Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (10) : 127    https://doi.org/10.1007/s11783-023-1727-8
RESEARCH ARTICLE
Revealing the GHG reduction potential of emerging biomass-based CO2 utilization with an iron cycle system
Jing Xu1, Jiong Cheng1, Runtian He1, Jiaqi Lu2(), Chunling Wang1, Heng Zhong1, Fangming Jin1,3,4()
1. School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
2. Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, Shanghai 201620, China
3. Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
4. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(3696 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Greenhouse gas mitigation by biomass-based CO2 utilization with a Fe cycle system.

● The system including hydrothermal CO2 reduction with Fe and Fe recovery by biomass.

● The reduction potential quantified by experiments, simulations, and an ex-ante LCA.

● The greatest GHG reduction potential is −34.03 kg CO2-eq/kg absorbed CO2.

● Ex-ante LCA supports process optimization to maximize GHG reduction potential.

CO2 utilization becomes a promising solution for reducing anthropogenic greenhouse gas (GHG) emissions. Biomass-based CO2 utilization (BCU) even has the potential to generate negative emissions, but the corresponding quantitative evaluation is limited. Herein, the biomass-based CO2 utilization with an iron cycle (BCU-Fe) system, which converts CO2 into formate by Fe under hydrothermal conditions and recovers Fe with biomass-derived glycerin, was investigated. The GHG reduction potential under various process designs was quantified by a multidisciplinary method, including experiments, simulations, and an ex-ante life-cycle assessment. The results reveal that the BCU-Fe system could bring considerable GHG emission reduction. Significantly, the lowest value is −34.03 kg CO2-eq/kg absorbed CO2 (−2.44 kg CO2-eq/kg circulated Fe) with the optimal yield of formate (66%) and Fe (80%). The proposed ex-ante evaluation approach not only reveals the benefits of mitigating climate change by applying the BCU-Fe system, but also serves as a generic tool to guide the industrialization of emerging carbon-neutral technologies.

Keywords Carbon dioxide utilization      Hydrothermal reactions      Biomass-based CO2 reduction      Simulation      Ex-ante LCA     
Corresponding Author(s): Jiaqi Lu,Fangming Jin   
Issue Date: 12 May 2023
 Cite this article:   
Jing Xu,Jiong Cheng,Runtian He, et al. Revealing the GHG reduction potential of emerging biomass-based CO2 utilization with an iron cycle system[J]. Front. Environ. Sci. Eng., 2023, 17(10): 127.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1727-8
https://academic.hep.com.cn/fese/EN/Y2023/V17/I10/127
Fig.1  Schematic of the proposed biomass-based CO2 utilization system combined with a hydrothermal reduction of CO2 with Fe and a biomass-based reduction of Fe3O4.
Fig.2  The system boundary of the BCU-Fe system. The part in the orange dashed frame is the HR process, and the one in the blue dashed frame is the BR process. The round rectangles with transparent filling represent the input of materials, the blue-filled round rectangles represent products before separation, and the green-filled round rectangles represent the output of products. The purple rectangles represent the different processes. Fe and Fe3O4 in light green round rectangles are the input and output of the HR process, conversely for the BR process.
ProcessInventoryForeground data sourcesBackground data sources
HRElectricity consumptionAspen Plus simulationEcoinvent database (Table S4)
NaOH consumptionUp-scaled experiment data based on (Duo et al., 2016)
Produced HCOONa
Produced H2
Fe consumptionLinked with BR process
Produced Fe3O4
BRElectricity consumptionAspen Plus simulationEcoinvent database (Table S4)
H2SO4 consumptionStoichiometric calculation
Glycerin consumptionUp-scaled experiment data based on this study
NaOH consumption
Produced LA
Fe3O4 consumptionLinked with HR process
Produced Fe
Tab.1  Summary of inventory data used in LCA calculation
Fig.3  The breakdown of the total energy consumption in the BCU-Fe system as a function of various reaction conditions in the HR process: (a) NaHCO3 concentration (mol/L) and (b) ratio of CO2 and Fe (CO2:Fe).
Fig.4  The breakdown of the total energy consumption in the BCU-Fe system as a function of various reaction conditions in the BR process: (a) different reaction time and (b) different ratios of Fe3O4 and NaOH (Fe3O4:NaOH).
Fig.5  GHG reduction potential of the BCU-Fe system for converting 1 kg CO2 and for circulating 1 kg Fe as a function of reaction conditions: (a) NaHCO3 concentration (mol/L) and (b) ratio of CO2 and Fe in the HR process.
Fig.6  Contribution of the GHG reduction potential as a function of NaHCO3 concentration (mol/L) (a) and ratio of CO2 and Fe (b) in the HR process.
Fig.7  GHG reduction potential of the BCU-Fe system for conversion of 1 kg CO2 and circulation of 1 kg Fe as a function of reaction conditions in the BR process: (a) reaction time; (b) ratio of Fe3O4 and NaOH (Fe3O4:NaOH).
Fig.8  Contribution of the GHG reduction potential as a function of reaction time (a) and ratio of Fe3O4 and NaOH (Fe3O4:NaOH) (b) in the BR process.
1 M M Abdelnaby , K Liu , K Hassanein , Z Yin . (2021). Photo/electrochemical carbon dioxide conversion into C3+ hydrocarbons: reactivity and selectivity. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 7(9): 969–981
https://doi.org/10.1002/cnma.202100106
2 A Álvarez , A Bansode , A Urakawa , A V Bavykina , T A Wezendonk , M Makkee , J Gascon , F Kapteijn . (2017). Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chemical Reviews, 117(14): 9804–9838
https://doi.org/10.1021/acs.chemrev.6b00816
3 A Babin , C Vaneeckhaute , M C Iliuta . (2021). Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review. Biomass and Bioenergy, 146: 105968
https://doi.org/10.1016/j.biombioe.2021.105968
4 G I Broman , K H Robèrt . (2017). A framework for strategic sustainable development. Journal of Cleaner Production, 140: 17–31
https://doi.org/10.1016/j.jclepro.2015.10.121
5 O Bruinsma, S Spoelstra (2010). Heat pumps in distillation. Engineering, Environmental Science, 15: 165086145
6 D A Bulushev , J R H Ross . (2018). Towards sustainable production of formic acid. ChemSusChem, 11(5): 821–836
https://doi.org/10.1002/cssc.201702075
7 Martinez F A Castillo , E M Balciunas , J M Salgado , González J M Domínguez , A Converti , R P D S Oliveira . (2013). Lactic acid properties, applications and production: a review. Trends in Food Science & Technology, 30(1): 70–83
https://doi.org/10.1016/j.tifs.2012.11.007
8 Y Cheng , Y Shan , Y Xue , Y Zhu , X Wang , L Xue , Y Liu , F Qiao , M Zhang . (2022). Variation characteristics of atmospheric methane and carbon dioxide in summertime at a coastal site in the South China Sea. Frontiers of Environmental Science & Engineering, 16(11): 139
https://doi.org/10.1007/s11783-022-1574-z
9 S Y Chin , S Shahruddin , G K Chua , N Samsodin , H D Setiabudi , N S Karam Chand , F N Chew , J X Leong , R Jusoh , N A Samsudin . (2021). Palm oil-based chemicals for sustainable development of petrochemical industries in Malaysia: progress, prospect, and challenges. ACS Sustainable Chemistry & Engineering, 9(19): 6510–6533
https://doi.org/10.1021/acssuschemeng.0c09329
10 I Delidovich , P J Hausoul , L Deng , R Pfutzenreuter , M Rose , R Palkovits . (2016). Alternative monomers based on lignocellulose and their use for polymer production. Chemical Reviews, 116(3): 1540–1599
https://doi.org/10.1021/acs.chemrev.5b00354
11 I Dincer . (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2): 1954–1971
https://doi.org/10.1016/j.ijhydene.2011.03.173
12 J Duo , F Jin , Y Wang , H Zhong , L Lyu , G Yao , Z Huo . (2016). NaHCO3-enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO3 reduction into formic acid. Chemical Communications (Cambridge), 52(16): 3316–3319
https://doi.org/10.1039/C5CC09611A
13 M Dusselier , P Van Wouwe , A Dewaele , E Makshina , B F Sels . (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy & Environmental Science, 6(5): 1415–1442
https://doi.org/10.1039/c3ee00069a
14 X Feng , Y Pi , Y Song , C Brzezinski , Z Xu , Z Li , W Lin . (2020). Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 Reduction with earth-abundant copper photosensitizers. Journal of the American Chemical Society, 142(2): 690–695
https://doi.org/10.1021/jacs.9b12229
15 R Frischknecht , N Jungbluth , H J Althaus , G Doka , R Dones , T Heck , S Hellweg , R Hischier , T Nemecek , G Rebitzer , M Spielmann . (2005). The ecoinvent database: overview and methodological framework (7 pp). International Journal of Life Cycle Assessment, 10(1): 3–9
https://doi.org/10.1065/lca2004.10.181.1
16 X Gong , J Li , S X Chang , Q Wu , Z An , C Huang , X Sun , S Li , H Wang . (2022). Cattle manure biochar and earthworm interactively affected CO2 and N2O emissions in agricultural and forest soils: Observation of a distinct difference. Frontiers of Environmental Science & Engineering, 16(3): 39
https://doi.org/10.1007/s11783-021-1473-8
17 R He , B Hu , H Zhong , F Jin , J Fan , Y H Hu , Z Jing . (2019). Reduction of CO2 with H2S in a simulated deep-sea hydrothermal vent system. Chemical Communications (Cambridge), 55(8): 1056–1059
https://doi.org/10.1039/C8CC08075E
18 J Huijbregts M a , Z J N Steinmann , P M F Elshout , G Stam , F Verones , M Vieira , M Zijp , A Hollander , R Van Zelm . (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2): 138–147
https://doi.org/10.1007/s11367-016-1246-y
19 E Igos, E Benetto, R Meyer, P Baustert, B Othoniel (2019). How to treat uncertainties in life cycle assessment studies? International Journal of Life Cycle Assessment, 24(4): 794–807
https://doi.org/10.1007/s11367-018-1477-1
20 S S Iyer , I Bajaj , P Balasubramanian , M M F Hasan . (2017). Integrated carbon capture and conversion to produce syngas: novel process design, intensification, and optimization. Industrial & Engineering Chemistry Research, 56(30): 8622–8648
https://doi.org/10.1021/acs.iecr.7b01688
21 F Jin , Y Gao , Y Jin , Y Zhang , J Cao , Z Wei , R L Jr Smith . (2011). High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles. Energy & Environmental Science, 4(3): 881–884
https://doi.org/10.1039/c0ee00661k
22 H H Khoo , I Halim , A D Handoko . (2020). LCA of electrochemical reduction of CO2 to ethylene. Journal of CO2 Utilization, 41: 101229
https://doi.org/10.1016/j.jcou.2020.101229
23 M Lacirignola , P Blanc , R Girard , P Pérez-López , I Blanc . (2017). LCA of emerging technologies: addressing high uncertainty on inputs’ variability when performing global sensitivity analysis. Science of the Total Environment, 578: 268–280
https://doi.org/10.1016/j.scitotenv.2016.10.066
24 J Li , P Zhu , H Zhong , Y Yang , J Cheng , Y Wang , F Jin . (2021). Hydrothermal reduction of NaHCO3 into formate with protein-based biomass over Pd/γ-Al2O3 nanocatalysts. ACS Sustainable Chemistry & Engineering, 9(13): 4791–4800
https://doi.org/10.1021/acssuschemeng.0c09353
25 Y Liu , D Deng , X Bao . (2020). Catalysis for selected C1 chemistry. Chem, 6(10): 2497–2514
https://doi.org/10.1016/j.chempr.2020.08.026
26 J Lu , S Kumagai , Y Fukushima , H Ohno , S Borjigin , T Kameda , Y Saito , T Yoshioka . (2021). Sustainable advance of Cl recovery from polyvinyl chloride waste based on experiment, simulation, and ex ante life-cycle assessment. ACS Sustainable Chemistry & Engineering, 9(42): 14112–14123
https://doi.org/10.1021/acssuschemeng.1c04067
27 J Lu , S Kumagai , Y Fukushima , H Ohno , T Kameda , Y Saito , T Yoshioka . (2020). Combined experiment, simulation, and ex-ante LCA Approach for sustainable Cl recovery from NaCl/Ethylene Glycol by electrodialysis. Industrial & Engineering Chemistry Research, 59(45): 20112–20122
https://doi.org/10.1021/acs.iecr.0c03565
28 J Lu , S Kumagai , H Ohno , T Kameda , Y Saito , T Yoshioka , Y Fukushima . (2019). Deducing targets of emerging technologies based on ex ante life cycle thinking: case study on a chlorine recovery process for polyvinyl chloride wastes. Resources, Conservation and Recycling, 151: 104500
https://doi.org/10.1016/j.resconrec.2019.104500
29 J Lu , J Tang , R Shan , G Li , P Rao , N Zhang . (2023). Spatiotemporal analysis of the future carbon footprint of solar electricity in the United States by a dynamic life cycle assessment. iScience, 26(3): 106188
https://doi.org/10.1016/j.isci.2023.106188
30 M Madi , M Tahir , S Tasleem . (2021). Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: a review. Journal of Environmental Chemical Engineering, 9(5): 106264
https://doi.org/10.1016/j.jece.2021.106264
31 J A Martens , A Bogaerts , N De Kimpe , P A Jacobs , G B Marin , K Rabaey , M Saeys , S Verhelst . (2017). The chemical route to a carbon dioxide neutral world. ChemSusChem, 10(6): 1039–1055
https://doi.org/10.1002/cssc.201601051
32 N G Moustakas , J Strunk . (2018). Photocatalytic CO2 reduction on TiO2-based materials under controlled reaction conditions: systematic insights from a literature study. Chemistry – A European Journal, 24(49): 12739–12746
https://doi.org/10.1002/chem.201706178
33 J F Peters , D Iribarren , J Dufour . (2015a). Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environmental Science & Technology, 49(8): 5195–5202
https://doi.org/10.1021/es5060786
34 J F Peters , D Iribarren , J Dufour . (2015b). Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel, 139: 441–456
https://doi.org/10.1016/j.fuel.2014.09.014
35 A A Kiss . (2014). Energy efficient distillation powered by heat pumps upgrading low quality energy to drive the Reboiler of the column. NPT Procestechnologie, 2: 15–17
36 C Ruiz , L Rincón , R R Contreras , C Sidney , J Almarza . (2020). Sustainable and negative carbon footprint solid-based NaOH technology for CO2 capture. ACS Sustainable Chemistry & Engineering, 8(51): 19003–19012
https://doi.org/10.1021/acssuschemeng.0c07093
37 M A Sabri , S Al Jitan , D Bahamon , L F Vega , G Palmisano . (2021). Current and future perspectives on catalytic-based integrated carbon capture and utilization. Science of the Total Environment, 790: 148081
https://doi.org/10.1016/j.scitotenv.2021.148081
38 B S Silvestre , D M Ţîrcă . (2019). Innovations for sustainable development: moving toward a sustainable future. Journal of Cleaner Production, 208: 325–332
https://doi.org/10.1016/j.jclepro.2018.09.244
39 P Stegmann , V Daioglou , M Londo , D P Van Vuuren , M Junginger . (2022). Plastic futures and their CO2 emissions. Nature, 612(7939): 272–276
https://doi.org/10.1038/s41586-022-05422-5
40 Y Tan , W Nookuea , H Li , E Thorin , J Yan . (2016). Property impacts on Carbon Capture and Storage (CCS) processes: a review. Energy Conversion and Management, 118: 204–222
https://doi.org/10.1016/j.enconman.2016.03.079
41 Y Tan , W Nookuea , H Li , E Thorin , J Yan . (2017). Evaluation of viscosity and thermal conductivity models for CO2 mixtures applied in CO2 cryogenic process in carbon capture and storage (CCS). Applied Thermal Engineering, 123: 721–733
https://doi.org/10.1016/j.applthermaleng.2017.05.124
42 The Intergovernmental Panel on Climate Change (2022). IPCC, 2022: summary for policymakers. In: Climate change 2022: Impacts, adaptation, and vulnerability: contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, NY, US, pp. 3–33
43 N Thonemann , A Schulte . (2019). From laboratory to industrial scale: a prospective LCA for electrochemical reduction of CO2 to formic acid. Environmental Science & Technology, 53(21): 12320–12329
https://doi.org/10.1021/acs.est.9b02944
44 M Villares , A Işıldar , Der Giesen C Van , J Guinée . (2017). Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. International Journal of Life Cycle Assessment, 22(10): 1618–1633
https://doi.org/10.1007/s11367-017-1270-6
45 N Von Der Assen , P Voll , M Peters , A Bardow . (2014). Life cycle assessment of CO2 capture and utilization: a tutorial review. Chemical Society Reviews, 43(23): 7982–7994
https://doi.org/10.1039/C3CS60373C
46 F Wang , S Deng , H Zhang , J Wang , J Zhao , H Miao , J Yuan , J Yan . (2020a). A comprehensive review on high-temperature fuel cells with carbon capture. Applied Energy, 275: 115342
https://doi.org/10.1016/j.apenergy.2020.115342
47 W Wang , S Wang , X Ma , J Gong . (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7): 3703–3727
https://doi.org/10.1039/c1cs15008a
48 X Wang , Y Yang , H Zhong , R He , J Cheng , F Jin . (2020b). In situ formed Raney-Ni/Fe3O4 catalyzed reduction of NaHCO3 into acetate with Fe as reductant in water. Catalysis Today, 350: 136–141
https://doi.org/10.1016/j.cattod.2019.06.030
49 W Wei , P Larrey-Lassalle , T Faure , N Dumoulin , P Roux , J D Mathias . (2015). How to conduct a proper sensitivity analysis in life cycle assessment: taking into account correlations within LCI Data and Interactions within the LCA calculation model. Environmental Science & Technology, 49(1): 377–385
https://doi.org/10.1021/es502128k
50 Y M Wei , R Han , C Wang , B Yu , Q M Liang , X C Yuan , J Chang , Q Zhao , H Liao , B Tang , J Yan , L Cheng , Z Yang . (2020). Self-preservation strategy for approaching global warming targets in the Post-Paris Agreement Era. Nature Communications, 11(1): 1624
https://doi.org/10.1038/s41467-020-15453-z
51 G Wernet , C Bauer , B Steubing , J Reinhard , E Moreno-Ruiz , B Weidema . (2016). The ecoinvent database version 3 (part I): overview and methodology. International Journal of Life Cycle Assessment, 21(9): 1218–1230
https://doi.org/10.1007/s11367-016-1087-8
52 R Wölfel , N Taccardi , A Bösmann , P Wasserscheid . (2011). Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chemistry, 13(10): 2759–2763
https://doi.org/10.1039/c1gc15434f
53 Q Xu , X Li , T Pan , C Yu , J Deng , Q Guo , Y Fu . (2016). Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone. Green Chemistry, 18(5): 1287–1294
https://doi.org/10.1039/C5GC01454A
54 N Xue , J Lu , D Gu , Y Lou , Y Yuan , G Li , S Kumagai , Y Saito , T Yoshioka , N Zhang . (2023). Carbon footprint analysis and carbon neutrality potential of desalination by electrodialysis for different applications. Water Research, 232: 119716
https://doi.org/10.1016/j.watres.2023.119716
55 M Yang , X Feng , G Liu . (2016). Heat integration of heat pump assisted distillation into the overall process. Applied Energy, 162: 1–10
https://doi.org/10.1016/j.apenergy.2015.10.044
56 Y Yang , H Zhong , R He , X Wang , J Cheng , G Yao , F Jin . (2019). Synergetic conversion of microalgae and CO2 into value-added chemicals under hydrothermal conditions. Green Chemistry, 21(6): 1247–1252
https://doi.org/10.1039/C8GC03645D
57 Y Yang , H Zhong , G Yao , R He , B Jin , F Jin . (2018). Hydrothermal reduction of NaHCO3 into formate with hexanehexol. Catalysis Today, 318: 10–14
https://doi.org/10.1016/j.cattod.2017.09.005
58 W Ye , J Huang , J Lin , X Zhang , J Shen , P Luis , B Van Der Bruggen . (2015). Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: conditioning NaOH as a CO2 absorbent. Separation and Purification Technology, 144: 206–214
https://doi.org/10.1016/j.seppur.2015.02.031
59 D Zhang , R Hou , W Wang , H Zhao . (2022). Recovery and reuse of floc sludge for high-performance capacitors. Frontiers of Environmental Science & Engineering, 16(6): 78
https://doi.org/10.1007/s11783-021-1512-5
60 X Zhao , H Zhou , V S Sikarwar , M Zhao , A H A Park , P S Fennell , L Shen , L S Fan . (2017). Biomass-based chemical looping technologies: the good, the bad and the future. Energy & Environmental Science, 10(9): 1885–1910
https://doi.org/10.1039/C6EE03718F
[1] FSE-23024-OF-XJ_suppl_1 Download
[1] Gaosheng Xi, Xiaojiang Gao, Ming Zhou, Xiangmei Zhai, Ming Chen, Xingxiang Wang, Xiaoying Yang, Zezhen Pan, Zimeng Wang. Migration of ammonium nitrogen in ion-absorbed rare earth soils during and post in situ mining: a column study and numerical simulation analysis[J]. Front. Environ. Sci. Eng., 2023, 17(8): 102-.
[2] Samal Kaumbekova, Mehdi Amouei Torkmahalleh, Naoya Sakaguchi, Masakazu Umezawa, Dhawal Shah. Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein[J]. Front. Environ. Sci. Eng., 2023, 17(2): 15-.
[3] Zuoyong Zhou, Ni Yan, Mengxi Yin, Tengfei Ren, Shuning Chen, Kechao Lu, Xiaoxin Cao, Xia Huang, Xiaoyuan Zhang. Catalytic ozonation in advanced treatment of kitchen wastewater: multi-scale simulation and pilot-scale study[J]. Front. Environ. Sci. Eng., 2023, 17(12): 146-.
[4] Min Cheng, Zhiyuan Zhang, Shihui Wang, Kexin Bi, Kong-qiu Hu, Zhongde Dai, Yiyang Dai, Chong Liu, Li Zhou, Xu Ji, Wei-qun Shi. A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(12): 148-.
[5] Qing Li, Xiaomeng Wang, Ying Liu, Zhun Ma, Qun Wang, Dongmei Xu, Jun Gao, Ruirui Wu, Hui Sun, Xueli Gao. Enhanced separation of tetrafluoropropanol from water via carbon nanotubes membranes: insights from molecular dynamics simulations[J]. Front. Environ. Sci. Eng., 2023, 17(11): 140-.
[6] Xue Bai, Chang Li, Lingyu Ma, Pei Xin, Fengjie Li, Zhenjia Xu. Quantitative analysis of microplastics in coastal tidal-flat reclamation in Dongtai, China[J]. Front. Environ. Sci. Eng., 2022, 16(8): 107-.
[7] Jibin Li, Jinxing Ma, Li Sun, Xin Liu, Huaiyu Liao, Di He. Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD) for decentralized wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(7): 86-.
[8] Mahsa Kheirandish, Chunjiang An, Zhi Chen, Xiaolong Geng, Michel Boufadel. Numerical simulation of benzene transport in shoreline groundwater affected by tides under different conditions[J]. Front. Environ. Sci. Eng., 2022, 16(5): 61-.
[9] Kaixuan Zheng, Xingshen Luo, Yiqi Tan, Zhonglei Li, Hongtao Wang, Tan Chen, Li Zhao, Liangtong Zhan. Passive convergence-permeable reactive barrier (PC-PRB): An effective configuration to enhance hydraulic performance[J]. Front. Environ. Sci. Eng., 2022, 16(12): 156-.
[10] Yukun Zhang, Shuying Wang, Shengbo Gu, Liang Zhang, Yijun Dong, Lei Jiang, Wei Fan, Yongzhen Peng. The combined effects of biomass and temperature on maximum specific ammonia oxidation rate in domestic wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 123-.
[11] Zhenlian Qi, Shijie You, Ranbin Liu, C. Joon Chuah. Performance and mechanistic study on electrocoagulation process for municipal wastewater treatment based on horizontal bipolar electrodes[J]. Front. Environ. Sci. Eng., 2020, 14(3): 40-.
[12] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
[13] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[14] Bo Zhang, Xilai Zheng, Tianyuan Zheng, Jia Xin, Shuai Sui, Di Zhang. The influence of slope collapse on water exchange between a pit lake and a heterogeneous aquifer[J]. Front. Environ. Sci. Eng., 2019, 13(2): 20-.
[15] Ozan Capraz, Olcay Polat, Askiner Gungor. Performance evaluation of waste electrical and electronic equipment disassembly layout configurations using simulation[J]. Front. Environ. Sci. Eng., 2017, 11(5): 5-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed