Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (8) : 100    https://doi.org/10.1007/s11783-023-1700-6
REVIEW ARTICLE
Mechanism and characterization of microplastic aging process: A review
Qinwei Lu1, Yi Zhou1,2, Qian Sui1,2, Yanbo Zhou1,2()
1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(4440 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Methods for estimating the aging of environmental micro-plastics were highlighted.

● Aging pathways & characterization methods of microplastics were related and reviewed.

● Possible approaches to reduce the contamination of microplastics were proposed.

● The prospect and deficiency of degradable plastics were analyzed.

With the increasing production of petroleum-based plastics, the problem of environmental pollution caused by plastics has aroused widespread concern. Microplastics, which are formed by the fragmentation of macro plastics, are bio-accumulate easily due to their small size and slow degradation under natural conditions. The aging of plastics is an inevitable process for their degradation and enhancement of adsorption performance toward pollutants due to a series of changes in their physiochemical properties, which significantly increase the toxicity and harm of plastics. Therefore, studies should focus on the aging process of microplastics through reasonable characterization methods to promote the aging process and prevent white pollution. This review summarizes the latest progress in natural aging process and characterization methods to determine the natural aging mechanism of microplastics. In addition, recent advances in the artificial aging of microplastic pollutants are reviewed. The degradation status and by-products of biodegradable plastics in the natural environment and whether they can truly solve the plastic pollution problem have been discussed. Findings from the literature pointed out that the aging process of microplastics lacks professional and exclusive characterization methods, which include qualitative and quantitative analyses. To lessen the toxicity of microplastics in the environment, future research directions have been suggested based on existing problems in the current research. This review could provide a systematic reference for in-depth exploration of the aging mechanism and behavior of microplastics in natural and artificial systems.

Keywords Microplastics      Aging      Degradation      Characterization      Mechanism     
Corresponding Author(s): Yanbo Zhou   
Issue Date: 14 March 2023
 Cite this article:   
Qinwei Lu,Yi Zhou,Qian Sui, et al. Mechanism and characterization of microplastic aging process: A review[J]. Front. Environ. Sci. Eng., 2023, 17(8): 100.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1700-6
https://academic.hep.com.cn/fese/EN/Y2023/V17/I8/100
Fig.1  Publication on microplastics in recent five years. (a) Relationship between publication and year; (b) Research directions of microplastics.
Fig.2  Property changes in microplastics after degradation.
Fig.3  Schematic showing the general process of plastic degradation.
Fig.4  Degradation of polyethylene (a), polypropylene (b), polyvinyl chloride (c), polystyrene (d), and PE terephthalate (e).
Plastic typesPhotosensitive functional groupPhotoaging mechanismPhotoaging degradation timeReference
Polyethylene (PE)Impurities or defectsNorrish Type Iand II reactionsAbout 100 yearsFairbrother et al. (2019)
Polypropylene (PP)Impurities or defectsFree radical mediated chain breaking20–30 yearsSu et al. (2019)
Polyvinyl chloride (PVC)Double bond produced by DechlorinationSelf-produced H2O2 by double bondPoor photothermal stabilityWang et al. (2020a)
Polystyrene (PS)benzene ringTriplet state of benzene ringHundreds or even decadesKumar et al. (2020b)
Polyethylene terephthalate (PET)Benzene ring, -CH2 near Ester bondTriplet state of benzene ring, self-produced H2O2 by -CH2More than 500 yearsWong et al. (2020)
Polylactic acid (PLA)Carbonyl produces Conjugated structureSelf-produced H2O2 by carbonylSeveral week, or several years if completely degradationBelbachir et al. (2010)
Tab.1  Photosensitive groups and photoaging time of different plastics
Fig.5  Relationship between aging path and morphology of microplastics.
Fig.6  Characterization of microplastics.
Fig.7  Biodegradation steps of microplastics.
Types of microplasticsAging processAdditiveReleased concentrationReference
PolyethyleneSolar radiationLead chromate5.2 ± 0.6 μg/g Cr11.9 ± 1.4 μg/g PbLuo et al. (2020a)
PolyethyleneThermochemical decompositionPigment red0.19 ± 0.02 g/gLuo et al. (2020b)
PolyethyleneAdvanced oxidationPigment red15.0 mg/gLuo et al. (2021)
PolypropylenePhotochemical and weatheringIron red pigment0.99 ± 0.42 mg/gLiu et al. (2021a)
Polyvinyl chlorideSolar radiationPhthalate ester0.90 ± 0.44 mg/gYan et al. (2021)
Polyvinyl chlorideSeawater immersionDimethyl phthalate and diethyl phthalate9.5 ± 1.4 and 68.9 ± 10.3 ng/gPaluselli et al. (2019)
PolystyreneSolar radiationVolatile organic compounds (benzene)21 μg/gWu et al. (2022)
Polyethylene terephthalateSoakPhthalate esters93.9 ± 91.8 ng/gCao et al. (2022)
Polycarbonate (PC)UV radiationBisphenol A14.68 μg/gSun et al. (2021a)
Acrylonitrile butadiene styreneThermochemical decompositionBrominated flame retardant1922.8?μg/gZhan et al. (2019)
Tab.2  Release of additives in the aging process of microplastics
Types of microplasticsAging processAging cycleReference
Polylactic acidHydrolysisQuality loss of 5.69% in 150 daysTosakul et al. (2022)
Polylactic acidBiological corrosive medium9.81 × 108 day?1Li et al. (2017)
Polylactic acidEnzymatic degradation120 minLee and Song (2011)
Butanediol succinate cofuran dicarboxylic acidHydrolysisQuality loss 1%–2% after 22 weeksPeng et al. (2017)
Poly(3-hydroxybutyrate)HydrolysisQuality loss 0.012% after 30 daysPolyák et al. (2017)
poly(salicylic glycolide)Exposure to seawaterComplete degradation within 60 daysKim et al. (2020)
VPVA-HA-Fe complexesPlaced in soilComplete degradation in 108 daysLi et al. (2021b)
Tab.3  Natural degradation data of degradable plastics
1 B Abaroa-Pérez , S Ortiz-Montosa , J J Hernández-Brito , D Vega-Moreno . (2022). Yellowing, weathering and degradation of marine pellets and their influence on the adsorption of chemical pollutants. Polymers, 14(7): 1305
https://doi.org/10.3390/polym14071305
2 C Akarsu , O Madenli , E U Deveci . (2021). Characterization of littered face masks in the southeastern part of Turkey. Environmental Science and Pollution Research International, 28(34): 47517–47527
https://doi.org/10.1007/s11356-021-14099-8
3 F Akhatova , I Ishmukhametov , G Fakhrullina , R Fakhrullin . (2022). Nanomechanical atomic force microscopy to probe cellular microplastics uptake and distribution. International Journal of Molecular Sciences, 23(2): 806
https://doi.org/10.3390/ijms23020806
4 A Amobonye , P Bhagwat , S Singh , S Pillai . (2021). Plastic biodegradation: frontline microbes and their enzymes. Science of the Total Environment, 759: 143536
https://doi.org/10.1016/j.scitotenv.2020.143536
5 W An , L Duan , Y Zhang , B Wang , C S Liu , F Wang , Q Sui , D Xu , G Yu . (2021). Occurrence, spatiotemporal distribution, seasonal and annual variation, and source apportionment of poly- and perfluoroalkyl substances (PFASs) in the northwest of Tai Lake Basin, China. Journal of Hazardous Materials, 416: 125784
https://doi.org/10.1016/j.jhazmat.2021.125784
6 H Aoki , M Torimura , H Habe . (2021). Spectroscopic investigation of increased fluorescent intensity of fluorescent dyes when adsorbed onto polystyrene microparticles. Analytical Sciences, 37(5): 773–779
https://doi.org/10.2116/analsci.20SCP22
7 M Arhant , M Le Gall , P Y Le Gac , P Davies . (2019). Impact of hydrolytic degradation on mechanical properties of PET: towards an understanding of microplastics formation. Polymer Degradation & Stability, 161: 175–182
https://doi.org/10.1016/j.polymdegradstab.2019.01.021
8 J A Baptista Neto , C Gaylarde , I Beech , A C Bastos , V da Silva Quaresma , D G de Carvalho . (2019). Microplastics and attached microorganisms in sediments of the Vitoria Bay estuarine system in SE Brazil. Ocean and Coastal Management, 169: 247–253
https://doi.org/10.1016/j.ocecoaman.2018.12.030
9 S Belbachir , F Zairi , G Ayoub , U Maschke , M Nait-Abdelaziz , J M Gloaguen , M Benguediab , J M Lefebvre . (2010). Modelling of photodegradation effect on elastic-viscoplastic behaviour of amorphous polylactic acid films. Journal of the Mechanics and Physics of Solids, 58(2): 241–255
https://doi.org/10.1016/j.jmps.2009.10.003
10 M K Bharath , U Natesan , R Vaikunth , P R Kumar , R Ruthra , S Srinivasalu . (2021). Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere, 277: 131376
11 C Calvino , N Macke , R Kato , S J Rowan . (2020). Development, processing and applications of bio-sourced cellulose nanocrystal composites. Progress in Polymer Science, 103: 101221
https://doi.org/10.1016/j.progpolymsci.2020.101221
12 X Cao , J Huang , Y He , C Hu , Q Zhang , X Yin , W Wu , R K Y Li . (2021). Biodegradable and renewable UV-shielding polylactide composites containing hierarchical structured POSS functionalized lignin. International Journal of Biological Macromolecules, 188: 323–332
https://doi.org/10.1016/j.ijbiomac.2021.08.033
13 Y Cao , H Lin , K Zhang , S Xu , M Yan , K M Y Leung , P K S Lam . (2022). Microplastics: a major source of phthalate esters in aquatic environments. Journal of Hazardous Materials, 432: 128731
https://doi.org/10.1016/j.jhazmat.2022.128731
14 B K Chabuka , J H Kalivas . (2020). Application of a hybrid fusion classification process for identification of microplastics based on fourier transform infrared spectroscopy. Applied Spectroscopy, 74(9): 1167–1183
https://doi.org/10.1177/0003702820923993
15 M Chang , C Zhang , M Li , J Dong , C Li , J Liu , J Verheyen , R Stoks . (2022). Warming, temperature fluctuations and thermal evolution change the effects of microplastics at an environmentally relevant concentration. Environmental Pollution, 292: 118363
https://doi.org/10.1016/j.envpol.2021.118363
16 C Chen , L Chen , Y Yao , F Artigas , Q Huang , W Zhang . (2019). Oorganotin release from polyvinyl chloride microplastics and concurrent photodegradation in water: impacts from salinity, dissolved organic matter, and light exposure. Environmental Science & Technology, 53(18): 10741–10752
https://doi.org/10.1021/acs.est.9b03428
17 H Chen , Y Zhou , J Wang , J Lu , Y Zhou . (2020a). Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+. Journal of Hazardous Materials, 389: 121897
https://doi.org/10.1016/j.jhazmat.2019.121897
18 Z Chen , J Liu , C Chen , Z Huang . (2020b). Sedimentation of nanoplastics from water with Ca/Al dual flocculants: characterization, interface reaction, effects of pH and ion ratios. Chemosphere, 252: 126450
https://doi.org/10.1016/j.chemosphere.2020.126450
19 H Cho , J R Felts , M F Yu , L A Bergman , A F Vakakis , W P King . (2013). Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification. Nanotechnology, 24(44): 444007
https://doi.org/10.1088/0957-4484/24/44/444007
20 L P W Clausen , O F H Hansen , N B Oturai , K Syberg , S F Hansen . (2020). Stakeholder analysis with regard to a recent European restriction proposal on microplastics. PLoS One, 15(6): e0235062
https://doi.org/10.1371/journal.pone.0235062
21 D Danso , J Chow , W R Streit . (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19): e01095–19
22 J David , Z Steinmetz , J Kucerik , G E Schaumann . (2018). Quantitative analysis of poly(ethylene terephthalate) microplastics in soil via thermogravimetry-mass spectrometry. Analytical Chemistry, 90(15): 8793–8799
https://doi.org/10.1021/acs.analchem.8b00355
23 G E De-la-Torre , D C Dioses-Salinas , J M Castro , R Antay , N Y Fernández , D Espinoza-Morriberón , M Saldaña-Serrano . (2020). Abundance and distribution of microplastics on sandy beaches of Lima, Peru. Marine Pollution Bulletin, 151: 110877
https://doi.org/10.1016/j.marpolbul.2019.110877
24 S Dehghani , F Moore , R Akhbarizadeh . (2017). Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research International, 24(25): 20360–20371
https://doi.org/10.1007/s11356-017-9674-1
25 C DelRe , Y Jiang , P Kang , J Kwon , A Hall , I Jayapurna , Z Ruan , L Ma , K Zolkin , T Li , C D Scown , R O Ritchie , T P Russell , T Xu . (2021). Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature, 592(7855): 558–563
https://doi.org/10.1038/s41586-021-03408-3
26 M Dolleiser, S R Hashemi-Nezhad (2002). A fully automated optical microscope for analysis of particle tracks in solids. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 198(1–2): 98–107
https://doi.org/10.1016/S0168-583X(02)01484-2
27 S Dong , P Gao , B Li , L Feng , Y Liu , Z Du , L Zhang . (2022). Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatment units in municipal wastewater treatment plant. Frontiers of Environmental Science & Engineering, 16(11): 142
https://doi.org/10.1007/s11783-022-1577-9
28 C Du , H Liang , Z Li , J Gong . (2020). Pollution characteristics of microplastics in soils in southeastern suburbs of Baoding City, China. International Journal of Environmental Research and Public Health, 17(3): 845
https://doi.org/10.3390/ijerph17030845
29 C Duan , J Wang , Q Liu , Y Zhou , Y Zhou . (2022a). Efficient removal of Salbutamol and Atenolol by an electronegative silanized beta-cyclodextrin adsorbent. Separation and Purification Technology, 282: 120013
https://doi.org/10.1016/j.seppur.2021.120013
30 J Duan , N Bolan , Y Li , S Ding , T Atugoda , M Vithanage , B Sarkar , D C W Tsang , M B Kirkham . (2021). Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Research, 196: 117011
https://doi.org/10.1016/j.watres.2021.117011
31 J Duan , Y Li , J Gao , R Cao , E Shang , W Zhang . (2022b). ROS-mediated photoaging pathways of nano- and micro-plastic particles under UV irradiation. Water Research, 216: 118320
https://doi.org/10.1016/j.watres.2022.118320
32 P Ebrahimbabaie , K Yousefi , J Pichtel . (2022). Photocatalytic and biological technologies for elimination of microplastics in water: Current status. Science of the Total Environment, 806: 150603
https://doi.org/10.1016/j.scitotenv.2021.150603
33 G A El-Hiti , D S Ahmed , E Yousif , O S A Al-Khazrajy , M Abdallh , S A Alanazi . (2021). Modifications of polymers through the addition of ultraviolet absorbers to reduce the aging effect of accelerated and natural irradiation. Polymers, 14(1): 20
https://doi.org/10.3390/polym14010020
34 A Fairbrother , H C Hsueh , J H Kim , D Jacobs , L Perry , D Goodwin , C White , S Watson , L P Sung . (2019). Temperature and light intensity effects on photodegradation of high-density polyethylene. Polymer Degradation & Stability, 165: 153–160
https://doi.org/10.1016/j.polymdegradstab.2019.05.002
35 L Filiciotto , G Rothenberg . (2021). Biodegradable plastics: standards, policies, and impacts. ChemSusChem, 14(1): 56–72
https://doi.org/10.1002/cssc.202002044
36 J Fojt , J David , R Prikryl , V Rezacova , J Kucerik . (2020). A critical review of the overlooked challenge of determining micro-bioplastics in soil. Science of the Total Environment, 745: 140975
https://doi.org/10.1016/j.scitotenv.2020.140975
37 A Gomiero , K B Oysaed , T Agustsson , N Van Hoytema , T Van Thiel , F Grati . (2019). First record of characterization, concentration and distribution of microplastics in coastal sediments of an urban fjord in southwest Norway using a thermal degradation method. Chemosphere, 227: 705–714
https://doi.org/10.1016/j.chemosphere.2019.04.096
38 M González-Pleiter , M Tamayo-Belda , G Pulido-Reyes , G Amariei , F Leganes , R Rosal , F Fernandez-Pinas . (2019). Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environmental Science. Nano, 6(5): 1382–1392
https://doi.org/10.1039/C8EN01427B
39 T P Haider , C Völker , J Kramm , K Landfester , F R Wurm . (2019). Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angewandte Chemie International Edition, 58(1): 50–62
https://doi.org/10.1002/anie.201805766
40 M N Hassan , A Kuzukami , S Nakai , W Nishijima , T Gotoh . (2020). Effect of plastics on the photodegradation behavior of chlorophenols. Journal of Chemical Engineering of Japan, 53(10): 660–666
https://doi.org/10.1252/jcej.20we018
41 J Hou , X Xu , H Yu , B Xi , W Tan . (2021). Comparing the long-term responses of soil microbial structures and diversities to polyethylene microplastics in different aggregate fractions. Environment International, 149: 106398
https://doi.org/10.1016/j.envint.2021.106398
42 B Jiang , C Chen , Z Liang , S He , Y Kuang , J Song , R Mi , G Chen , M Jiao , L Hu . (2020). Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Advanced Functional Materials, 30(4): 1906307
https://doi.org/10.1002/adfm.201906307
43 N Kasmuri , N A A Tarmizi , A Mojiri . (2022). Occurrence, impact, toxicity, and degradation methods of microplastics in environment: a review. Environmental Science and Pollution Research International, 29(21): 30820–30836
https://doi.org/10.1007/s11356-021-18268-7
44 A Khoironi , H Hadiyanto , S Anggoro , S Sudarno . (2020). Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia. Marine Pollution Bulletin, 151: 110868
https://doi.org/10.1016/j.marpolbul.2019.110868
45 H J Kim , Y Reddi , C J Cramer , M A Hillmyer , C J Ellison . (2020). Readily degradable aromatic polyesters from salicylic acid. ACS Macro Letters, 9(1): 96–102
https://doi.org/10.1021/acsmacrolett.9b00890
46 G A Kumar , K Anjana , M Hinduja , K Sujitha , G Dharani . (2020a). Review on plastic wastes in marine environment: biodegradation and biotechnological solutions. Marine Pollution Bulletin, 150: 110733
https://doi.org/10.1016/j.marpolbul.2019.110733
47 M Kumar, X Xiong, M He, D C W Tsang, J Gupta, E Khan, S Harrad, D Hou, Y S Ok, N S Bolan (2020b). Microplastics as pollutants in agricultural soils. Environmental Pollution, 265(PT A): 855292
48 V S Kumawat , J Bhatt , D Sharma , R Rathore , S C Ameta , R Ameta . (2020). Photodegradation of polypropylene using CaO nanoparticles as a catalyst. Journal of the Indian Chemical Society, 97(6): 879–885
49 E E Kwon , M J Castaldi . (2012). Urban energy mining from municipal solid waste (MSW) via the enhanced thermo-chemical process by carbon dioxide (CO2) as a reaction medium. Bioresource Technology, 125: 23–29
https://doi.org/10.1016/j.biortech.2012.08.073
50 A B Labbe , C R Bagshaw , L Uttal . (2020). Inexpensive adaptations of basic microscopes for the identification of microplastic contamination using polarization and nile red fluorescence detection. Journal of Chemical Education, 97(11): 4026–4032
https://doi.org/10.1021/acs.jchemed.0c00518
51 S H Lee , W S Song . (2011). Enzymatic hydrolysis of polylactic acid fiber. Applied Biochemistry and Biotechnology, 164(1): 89–102
https://doi.org/10.1007/s12010-010-9117-7
52 N Li , X C Pan . (2021). Controlled Radical polymerization: from oxygen inhibition and tolerance to oxygen initiation. Chinese Journal of Polymer Science, 39(9): 1084–1092
https://doi.org/10.1007/s10118-021-2597-9
53 W Y Li, Z L Liu, L Z Miao, J Hou (2021a). Aging process and DOC analysis of four different types of plastic particles in freshwater systems. Environmental Science, 42(8): 3829–3836 (in Chinese)
54 X Li , C Chu , Y Wei , C Qi , J Bai , C Guo , F Xue , P Lin , P K Chu . (2017). In vitro degradation kinetics of pure PLA and Mg/PLA composite: effects of immersion temperature and compression stress. Acta Biomaterialia, 48: 468–478
https://doi.org/10.1016/j.actbio.2016.11.001
55 X Li , J He , J Lu , Y Zhou , Y Zhou . (2022a). In-situ production and activation of H2O2 for enhanced degradation of roxarsone by FeS2 decorated resorcinol-formaldehyde resins. Journal of Hazardous Materials, 424: 127650
https://doi.org/10.1016/j.jhazmat.2021.127650
56 X Li , H Wu , J Gong , Q Li , Z Li , J Zhang . (2022b). Improvement of biodegradation of PET microplastics with whole-cell biocatalyst by interface activation reinforcement. Environmental Technology, 2022: 2052359
https://doi.org/10.1080/09593330.2022.2052359
57 Y Li , S Li , J Sun . (2021b). Degradable poly(vinyl alcohol)-based supramolecular plastics with high mechanical strength in a watery environment. Advanced Materials, 33(13): 2007371
https://doi.org/10.1002/adma.202007371
58 J Liu , G Xu , X Ruan , K Li , L Zhang . (2022a). V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics. Frontiers of Environmental Science & Engineering, 16(11): 143
https://doi.org/10.1007/s11783-022-1578-8
59 K Liu , X Wang , N Wei , Z Song , D Li . (2019a). Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: implications for human health. Environment International, 132: 105127
https://doi.org/10.1016/j.envint.2019.105127
60 P Liu , L Qian , H Wang , X Zhan , K Lu , C Gu , S Gao . (2019b). New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environmental Science & Technology, 53(7): 3579–3588
https://doi.org/10.1021/acs.est.9b00493
61 P Liu , X Wu , J Peng , H Wang , Y Shi , H Huang , S Gao . (2021a). Critical effect of iron red pigment on photoaging behavior of polypropylene microplastics in artificial seawater. Journal of Hazardous Materials, 404: 124209
https://doi.org/10.1016/j.jhazmat.2020.124209
62 S Liu , E Shang , J Liu , Y Wang , N Bolan , M B Kirkham , Y Li . (2022b). What have we known so far for fluorescence staining and quantification of microplastics: a tutorial review. Frontiers of Environmental Science & Engineering, 16(1): 8
https://doi.org/10.1007/s11783-021-1442-2
63 X Liu , P Sun , G Qu , J Jing , T Zhang , H Shi , Y Zhao . (2021b). Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes. Journal of Hazardous Materials, 407: 124836
https://doi.org/10.1016/j.jhazmat.2020.124836
64 G Lu , J Zhu , H Yu , M Jin , S Y H Abdalkarim , Y Wei . (2021). Degradation mechanism of green biopolyester nanocomposites with various cellulose nanocrystal based nanohybrids. Cellulose (London, England), 28(12): 7735–7748
https://doi.org/10.1007/s10570-021-04031-1
65 H Luo , Y Li , Y Zhao , Y Xiang , D He , X Pan . (2020a). Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environmental Pollution, 257: 113475
https://doi.org/10.1016/j.envpol.2019.113475
66 H Luo , Y Zeng , Y Zhao , Y Xiang , Y Li , X Pan . (2021). Effects of advanced oxidation processes on leachates and properties of microplastics. Journal of Hazardous Materials, 413: 125342
https://doi.org/10.1016/j.jhazmat.2021.125342
67 H Luo , Y Zhao , Y Li , Y Xiang , D He , X Pan . (2020b). Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids. Science of the Total Environment, 714: 136862
https://doi.org/10.1016/j.scitotenv.2020.136862
68 M Luo , Z Wang , S Fang , B Song , P Cao , H Liu , Y Yang . (2022). Removal and toxic forecast of microplastics treated by electrocoagulation: influence of dissolved organic matter. Chemosphere, 308(1): 136309
https://doi.org/10.1016/j.chemosphere.2022.136309
69 L Lv , X Yan , L Feng , S Jiang , Z Lu , H Xie , S Sun , J Chen , C Li . (2021). Challenge for the detection of microplastics in the environment. Water Environment Research, 93(1): 5–15
https://doi.org/10.1002/wer.1281
70 L Lv , J Yang , Z Shen , Y Zhou , J Lu . (2016). Selecting organic desulphurization additives in flue gas desulphurization process. Energy Sources Part A: Recovery Utilization and Environmental Effects, 38(18): 2649–2655
https://doi.org/10.1080/15567036.2015.1079570
71 Z Ma , G Niu , L Shan . (2022). China plastics industry. China Plastics, 36(06): 142–148
72 I Manavitehrani , A Fathi , H Badr , S Daly , A Negahi Shirazi , F Dehghani . (2016). Biomedical applications of biodegradable polyesters. Polymers, 8(1): 20
https://doi.org/10.3390/polym8010020
73 R Mao , M Lang , X Yu , R Wu , X Yang , X Guo . (2020). Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393: 122515
https://doi.org/10.1016/j.jhazmat.2020.122515
74 Silva Martínez , M A Nanny . (2020). Impact of microplastic fibers from the degradation of nonwoven synthetic textiles to the magdalena river water column and river sediments by the city of Neiva, Huila (Colombia). Water (Basel), 12(4): 1210
https://doi.org/10.3390/w12041210
75 A Mataji , M S Taleshi , E Balimoghaddas . (2020). Distribution and characterization of microplastics in surface waters and the southern caspian sea coasts sediments. Archives of Environmental Contamination and Toxicology, 78(1): 86–93
https://doi.org/10.1007/s00244-019-00700-2
76 C Matthews , F Moran , A K Jaiswal . (2021). A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. Journal of Cleaner Production, 283: 125263
https://doi.org/10.1016/j.jclepro.2020.125263
77 X Meng , X Peng , J Xue , Y Wei , Y Sun , Y Dai . (2021). A biomass-derived, all-day-round solar evaporation platform for harvesting clean water from microplastic pollution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 9(17): 11013–11024
https://doi.org/10.1039/D1TA02004H
78 M N Miranda , M J Sampaio , P B Tavares , A M T Silva , M F R Pereira . (2021). Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors. Science of the Total Environment, 796: 148914
https://doi.org/10.1016/j.scitotenv.2021.148914
79 T Muhammad , A Izaz , F Md , A Nasrin , Y Zhou , S Muhammad , A Muayad , S Muhammad , I Ihsanullah . (2022). Personal protective equipment (PPE) disposal during COVID-19: an emerging source of microplastic and microfiber pollution in the environment. Science of the Total Environment, 860: 160322
80 I Nabi , A U R Bacha , K Li , H Cheng , T Wang , Y Liu , S Ajmal , Y Yang , Y Feng , L Zhang . (2020). Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film. iScience, 23(7): 101326
https://doi.org/10.1016/j.isci.2020.101326
81 P K Nanda , K Krishna Rao , P L Nayak . (2007). Biodegradable polymers. XI. Spectral, thermal, morphological, and biodegradability properties of environment-friendly green plastics of soy protein modified with thiosemicarbazide. Journal of Applied Polymer Science, 103(5): 3134–3142
https://doi.org/10.1002/app.24590
82 B Nekhamanurak , P Patanathabutr , N Hongsriphan . (2013). The influence of micro-/nano-CaCO3 on thermal stability and melt rheology behavior of poly(lactic acid). Energy Procedia, 56: 118–128
https://doi.org/10.1016/j.proeng.2013.03.097
83 A Paluselli , V Fauvelle , F Galgani , R Sempere . (2019). Phthalate release from plastic fragments and degradation in seawater. Environmental Science & Technology, 53(1): 166–175
https://doi.org/10.1021/acs.est.8b05083
84 S Peng , B Wu , L Wu , B G Li , P Dubois . (2017). Hydrolytic degradation of biobased poly(butylene succinate-co-furandicarboxylate) and poly(butylene adipate-co-furandicarboxylate) copolyesters under mild conditions. Journal of Applied Polymer Science, 134(15): 44674
https://doi.org/10.1002/app.44674
85 M Pirsaheb , H Hossini , P Makhdoumi . (2020). Review of microplastic occurrence and toxicological effects in marine environment: experimental evidence of inflammation. Process Safety and Environmental Protection, 142: 1–14
https://doi.org/10.1016/j.psep.2020.05.050
86 P Polyák , D Szemerszki , G Vörös , B Pukánszky . (2017). Mechanism and kinetics of the hydrolytic degradation of amorphous poly(3-hydroxybutyrate). Polymer Degradation & Stability, 140: 1–8
https://doi.org/10.1016/j.polymdegradstab.2017.03.021
87 J C Prata , J P Da Costa , I Lopes , A C Duarte , T Rocha-Santos . (2019). Effects of microplastics on microalgae populations: a critical review. Science of the Total Environment, 665: 400–405
https://doi.org/10.1016/j.scitotenv.2019.02.132
88 Q Qiu, J Peng, X Yu, F Chen, J Wang, F Dong (2015). Occurrence of microplastics in the coastal marine environment: first observation on sediment of China. Marine Pollution Bulletin, 98(1–2): 274–280
https://doi.org/10.1016/j.marpolbul.2015.07.028
89 H Qu , H T Diao , J J Han , B Wang , G Yu . (2023). Understanding and addressing the environmental risk of microplastics. Frontiers of Environmental Science & Engineering, 17(1): 12
https://doi.org/10.1007/s11783-023-1612-5
90 S K Repinc , B Bizjan , V Budhiraja , M Dular , J Gostiša , Humar B Brajer , A Kaurin , A Kržan , M Levstek , J F M Arteaga , M Petkovšek , G Rak , B Stres , B Širok , E Žagar , M Zupanc . (2022). Integral analysis of hydrodynamic cavitation effects on waste activated sludge characteristics, potentially toxic metals, microorganisms and identification of microplastics. Science of the Total Environment, 806: 151414
https://doi.org/10.1016/j.scitotenv.2021.151414
91 Chialanza M Rodríguez , I Sierra , Parada A Pérez , L Fornaro . (2018). Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry. Environmental Science and Pollution Research International, 25(17): 16767–16775
https://doi.org/10.1007/s11356-018-1846-0
92 H Saygin , A Baysal . (2021). Insights into the degradation behavior of submicroplastics by Klebsiella pneumoniae. Journal of Polymers and the Environment, 29(3): 958–966
https://doi.org/10.1007/s10924-020-01929-y
93 C Schlundt , J L Mark Welch , A M Knochel , E R Zettler , L A Amaral-Zettler . (2020). Spatial structure in the “Plastisphere”: molecular resources for imaging microscopic communities on plastic marine debris. Molecular Ecology Resources, 20(3): 620–634
https://doi.org/10.1111/1755-0998.13119
94 C Schmid , L Cozzarini , E Zambello . (2021). Microplastic’s story. Marine Pollution Bulletin, 162: 111820
https://doi.org/10.1016/j.marpolbul.2020.111820
95 L Schöpfer, U Schnepf, S Marhan, F Brümmer, E Kandeler, H Pagel (2022). Hydrolyzable microplastics in soil-low biodegradation but formation of a specific microbial habitat? Biology and Fertility of Soils, 58(4): 471–486
https://doi.org/10.1007/s00374-022-01638-9
96 S Selvam , A Manisha , S Venkatramanan , S Y Chung , C R Paramasivam , C Singaraja . (2020). Microplastic presence in commercial marine sea salts: a baseline study along Tuticorin Coastal salt pan stations, Gulf of Mannar, South India. Marine Pollution Bulletin, 150: 110675
https://doi.org/10.1016/j.marpolbul.2019.110675
97 Y Su , Z Zhang , D Wu , L Zhan , H Shi , B Xie . (2019). Occurrence of microplastics in landfill systems and their fate with landfill age. Water Research, 164: 114968
https://doi.org/10.1016/j.watres.2019.114968
98 T Y Suman , W G Li , S Alif , V R P Faris , D J Amarnath , J G Ma , D S Pei . (2020). Characterization of petroleum-based plastics and their absorbed trace metals from the sediments of the Marina Beach in Chennai, India. Environmental Sciences Europe, 32(1): 110
https://doi.org/10.1186/s12302-020-00388-5
99 P Sun , X Liu , M Zhang , Z Li , C Cao , H Shi , Y Yang , Y Zhao . (2021a). Sorption and leaching behaviors between aged MPs and BPA in water: the role of BPA binding modes within plastic matrix. Water Research, 195: 116956
https://doi.org/10.1016/j.watres.2021.116956
100 S Sun , H Sui , L Xu , J Zhang , D Wang , Z Zhou . (2022). Effect of freeze-thaw cycle aging and high-temperature oxidation aging on the sorption of atrazine by microplastics. Environmental Pollution, 307: 119434
https://doi.org/10.1016/j.envpol.2022.119434
101 Y Sun , X Ren , E R Rene , Z Wang , L Zhou , Z Zhang , Q Wang . (2021b). The degradation performance of different microplastics and their effect on microbial community during composting process. Bioresource Technology, 332: 125133
https://doi.org/10.1016/j.biortech.2021.125133
102 K H D Tang , S S M Lock , P S Yap , K W Cheah , Y H Chan , C L Yiin , A Z E Ku , A C M Loy , B L F Chin , Y H Chai . (2022). Immobilized enzyme/microorganism complexes for degradation of microplastics: a review of recent advances, feasibility and future prospects. Science of the Total Environment, 832: 154868
https://doi.org/10.1016/j.scitotenv.2022.154868
103 P L Tang , R Mccumskay , M Rogerson , C Waller , R Forster . (2019). Handheld FT-IR spectroscopy for the triage of micro- and meso-sized plastics in the marine environment incorporating an accelerated weathering study and an aging estimation. Spectroscopy (Springfield, Or.), 34(2): 54–60
104 T Tosakul , P Suetong , P Chanthot , C Pattamaprom . (2022). Degradation of polylactic acid and polylactic acid/natural rubber blown films in aquatic environment. Journal of Polymer Research, 29(6): 242
https://doi.org/10.1007/s10965-022-03039-w
105 A Uheida , H G Mejia , M Abdel-Rehim , W Hamd , J Dutta . (2021). Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. Journal of Hazardous Materials, 406: 124299
https://doi.org/10.1016/j.jhazmat.2020.124299
106 N Varghese , S Varghese , A A Shybi , T Kurian . (2021). Enhanced mechanical properties of radiation vulcanized natural rubber latex by using t-butyl hydroperoxide. Progress in Rubber, Plastics and Recycling Technology, 37(3): 203–215
https://doi.org/10.1177/1477760620977501
107 K Vogel , R Wei , L Pfaff , D Breite , H Al-Fathi , C Ortmann , I Estrela-Lopis , T Venus , A Schulze , H Harms . et al.. (2021). Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry. Science of the Total Environment, 773: 145111
https://doi.org/10.1016/j.scitotenv.2021.145111
108 C Wang , Z Xian , X Jin , S Liang , Z Chen , B Pan , B Wu , Y S Ok , C Gu . (2020a). Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids. Water Research, 183: 116082
https://doi.org/10.1016/j.watres.2020.116082
109 L Wang , Y Peng , Y Xu , J Zhang , C Liu , X Tang , Y Lu , H Sun . (2022). Earthworms’ degradable bioplastic diet of polylactic acid: easy tobreak down and slow to excrete br. Environmental Science & Technology, 56(8): 5020–5028
https://doi.org/10.1021/acs.est.1c08066
110 Z Wang , C An , X Chen , K Lee , B Zhang , Q Feng . (2021). Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. Journal of Hazardous Materials, 417: 126036
https://doi.org/10.1016/j.jhazmat.2021.126036
111 J Weisser , I Beer , B Hufnagl , T Hofmann , H Lohninger , N P Ivleva , K Glas . (2021). From the well to the bottle: identifying sources of microplastics in mineral water. Water (Basel), 13(6): 841
https://doi.org/10.3390/w13060841
112 A M Wieczorek , P L Croot , F Lombard , J N Sheahan , T K Doyle . (2019). Microplastic ingestion by gelatinous zooplankton may lower efficiency of the biological pump. Environmental Science & Technology, 53(9): 5387–5395
113 J K H Wong , K K Lee , K H D Tang , P S Yap . (2020). Microplastics in the freshwater and terrestrial environments: prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719: 137512
https://doi.org/10.1016/j.scitotenv.2020.137512
114 X Wu , X Chen , R Jiang , J You , G Ouyang . (2022). New insights into the photo-degraded polystyrene microplastic: effect on the release of volatile organic compounds. Journal of Hazardous Materials, 431: 128523
https://doi.org/10.1016/j.jhazmat.2022.128523
115 Y Xu , C Yin , W Yue , N Y Zhou . (2019). Microbial degradation of petroleum-based plastics. Chinese Journal of Biotechnology, 35(11): 2092–2103
116 Z Xu , Q Sui , A Li , M Sun , L Zhang , S Lyu , W Zhao . (2020). How to detect small microplastics (20–100 μm) in freshwater, municipal wastewaters and landfill leachates? A trial from sampling to identification. Science of the Total Environment, 733: 139218
https://doi.org/10.1016/j.scitotenv.2020.139218
117 Y Yan , F Zhu , C Zhu , Z Chen , S Liu , C Wang , C Gu . (2021). Dibutyl phthalate release from polyvinyl chloride microplastics: influence of plastic properties and environmental factors. Water Research, 204: 117597
https://doi.org/10.1016/j.watres.2021.117597
118 S Yoshida , K Hiraga , T Takehana , I Taniguchi , H Yamaji , Y Maeda , K Toyohara , K Miyamoto , Y Kimura , K Oda . (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278): 1196–1199
https://doi.org/10.1126/science.aad6359
119 Z F Yu , S Song , X L Xu , Q Ma , Y Lu . (2021). Sources, migration, accumulation and influence of microplastics in terrestrial plant communities. Environmental and Experimental Botany, 192: 104635
https://doi.org/10.1016/j.envexpbot.2021.104635
120 F Zhan , H Zhang , R Cao , Y Fan , P Xu , J Chen . (2019). Release and transformation of BTBPE during the thermal treatment of flame retardant ABS plastics. Environmental Science & Technology, 53(1): 185–193
https://doi.org/10.1021/acs.est.8b05483
121 K Zhang , A H Hamidian , A Tubic , Y Zhang , J K H Fang , C Wu , P K S Lam . (2021). Understanding plastic degradation and microplastic formation in the environment: a review. Environmental Pollution, 274: 116554
https://doi.org/10.1016/j.envpol.2021.116554
122 W Zhang , Q Wang , H Chen . (2022a). Challenges in characterization of nanoplastics in the environment. Frontiers of Environmental Science & Engineering, 16(1): 11
https://doi.org/10.1007/s11783-021-1445-z
123 X Zhang , T Lin , X Wang . (2022b). Investigation of microplastics release behavior from ozone-exposed plastic pipe materials. Environmental Pollution, 296: 118758
https://doi.org/10.1016/j.envpol.2021.118758
124 Y Zhou , X Fang , K Wang , Y Hu , K Chen , J Lu . (2017a). Improving cyanide removal from coke plant wastewaters by optimizing the operation conditions of an ammonia still tower. Energy Sources Part A: Recovery Utilization and Environmental Effects, 39(5): 491–496
https://doi.org/10.1080/15567036.2016.1230802
125 Y Zhou , X Fang , R Zhang , S Qin , J Wang , J Lu . (2016). Salt-tolerant microorganisms treating hypersaline organic wastewater and the microbial population dynamics. Energy Sources Part A: Recovery Utilization and Environmental Effects, 38(19): 2854–2859
https://doi.org/10.1080/15567036.2015.1107923
126 Y Zhou , X Gu , R Zhang , L Chen , J Lu . (2017b). Microbial degradation of diesel oil and heavy oil in the presence of modified clay. Energy Sources Part A: Recovery Utilization and Environmental Effects, 39(3): 326–331
https://doi.org/10.1080/15567036.2014.960956
127 Y Zhou , J He , J Lu , Y Liu , Y Zhou . (2020a). Enhanced removal of bisphenol A by cyclodextrin in photocatalytic systems: degradation intermediates and toxicity evaluation. Chinese Chemical Letters, 31(10): 2623–2626
https://doi.org/10.1016/j.cclet.2020.02.008
128 Y Zhou , Q Liu , J Lu , J He , Y Liu , Y Zhou . (2020b). Accelerated photoelectron transmission by carboxymethyl beta-cyclodextrin for organic contaminants removal: an alternative to noble metal catalyst. Journal of Hazardous Materials, 393: 122414
https://doi.org/10.1016/j.jhazmat.2020.122414
129 K Zhu , H Jia , Y Sun , Y Dai , C Zhang , X Guo , T Wang , L Zhu . (2020). Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: roles of reactive oxygen species. Water Research, 173: 115564
https://doi.org/10.1016/j.watres.2020.115564
[1] Yiwei Liu, Kaili Gu, Jinhua Zhang, Jinxiang Li, Jieshu Qian, Jinyou Shen, Xiaohong Guan. Partial aging can counter-intuitively couple with sulfidation to improve the reactive durability of zerovalent iron[J]. Front. Environ. Sci. Eng., 2024, 18(2): 14-.
[2] Luning Lian, Yi Xing, Dayi Zhang, Longfei Jiang, Mengke Song, Bo Jiang. Comparative analysis of DNA-SIP and magnetic-nanoparticle mediated isolation (MMI) on unraveling dimethoate degraders[J]. Front. Environ. Sci. Eng., 2024, 18(1): 5-.
[3] Xuejun Long, Jun Luo, Zhenxing Zhong, Yanxu Zhu, Chunjie Zhang, Jun Wan, Haiyan Zhou, Beiping Zhang, Dongsheng Xia. Performance and mechanism of carbamazepine removal by FeS-S2O82– process: experimental investigation and DFT calculations[J]. Front. Environ. Sci. Eng., 2023, 17(9): 113-.
[4] Zhou Zhang, Kai Huo, Tingxuan Yan, Xuwen Liu, Maocong Hu, Zhenhua Yao, Xuguang Liu, Tao Ye. Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11[J]. Front. Environ. Sci. Eng., 2023, 17(8): 101-.
[5] Pelin Koyuncuoğlu, Gülbin Erden. Microplastics in municipal wastewater treatment plants: a case study of Denizli/Turkey[J]. Front. Environ. Sci. Eng., 2023, 17(8): 99-.
[6] Zhicheng Liao, Bei Li, Juhong Zhan, Huan He, Xiaoxia Yang, Dongxu Zhou, Guoxi Yu, Chaochao Lai, Bin Huan, Xuejun Pan. Photosensitivity sources of dissolved organic matter from wastewater treatment plants and their mediation effect on 17α-ethinylestradiol photodegradation[J]. Front. Environ. Sci. Eng., 2023, 17(6): 69-.
[7] Xingyue Qu, Peihe Zhai, Longqing Shi, Xingwei Qu, Ahmer Bilal, Jin Han, Xiaoge Yu. Distribution, enrichment mechanism and risk assessment for fluoride in groundwater: a case study of Mihe-Weihe River Basin, China[J]. Front. Environ. Sci. Eng., 2023, 17(6): 70-.
[8] Zhe Wang, Wenjuan Zhang, Zhiwei Wang, Jing Chang. Ozonation of aromatic monomer compounds in water: factors determining reaction outcomes[J]. Front. Environ. Sci. Eng., 2023, 17(5): 54-.
[9] Yanghui Xiong. Characterization and variation of dissolved organic matter in composting: a critical review[J]. Front. Environ. Sci. Eng., 2023, 17(5): 63-.
[10] Yinghui Mo, Liping Sun, Lu Zhang, Jianxin Li, Jixiang Li, Xiuru Chu, Liang Wang. Electrocatalytic biofilm reactor for effective and energy-efficient azo dye degradation: the synergistic effect of MnOx/Ti flow-through anode and biofilm on the cathode[J]. Front. Environ. Sci. Eng., 2023, 17(4): 49-.
[11] Weiyi Liu, Ting Pan, Hang Liu, Mengyun Jiang, Tingting Zhang. Adsorption behavior of imidacloprid pesticide on polar microplastics under environmental conditions: critical role of photo-aging[J]. Front. Environ. Sci. Eng., 2023, 17(4): 41-.
[12] Xin Zhou, Xiaoya Ren, Yu Chen, Haopeng Feng, Jiangfang Yu, Kang Peng, Yuying Zhang, Wenhao Chen, Jing Tang, Jiajia Wang, Lin Tang. Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products[J]. Front. Environ. Sci. Eng., 2023, 17(3): 29-.
[13] Ping Zhu, Shuangshuang Gong, Mingqiang Deng, Bin Xia, Yazheng Yang, Jiakang Tang, Guangren Qian, Fang Yu, Ashantha Goonetilleke, Xiaowei Li. Biodegradation of waste refrigerator polyurethane by mealworms[J]. Front. Environ. Sci. Eng., 2023, 17(3): 38-.
[14] Zhizhuo Liu, Zhemin Shen, Shouyan Xiang, Yang sun, Jiahua Cui, Jinping Jia. Evaluation of 1,4-naphthoquinone derivatives as antibacterial agents: activity and mechanistic studies[J]. Front. Environ. Sci. Eng., 2023, 17(3): 31-.
[15] Fuqiang Liu, Shengtao Jiang, Shijie You, Yanbiao Liu. Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review[J]. Front. Environ. Sci. Eng., 2023, 17(2): 18-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed