , H Wu . (2019). Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Composites. Part B, Engineering, 176: 107240
https://doi.org/10.1016/j.compositesb.2019.107240
17 J Liu , X Wu , B Hou , Y Du , L Liu , B Yang . (2021). NiMn2O4 sphere catalyst for the selective catalytic reduction of NO by NH3: insight into the enhanced activity via solvothermal method. Journal of Environmental Chemical Engineering, 9(2): 105152
https://doi.org/10.1016/j.jece.2021.105152
18 Á Martín , A Navarrete . (2018). Microwave-assisted process intensification techniques. Current Opinion in Green and Sustainable Chemistry, 11: 70–75
https://doi.org/10.1016/j.cogsc.2018.04.019
19 K A Michalow-Mauke , Y Lu , K Kowalski , T Graule , M Nachtegaal , O Kröcher , D Ferri . (2015). Flame-made WO3/CeOx-TiO2 catalysts for selective catalytic reduction of NOx by NH3. ACS Catalysis, 5(10): 5657–5672
https://doi.org/10.1021/acscatal.5b01580
20 P D Muley , Y Wang , J Hu , D Shekhawat . (2021). Microwave-assisted heterogeneous catalysis. Catalysis, 1–37
21 L Sha , P Gao , T Wu , Y Chen . (2017). Chemical Ni-C bonding in ni-carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Applied Materials & Interfaces, 9(46): 40412–40419
https://doi.org/10.1021/acsami.7b07136
22 W Tan , S Xie , W Shan , Z Lian , L Xie , A Liu , F Gao , L Dong , H He , F Liu . (2022). CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: a microstructure analysis and reaction mechanistic study. Frontiers of Environmental Science & Engineering, 16(5): 60
https://doi.org/10.1007/s11783-022-1539-2
23 W Uddin , S U Rehman , M A Aslam , S U Rehman , M Wu , M Zhu . (2020). Enhanced microwave absorption from the magnetic-dielectric interface: a hybrid rGO@Ni-doped-MoS2. Materials Research Bulletin, 130: 110943
https://doi.org/10.1016/j.materresbull.2020.110943
24 Y Wan , J Tian , G Qian , Z Liu , W Li , J Dan , B Dai , F Yu . (2021). Ultralow specific surface area vermiculite supporting Mn-Ce-Fe mixed oxides as “curling catalysts” for selective catalytic reduction of NO with NH3. Green Chemical Engineering, 2(3): 284–293
https://doi.org/10.1016/j.gce.2021.03.002
25 Y Wan, W Zhao, Y Tang, L Li, H Wang, Y Cui, J Gu, Y Li, J Shi (2014). Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Applied Catalysis B: Environmental, 148–149: 114–122
https://doi.org/10.1016/j.apcatb.2013.10.049
26 H Wang , F Meng , F Huang , C Jing , Y Li , W Wei , Z Zhou . (2019). Interface modulating CNTs@PANi Hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Applied Materials & Interfaces, 11(12): 12142–12153
https://doi.org/10.1021/acsami.9b01122
27 X Wang, W Wen, J Mi, X Li, R Wang (2015). The ordered mesoporous transition metal oxides for selective catalytic reduction of NOx at low temperature. Applied Catalysis B: Environmental, 176–177: 454–463
https://doi.org/10.1016/j.apcatb.2015.04.038
28 Z Wu , B Jiang , Y Liu . (2008). Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 79(4): 347–355
https://doi.org/10.1016/j.apcatb.2007.09.039
29 L Xu , C Wang , H Chang , Q Wu , T Zhang , J Li . (2018). New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR. Environmental Science & Technology, 52(12): 7064–7071
https://doi.org/10.1021/acs.est.8b01990
30 D Zhang , X Liu , C Li , M Zhang , Y Zhang , X Zhang . (2019). Structuring micro/nanoscale hybrid Fe@SiC flakes for tunable microwave absorption properties. Materials Research Bulletin, 118: 110487
https://doi.org/10.1016/j.materresbull.2019.05.012
31 J Zhao , Y Wang , Y Li , X Yue , C Wang . (2016). Phase-dependent enhancement for CO2 photocatalytic reduction over CeO2/TiO2 catalysts. Catalysis Science & Technology, 6(22): 7967–7975
https://doi.org/10.1039/C6CY01365A
32 X Zhang , Y Xuan , B Wang , C Gao , S Niu , G Zhao , D Wang , J Li , C Lu , J C Crittenden . (2021). Precise regulation of acid pretreatment for red mud SCR catalyst: targeting on optimizing the acidity and reducibility. Frontiers of Environmental Science & Engineering, 16(7): 88
[1] FSE-23005-OF-SLY_suppl_1 Download
[1] Xiang Zhang, Yue Xuan, Bin Wang, Chuan Gao, Shengli Niu, Gaiju Zhao, Dong Wang, Junhua Li, Chunmei Lu, John C. Crittenden. Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility[J]. Front. Environ. Sci. Eng., 2022, 16(7): 88-.
[2] Wei Tan, Shaohua Xie, Wenpo Shan, Zhihua Lian, Lijuan Xie, Annai Liu, Fei Gao, Lin Dong, Hong He, Fudong Liu. CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study[J]. Front. Environ. Sci. Eng., 2022, 16(5): 60-.
[3] Yang Yang, Xiuzhen Zheng, Wei Ren, Jiafang Liu, Xianliang Fu, Sugang Meng, Shifu Chen, Chun Cai. Recent advances in special morphologic photocatalysts for NOx removal[J]. Front. Environ. Sci. Eng., 2022, 16(11): 137-.
[4] Xiaoqiang Wang, Yanye Zhu, Yue Liu, Xiaole Weng, Zhongbiao Wu. Tailoring the simultaneous abatement of methanol and NOx on Sb-Ce-Zr catalysts via copper modification[J]. Front. Environ. Sci. Eng., 2022, 16(10): 130-.
[5] Shaoyi Xu, Xiaolong Wu, Huijie Lu. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 133-.
[6] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[7] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[8] Chen Wang, Jun Wang, Jianqiang Wang, Meiqing Shen. Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(2): 30-.
[9] Pol Masclans Abelló, Vicente Medina Iglesias, M. Antonia de los Santos López, Jesús Álvarez-Flórez. Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 4-.
[10] Dian Ding, Jia Xing, Shuxiao Wang, Xing Chang, Jiming Hao. Impacts of emissions and meteorological changes on China’s ozone pollution in the warm seasons of 2013 and 2017[J]. Front. Environ. Sci. Eng., 2019, 13(5): 76-.
[11] Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process[J]. Front. Environ. Sci. Eng., 2017, 11(6): 11-.
[12] Quanming Liang, Jian Li, Hong He, Wenjun Liang, Tiejun Zhang, Xing Fan. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Front. Environ. Sci. Eng., 2017, 11(4): 4-.
[13] Weiman Li, Haidi Liu, Yunfa Chen. Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst[J]. Front. Environ. Sci. Eng., 2017, 11(2): 6-.
[14] Junhua LI,Yue PENG,Huazhen CHANG,Xiang LI,John C. CRITTENDEN,Jiming HAO. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front. Environ. Sci. Eng., 2016, 10(3): 413-427.
[15] Boxiong SHEN, Lidan DENG, Jianhong CHEN. Effect of K and Ca on catalytic activity of Mn-CeOx/Ti-PILC[J]. Front Envir Sci Eng, 2013, 7(4): 512-517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed