Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (10) : 129    https://doi.org/10.1007/s11783-023-1729-6
REVIEW ARTICLE
A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process
Jiaheng Teng1, Ying Deng1, Xiaoni Zhou1, Wenfa Yang1, Zhengyi Huang1, Hanmin Zhang2, Meijia Zhang1, Hongjun Lin1()
1. Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
2. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
 Download: PDF(5811 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Fundamentals of membrane fouling are comprehensively reviewed.

● Contribution of thermodynamics on revealing membrane fouling mechanism is summarized.

● Quantitative approaches toward thermodynamic fouling mechanisms are deeply analyzed.

● Inspirations of thermodynamics for membrane fouling mitigation are briefly discussed.

● Research prospects on thermodynamics and membrane fouling are forecasted.

Membrane technology is widely regarded as one of the most promising technologies for wastewater treatment and reclamation in the 21st century. However, membrane fouling significantly limits its applicability and productivity. In recent decades, research on the membrane fouling has been one of the hottest spots in the field of membrane technology. In particular, recent advances in thermodynamics have substantially widened people’s perspectives on the intrinsic mechanisms of membrane fouling. Formulation of fouling mitigation strategies and fabrication of anti-fouling membranes have both benefited substantially from those studies. In the present review, a summary of the recent results on the thermodynamic mechanisms associated with the critical adhesion and filtration processes during membrane fouling is provided. Firstly, the importance of thermodynamics in membrane fouling is comprehensively assessed. Secondly, the quantitative methods and general factors involved in thermodynamic fouling mechanisms are critically reviewed. Based on the aforementioned information, a brief discussion is presented on the potential applications of thermodynamic fouling mechanisms for membrane fouling control. Finally, prospects for further research on thermodynamic mechanisms underlying membrane fouling are presented. Overall, the present review offers comprehensive and in-depth information on the thermodynamic mechanisms associated with complex fouling behaviors, which will further facilitate research and development in membrane technology.

Keywords Membrane fouling      Thermodynamic mechanism      XDLVO theory      Flory-Huggins theory      Fouling migration     
Corresponding Author(s): Hongjun Lin   
Issue Date: 13 June 2023
 Cite this article:   
Jiaheng Teng,Ying Deng,Xiaoni Zhou, et al. A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process[J]. Front. Environ. Sci. Eng., 2023, 17(10): 129.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1729-6
https://academic.hep.com.cn/fese/EN/Y2023/V17/I10/129
Fig.1  Number of publications concerning membrane fouling since 1999. These data were collected from Science Direct using the keyword “membrane fouling.”
Fig.2  Schematic of membrane fouling: (a) initial fouling stage; (b) developing stage; (c) developed fouling stage.
Fig.3  Force analysis of a foulant (a) near the membrane, and (b) deposited on the membrane (Hong et al., 2013).
Fig.4  Profiles of variations of van der Waals (LW), acid-base (AB), electrostatic double-layer (EL) and total interaction energies between foulants and membrane with their separation distance (Hong et al., 2013).
Fig.5  Schematic of thermodynamic interactions between foulant and membrane surface.
Fig.6  The images of membrane constructed by (a) Fractal theory, and (b) Gaussian distribution.
Fig.7  (a) Actual membrane scanned by AFM, and (b) reconstructed membrane surface and diagram of triangulation technique (Teng et al., 2018a).
Fig.8  Foulant images are simulated by (a) periodic sinusoidal function, (b) fractal theory, and (c) Gaussian distribution.
Fig.9  Schematic of thermodynamic interactions between the foulant and membrane (Cai et al., 2017).
Fig.10  Schematic of (a) gel layer formation process, (b) filtration process when a gel layer is formed on the membrane surface, (c) lattice of the cross-section of gel layer (Chen et al., 2016).
Fig.11  Schematic diagram of the gel formation process: (a) polymer structure, (b) swelling gel.
Fig.12  Schematic diagram of the role of hydrogen bonding in gel filtration process (Chen et al., 2019).
Fig.13  Synergistic fouling behaviors of calcium ions and poly-aluminum chloride associated with alginate solution in coagulation-ultrafiltration (UF) process (Long et al., 2021).
1 R C AgarwalaV Agarwala (2003). Electroless alloy/composite coatings: a review. Sadhana, 28(3–4): 475–493
2 S F Anis, B S Lalia, R Hashaikeh, N Hilal. (2022). Ceramic nanofiltration membranes for efficient fouling mitigation through periodic electrolysis. Separation and Purification Technology, 303: 122228
https://doi.org/10.1016/j.seppur.2022.122228
3 Bacchin P, Aimar P, Field R W (2006). Critical and sustainable fluxes: theory, experiments and applications. Journal of Membrane Science, 281(1–2): 42–69
4 R Bai, H F Leow. (2002). Microfiltration of activated sludge wastewater—the effect of system operation parameters. Separation and Purification Technology, 29(2): 189–198
https://doi.org/10.1016/S1383-5866(02)00075-8
5 S Bhattacharjee, M Elimelech. (1997). Surface element integration: a novel technique for evaluation of DLVO interaction between a particle and a flat plate. Journal of Colloid and Interface Science, 193(2): 273–285
https://doi.org/10.1006/jcis.1997.5076
6 S Bhattacharjee, M Elimelech, M Borkovec. (1998b). DLVO interaction between colloidal particles: beyond Derjaguin’s approximation. Croatica Chemica Acta, 71(4): 883–903
7 S Bhattacharjee, C H Ko, M Elimelech. (1998a). DLVO interaction between rough surfaces. Langmuir, 14(12): 3365–3375
https://doi.org/10.1021/la971360b
8 P M Biesheuvel. (2005). Volume exclusion effects in the ground-state dominance approximation for polyelectrolyte adsorption on charged interfaces. European Physical Journal E, 16(4): 353–359
https://doi.org/10.1140/epje/i2004-10085-1
9 P M (2022) Biesheuvel. Tutorial on the chemical potential of ions in water and porous materials: electrical double layer theory and the influence of ion volume and ion-ion electrostatic interactions. DOI: 10.48550/arXiv.2212.07851
10 C Boo, S Hong, M Elimelech. (2018). Relating organic fouling in membrane distillation to intermolecular adhesion forces and interfacial surface energies. Environmental Science & Technology, 52(24): 14198–14207
https://doi.org/10.1021/acs.est.8b05768
11 J A BrantA E (2002) Childress. Assessing short-range membrane–colloid interactions using surface energetics. Journal of Membrane Science, 203(1–2): 257–273
12 J A Brant, A E Childress. (2004). Colloidal adhesion to hydrophilic membrane surfaces. Journal of Membrane Science, 241(2): 235–248
https://doi.org/10.1016/j.memsci.2004.04.036
13 H Cai, H Fan, L Zhao, H Hong, L Shen, Y He, H Lin, J Chen. (2016). Effects of surface charge on interfacial interactions related to membrane fouling in a submerged membrane bioreactor based on thermodynamic analysis. Journal of Colloid and Interface Science, 465: 33–41
https://doi.org/10.1016/j.jcis.2015.11.044
14 X Cai, L Shen, M Zhang, J Chen, H Hong, H Lin. (2017). Membrane fouling in a submerged membrane bioreactor: an unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces. Bioresource Technology, 243: 1121–1132
https://doi.org/10.1016/j.biortech.2017.07.054
15 A W Chan, R J Neufeld. (2009). Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials, 30(30): 6119–6129
https://doi.org/10.1016/j.biomaterials.2009.07.034
16 H Chang, B Liu, Z Zhang, R Pawar, Z Yan, J C Crittenden, R D Vidic. (2021). A critical review of membrane wettability in membrane distillation from the perspective of interfacial interactions. Environmental Science & Technology, 55(3): 1395–1418
https://doi.org/10.1021/acs.est.0c05454
17 I S Chang, P Le Clech, B Jefferson, S Judd. (2002). Membrane fouling in membrane bioreactors for wastewater treatment. Journal of Environmental Engineering, 128(11): 1018–1029
https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1018
18 J R Chen, M J Zhang, F Q Li, L Qian, H J Lin, L N Yang, X L Wu, X L Zhou, Y M He, B Q Liao. (2016). Membrane fouling in a membrane bioreactor: high filtration resistance of gel layer and its underlying mechanism. Water Research, 102: 82–89
https://doi.org/10.1016/j.watres.2016.06.028
19 J Chen, H Lin, L Shen, Y He, M Zhang, B Q Liao. (2017). Realization of quantifying interfacial interactions between a randomly rough membrane surface and a foulant particle. Bioresource Technology, 226: 220–228
https://doi.org/10.1016/j.biortech.2016.12.025
20 L Chen, Y Tian, C Q Cao, J Zhang, Z N Li. (2012). Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology. Water Research, 46(8): 2693–2704
https://doi.org/10.1016/j.watres.2012.02.030
21 Y Chen, J Teng, B Q Liao, R Li, H Lin. (2020). Molecular insights into the impacts of iron(III) ions on membrane fouling by alginate. Chemosphere, 242: 125232
https://doi.org/10.1016/j.chemosphere.2019.125232
22 Y Chen, J Teng, L Shen, G Yu, R Li, Y Xu, F Wang, B Q Liao, H Lin. (2019). Novel insights into membrane fouling caused by gel layer in a membrane bioreactor: effects of hydrogen bonding. Bioresource Technology, 276: 219–225
https://doi.org/10.1016/j.biortech.2019.01.010
23 H Cheng, L Shen, C Wu. (2006). LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules, 39(6): 2325–2329
https://doi.org/10.1021/ma052561m
24 J Czarnecki. (1985). The effects of surface inhomogeneities on the interactions in colloidal systems and colloid stability. Advances in Colloid and Interface Science, 24: 283–319
https://doi.org/10.1016/0001-8686(85)80035-X
25 E Deng, X Chen, D Rub, T N Tran, H Lin. (2022). Energy-efficient membranes for microalgae dewatering: fouling challenges and mitigation strategies. Separation and Purification Technology, 296: 121382
https://doi.org/10.1016/j.seppur.2022.121382
26 R C Dougherty. (1998). Temperature and pressure dependence of hydrogen bond strength: a perturbation molecular orbital approach. Journal of Chemical Physics, 109(17): 7372–7378
https://doi.org/10.1063/1.477343
27 A (2010) Drews. Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. Journal of Membrane Science, 363(1–2): 1–28
28 M Elimelech, S Bhattacharjee. (1998). A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. Journal of Membrane Science, 145(2): 223–241
https://doi.org/10.1016/S0376-7388(98)00078-7
29 P J Flory. (1942). Thermodynamics of high polymer solutions. Journal of Chemical Physics, 10(1): 51–61
https://doi.org/10.1063/1.1723621
30 T Gao, K Xiao, J Zhang, W Xue, C Wei, X Zhang, S Liang, X Wang, X Huang. (2022). Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process. Frontiers of Environmental Science & Engineering, 16(4): 49
https://doi.org/10.1007/s11783-021-1483-6
31 T Gao, H Zhang, X Xu, J Teng. (2021a). Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading. Water Research, 190: 116679
https://doi.org/10.1016/j.watres.2020.116679
32 T Gao, H Zhang, X Xu, J Teng, M Lu. (2021b). Enhanced water and energy recovery from anaerobic osmotic membrane bioreactors treating waste activated sludge based on the draw solution concentration and temperature regulation. Chemical Engineering Journal, 417: 129325
https://doi.org/10.1016/j.cej.2021.129325
33 P S Goh, W J Lau, M H D Othman, A F Ismail. (2018). Membrane fouling in desalination and its mitigation strategies. Desalination, 425: 130–155
https://doi.org/10.1016/j.desal.2017.10.018
34 N Harnkarnsujarit, S Charoenrein, Y H Roos. (2012). Microstructure formation of maltodextrin and sugar matrices in freeze-dried systems. Carbohydrate Polymers, 88(2): 734–742
https://doi.org/10.1016/j.carbpol.2012.01.028
35 M Hashino, T Katagiri, N Kubota, Y Ohmukai, T Maruyama, H Matsuyama. (2011). Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate. Journal of Membrane Science, 366(1–2): 389–397
https://doi.org/10.1016/j.memsci.2010.10.025
36 E M Hoek, G K Agarwal. (2006). Extended DLVO interactions between spherical particles and rough surfaces. Journal of Colloid and Interface Science, 298(1): 50–58
https://doi.org/10.1016/j.jcis.2005.12.031
37 E M Hoek, S Bhattacharjee, M Elimelech. (2003). Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 19(11): 4836–4847
https://doi.org/10.1021/la027083c
38 H Hong, X Cai, L Shen, R Li, H Lin. (2017). Membrane fouling in a submerged membrane bioreactor: new method and its applications in interfacial interaction quantification. Bioresource Technology, 241: 406–414
https://doi.org/10.1016/j.biortech.2017.05.096
39 H Hong, H Lin, R Mei, X Zhou, B Q Liao, L Zhao. (2016). Membrane fouling in a membrane bioreactor: a novel method for membrane surface morphology construction and its application in interaction energy assessment. Journal of Membrane Science, 516: 135–143
https://doi.org/10.1016/j.memsci.2016.06.006
40 H Hong, W Peng, M Zhang, J Chen, Y He, F Wang, X Weng, H Yu, H Lin. (2013). Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications. Bioresource Technology, 146: 7–14
https://doi.org/10.1016/j.biortech.2013.07.040
41 H Hong, M Zhang, Y He, J Chen, H Lin. (2014). Fouling mechanisms of gel layer in a submerged membrane bioreactor. Bioresource Technology, 166: 295–302
https://doi.org/10.1016/j.biortech.2014.05.063
42 W Huang, H Chu, B Dong. (2014). Understanding the fouling of algogenic organic matter in microfiltration using membrane–foulant interaction energy analysis: effects of organic hydrophobicity. Colloids and Surfaces. B, Biointerfaces, 122: 447–456
https://doi.org/10.1016/j.colsurfb.2014.06.038
43 X HuangC H WeiK C (2008) Yu. Mechanism of membrane fouling control by suspended carriers in a submerged membrane bioreactor. Journal of Membrane Science, 309(1–2): 7–16
44 X Huang, K Xiao, Y X Shen. (2010). Recent advances in membrane bioreactor technology for wastewater treatment in China. Frontiers of Environmental Science & Engineering in China, 4(3): 245–271
https://doi.org/10.1007/s11783-010-0240-z
45 Z Huang, J Liu, Y Liu, Y Xu, R Li, H Hong, L Shen, H Lin, B Q Liao. (2021). Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process. Journal of Membrane Science, 623: 119080
https://doi.org/10.1016/j.memsci.2021.119080
46 M L Huggins. (1941). Solutions of long chain compounds. Journal of Chemical Physics, 9(5): 440
https://doi.org/10.1063/1.1750930
47 T Ishidao, M Akagi, H Sugimoto, Y Onoue, Y Iwai, Y Arai. (1995). Swelling equilibria of poly(N-isopropylacrylamide) gel in aqueous polymer solutions. Fluid Phase Equilibria, 104: 119–129
https://doi.org/10.1016/0378-3812(94)02643-F
48 J Kalda. (2001). Description of random Gaussian surfaces by a four-vertex model. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(2): 020101
https://doi.org/10.1103/PhysRevE.64.020101
49 D S Kim, J S Kang, Y M Lee. (2005). The influence of membrane surface properties on fouling in a membrane bioreactor for wastewater treatment. Separation Science and Technology, 39(4): 833–854
https://doi.org/10.1081/SS-120028449
50 H C Kim, B A Dempsey. (2013). Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. Journal of Membrane Science, 428: 190–197
https://doi.org/10.1016/j.memsci.2012.11.004
51 W KühnlA PiryV KaufmannT GreinS RippergerU (2010) Kulozik. Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: a surface energy approach. Journal of Membrane Science, 352(1–2): 107–115
52 S E Kwan, E Bar-Zeev, M Elimelech. (2015). Biofouling in forward osmosis and reverse osmosis: measurements and mechanisms. Journal of Membrane Science, 493: 703–708
https://doi.org/10.1016/j.memsci.2015.07.027
53 C S Laspidou, B E Rittmann. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36(11): 2711–2720
https://doi.org/10.1016/S0043-1354(01)00413-4
54 P Le-ClechV ChenT (2006) Fane. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1–2): 17–53
55 J Lee, W Y Ahn, C H Lee. (2001). Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Research, 35(10): 2435–2445
https://doi.org/10.1016/S0043-1354(00)00524-8
56 Lee K P, Arnot T C, Mattia D (2011). A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 370(1−2): 1−22
57 S LeeC Boo M ElimelechS (2010) Hong. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 365(1–2): 34–39
58 W LeeS Kang H (2003) Shin. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science, 216(1–2): 217–227
59 Q Lei, F Li, L Shen, L Yang, B Q Liao, H Lin. (2016a). Tuning anti-adhesion ability of membrane for a membrane bioreactor by thermodynamic analysis. Bioresource Technology, 216: 691–698
https://doi.org/10.1016/j.biortech.2016.06.008
60 Q Lei, M Zhang, L Shen, R Li, B Q Liao, H Lin. (2016b). A novel insight into membrane fouling mechanism regarding gel layer filtration: Flory-Huggins based filtration mechanism. Scientific Reports, 6(1): 33343
https://doi.org/10.1038/srep33343
61 Z Lei, J Wang, L Leng, S Yang, M Dzakpasu, Q Li, Y Y Li, X C Wang, R Chen. (2021). New insight into the membrane fouling of anaerobic membrane bioreactors treating sewage: physicochemical and biological characterization of cake and gel layers. Journal of Membrane Science, 632: 119383
https://doi.org/10.1016/j.memsci.2021.119383
62 C Li, W Sun, Z Lu, X Ao, S Li. (2020). Ceramic nanocomposite membranes and membrane fouling: a review. Water Research, 175: 115674
https://doi.org/10.1016/j.watres.2020.115674
63 Y Li, M Yu, X Meng, W Fan, D Liang, H Liu, L Yang, L Shen, Q Zhao, S Meng. (2022). An effective way in application of coagulants for more accurate fouling control via transparent exopolymer particles (TEP) determination. Separation and Purification Technology, 303: 122279
https://doi.org/10.1016/j.seppur.2022.122279
64 S Liang, K Xiao, J Wu, P Liang, X Huang. (2014). Mechanism of membrane filterability amelioration via tuning mixed liquor property by pre-ozonation. Journal of Membrane Science, 454: 111–118
https://doi.org/10.1016/j.memsci.2013.11.037
65 H Lin, P Wei, M Zhang, J Chen, H Hong, Z Ye. (2013). A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination, 314(4): 169–188
https://doi.org/10.1016/j.desal.2013.01.019
66 H Lin, K Xie, B Mahendran, D M Bagley, K T Leung, S N Liss, B Q Liao. (2009). Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Research, 43(15): 3827–3837
https://doi.org/10.1016/j.watres.2009.05.025
67 H Lin, M Zhang, F Wang, Y He, J Chen, H Hong, A Wang, H Yu. (2014a). Experimental evidence for osmotic pressure-induced fouling in a membrane bioreactor. Bioresource Technology, 158: 119–126
https://doi.org/10.1016/j.biortech.2014.02.018
68 H Lin, M Zhang, F Wang, F Meng, B Q Liao, H Hong, J Chen, W Gao. (2014b). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460: 110–125
https://doi.org/10.1016/j.memsci.2014.02.034
69 T Lin, Z Lu, W Chen. (2014c). Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach. Journal of Membrane Science, 461: 49–58
https://doi.org/10.1016/j.memsci.2014.03.022
70 T Lin, J Zhang, W Chen. (2017). Recycling of activated carbon filter backwash water using ultrafiltration: membrane fouling caused by different dominant interfacial forces. Journal of Membrane Science, 544: 174–185
https://doi.org/10.1016/j.memsci.2017.09.028
71 X M Liu, G P Sheng, H W Luo, F Zhang, S J Yuan, J Xu, R J Zeng, J G Wu, H Q Yu. (2010). Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environmental Science & Technology, 44(11): 4355–4360
https://doi.org/10.1021/es9016766
72 Y Long, X You, Y Chen, H Hong, B Q Liao, H Lin. (2020). Filtration behaviors and fouling mechanisms of ultrafiltration process with polyacrylamide flocculation for water treatment. Science of the Total Environment, 703: 135540
https://doi.org/10.1016/j.scitotenv.2019.135540
73 Y Long, G Yu, L Dong, Y Xu, H Lin, Y Deng, X You, L Yang, B Q Liao. (2021). Synergistic fouling behaviors and mechanisms of calcium ions and polyaluminum chloride associated with alginate solution in coagulation-ultrafiltration (UF) process. Water Research, 189: 116665
https://doi.org/10.1016/j.watres.2020.116665
74 B Mandelbrot. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension.. Science, 156(3775): 636–638
https://doi.org/10.1126/science.156.3775.636
75 L Marbelia, M Mulier, D Vandamme, K Muylaert, A Szymczyk, I F J Vankelecom. (2016). Polyacrylonitrile membranes for microalgae filtration: influence of porosity, surface charge and microalgae species on membrane fouling. Algal Research, 19: 128–137
https://doi.org/10.1016/j.algal.2016.08.004
76 E MartinesL CsaderovaH MorganA CurtisM (2008) Riehle. DLVO interaction energy between a sphere and a nano-patterned plate. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 318(1–3): 45–52
77 J M Meinders, H C van der Mei, H J Busscher. (1995). Deposition efficiency and reversibility of bacterial adhesion under flow. Journal of Colloid and Interface Science, 176(2): 329–341
https://doi.org/10.1006/jcis.1995.9960
78 F Meng, S R Chae, A Drews, M Kraume, H S Shin, F Yang. (2009). Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Research, 43(6): 1489–1512
https://doi.org/10.1016/j.watres.2008.12.044
79 F Meng, H Zhang, F Yang, L Liu. (2007). Characterization of cake layer in submerged membrane bioreactor. Environmental Science & Technology, 41(11): 4065–4070
https://doi.org/10.1021/es062208b
80 F Meng, S Zhang, Y Oh, Z Zhou, H S Shin, S R Chae. (2017). Fouling in membrane bioreactors: an updated review. Water Research, 114: 151–180
https://doi.org/10.1016/j.watres.2017.02.006
81 R Miao, L Wang, N Mi, Z Gao, T Liu, Y Lv, X Wang, X Meng, Y Yang. (2015). Enhancement and mitigation mechanisms of protein fouling of ultrafiltration membranes under different ionic strengths. Environmental Science & Technology, 49(11): 6574–6580
https://doi.org/10.1021/es505830h
82 T Miyoshi, K Yuasa, T Ishigami, S Rajabzadeh, E Kamio, Y Ohmukai, D Saeki, J Ni, H Matsuyama. (2015). Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors. Applied Surface Science, 330: 351–357
https://doi.org/10.1016/j.apsusc.2015.01.018
83 K NakamuraK (2006) Matsumoto. Properties of protein adsorption onto pore surface during microfiltration: effects of solution environment and membrane hydrophobicity. Journal of Membrane Science, 280(1–2): 363–374
84 F Neemann, S Rosenberger, B Jefferson, E J Mcadam. (2013). Non-covalent protein–polysaccharide interactions and their influence on membrane fouling. Journal of Membrane Science, 446: 310–317
https://doi.org/10.1016/j.memsci.2013.06.054
85 L Ni, Q Shi, M Wu, J Ma, Y Wang. (2021). Fouling behavior and mechanism of hydrophilic modified membrane in anammox membrane bioreactor: role of gel layer. Journal of Membrane Science, 620: 118988
https://doi.org/10.1016/j.memsci.2020.118988
86 Y Nitta, M Yoshimura, K Nishinari. (2014). The effect of thermal history on the elasticity of K-type gellan gels. Carbohydrate Polymers, 113: 189–193
https://doi.org/10.1016/j.carbpol.2014.06.084
87 Orwoll R A, Arnold P A (2007). Physical Properties of Polymers Handbook. Mark J E, ed. New York: Springer, 233–257
88 Z Pan, B Zeng, G Yu, J Teng, H Zhang, L Shen, L Yang, H Lin. (2022). Mechanistic insights into Ca-alginate gel-associated membrane fouling affected by Ethylene Diamine Tetraacetic Acid (EDTA). Science of the Total Environment, 842: 156912
https://doi.org/10.1016/j.scitotenv.2022.156912
89 S Petrovski, Z A Dyson, E S Quill, S J Mcilroy, D Tillett, R J Seviour. (2011). An examination of the mechanisms for stable foam formation in activated sludge systems. Water Research, 45(5): 2146–2154
https://doi.org/10.1016/j.watres.2010.12.026
90 X QuX Cai M ZhangH LinL H ZhangB Q (2018) Liao. A facile method for simulating randomly rough membrane surface associated with interface behaviors. Applied Surface Science, 427(Part A): 915–921
91 A Sepehri, M H Sarrafzadeh. (2018). Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor. Chemical Engineering and Processing, 128: 10–18
https://doi.org/10.1016/j.cep.2018.04.006
92 M A Shannon, P W Bohn, M Elimelech, J G Georgiadis, B J Marinas, A M Mayes. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185): 301–310
https://doi.org/10.1038/nature06599
93 Q She, C Y Tang, Y N Wang, Z Zhang. (2009). The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination, 249(3): 1079–1087
https://doi.org/10.1016/j.desal.2009.05.015
94 Q She, R Wang, A G Fane, C Y Tang. (2016). Membrane fouling in osmotically driven membrane processes: a review. Journal of Membrane Science, 499: 201–233
https://doi.org/10.1016/j.memsci.2015.10.040
95 L Shen, X Wang, R Li, H Yu, H Hong, H Lin, J Chen, B Q Liao. (2017). Physicochemical correlations between membrane surface hydrophilicity and adhesive fouling in membrane bioreactors. Journal of Colloid and Interface Science, 505: 900–909
https://doi.org/10.1016/j.jcis.2017.06.090
96 S L Shenoy, P C Painter, M M Coleman. (1999). The swelling and collapse of hydrogen bonded polymer gels. Polymer, 40(17): 4853–4863
https://doi.org/10.1016/S0032-3861(98)00699-5
97 I Simonsen, Å Larsen, E Andreassen, E Ommundsen, K Nord-Varhaug. (2009). Haze of surface random systems: an approximate analytic approach. Physical Review A, 79(6): 063813
https://doi.org/10.1103/PhysRevA.79.063813
98 W Song, S Liu, M Xie, P Zhao, X Wang. (2022). FO process for simultaneous wastewater pre-concentration and seawater concentrate disposal: impacts of seawater concentrate on membrane fouling in long-term operation. Desalination, 544: 116143
https://doi.org/10.1016/j.desal.2022.116143
99 E Spruijt, P M Biesheuvel, W M De Vos. (2015). Adsorption of charged and neutral polymer chains on silica surfaces: the role of electrostatics, volume exclusion, and hydrogen bonding. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 91(1): 012601
https://doi.org/10.1103/PhysRevE.91.012601
100 X Su, Y Tian, H Li, C Wang. (2013). New insights into membrane fouling based on characterization of cake sludge and bulk sludge: an especial attention to sludge aggregation. Bioresource Technology, 128: 586–592
https://doi.org/10.1016/j.biortech.2012.11.005
101 J Teng, Y Chen, G Ma, H Hong, T Sun, B Q Liao, H Lin. (2020a). Membrane fouling by alginate in polyaluminum chloride (PACl) coagulation/microfiltration process: molecular insights. Separation and Purification Technology, 236: 116294
https://doi.org/10.1016/j.seppur.2019.116294
102 J Teng, L Shen, Y He, B Q Liao, G Wu, H Lin. (2018a). Novel insights into membrane fouling in a membrane bioreactor: elucidating interfacial interactions with real membrane surface. Chemosphere, 210: 769–778
https://doi.org/10.1016/j.chemosphere.2018.07.086
103 J Teng, L Shen, G Yu, F Wang, F Li, X Zhou, Y He, H Lin. (2018b). Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor. Bioresource Technology, 257: 39–46
https://doi.org/10.1016/j.biortech.2018.02.067
104 J Teng, M Wu, J Chen, H Lin, Y He. (2020b). Different fouling propensities of loosely and tightly bound extracellular polymeric substances (EPSs) and the related fouling mechanisms in a membrane bioreactor. Chemosphere, 255: 126953
https://doi.org/10.1016/j.chemosphere.2020.126953
105 J Teng, H Zhang, H Lin, M Lu, X Xu, T Gao, X You. (2022a). Molecular level insights into the dynamic evolution of forward osmosis fouling via thermodynamic modeling and quantum chemistry calculation: effect of protein/polysaccharide ratios. Journal of Membrane Science, 655: 120588
https://doi.org/10.1016/j.memsci.2022.120588
106 J Teng, H Zhang, H Lin, J Wang, F Meng, Y Wang, M Lu. (2022b). Synergistic fouling behaviors and thermodynamic mechanisms of proteins and polysaccharides in forward osmosis: the unique role of reverse solute diffusion. Desalination, 536: 115850
https://doi.org/10.1016/j.desal.2022.115850
107 J Teng, H Zhang, C Tang, H Lin. (2021). Novel molecular level insights into forward osmosis membrane fouling affected by reverse diffusion of draw solutions based on thermodynamic mechanisms. Journal of Membrane Science, 620: 118815
https://doi.org/10.1016/j.memsci.2020.118815
108 J Teng, M Zhang, K T Leung, J Chen, H Hong, H Lin, B Q Liao. (2019). A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor. Water Research, 149: 477–487
https://doi.org/10.1016/j.watres.2018.11.043
109 C Tian, J Chen, X Li, R Dai, Z Wang. (2023a). Chemical cleaning−solvent treatment−hydrophilic modification strategy for regenerating end-of-life PVDF membrane. Journal of Membrane Science, 669: 121325
https://doi.org/10.1016/j.memsci.2022.121325
110 L Tian, P Zhou, Z Su, T Liu, N Graham, T Bond, W Yu. (2023b). Insights into the properties of surface waters and their associated nanofiltration membrane fouling: the importance of biopolymers and high molecular weight humics. Chemical Engineering Journal, 451: 138682
https://doi.org/10.1016/j.cej.2022.138682
111 P van den Brink, O A Satpradit, A Van Bentem, A Zwijnenburg, H Temmink, M Van Loosdrecht. (2011). Effect of temperature shocks on membrane fouling in membrane bioreactors. Water Research, 45(15): 4491–4500
https://doi.org/10.1016/j.watres.2011.05.046
112 den Brink P vanA ZwijnenburgG Smith H TemminkLoosdrecht M (2009) Van. Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration. Journal of Membrane Science, 345(1–2): 207–216
113 C J V van Oss (1993). Acid–base interfacial interactions in aqueous media. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 78: 1–49
114 C J V van Oss (1995). Hydrophobicity of biosurfaces: origin, quantitative determination and interaction energies. Colloids and Surfaces. B, Biointerfaces, 5(3–4): 91–110
115 C J V van Oss. (1989). Energetics of cell-cell and cell-biopolymer interactions. Cell Biophysics, 14(1): 1–16
https://doi.org/10.1007/BF02797387
116 C J V van Oss. (2003). Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Journal of Molecular Recognition, 16(4): 177–190
https://doi.org/10.1002/jmr.618
117 E Virga, R W Field, P M Biesheuvel, W M De Vos. (2022). Theory of oil fouling for microfiltration and ultrafiltration membranes in produced water treatment. Journal of Colloid and Interface Science, 621: 431–439
https://doi.org/10.1016/j.jcis.2022.04.039
118 E M Vrijenhoek, S Hong, M Elimelech. (2001). Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 188(1): 115–128
https://doi.org/10.1016/S0376-7388(01)00376-3
119 F Wang, M Zhang, W Peng, Y He, H Lin, J Chen, H Hong, A Wang, H Yu. (2014a). Effects of ionic strength on membrane fouling in a membrane bioreactor. Bioresource Technology, 156: 35–41
https://doi.org/10.1016/j.biortech.2014.01.014
120 H Wang, R Dai, L Wang, X Wang, Z Wang. (2022). Membrane fouling behaviors in a full-scale zero liquid discharge system for cold-rolling wastewater brine treatment: a comprehensive analysis on multiple membrane processes. Water Research, 226: 119221
https://doi.org/10.1016/j.watres.2022.119221
121 Q Wang, Z Wang, C Zhu, X Mei, Z Wu. (2013). Assessment of SMP fouling by foulant-membrane interaction energy analysis. Journal of Membrane Science, 446: 154–163
https://doi.org/10.1016/j.memsci.2013.06.011
122 X M Wang, X Y Li, X Huang. (2007). Membrane fouling in a submerged membrane bioreactor (SMBR): characterisation of the sludge cake and its high filtration resistance. Separation and Purification Technology, 52(3): 439–445
https://doi.org/10.1016/j.seppur.2006.05.025
123 X M Wang, T D Waite. (2008a). Gel layer formation and hollow fiber membrane filterability of polysaccharide dispersions. Journal of Membrane Science, 322(1): 204–213
https://doi.org/10.1016/j.memsci.2008.05.033
124 X M Wang, T D Waite. (2008b). Impact of gel layer formation on colloid retention in membrane filtration processes. Journal of Membrane Science, 325(1): 486–494
https://doi.org/10.1016/j.memsci.2008.08.016
125 X M Wang, T D Waite. (2009). Role of gelling soluble and colloidal microbial products in membrane fouling. Environmental Science & Technology, 43(24): 9341–9347
https://doi.org/10.1021/es9013129
126 X Wang, V W C Chang, C Y Tang. (2016). Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future. Journal of Membrane Science, 504: 113–132
https://doi.org/10.1016/j.memsci.2016.01.010
127 X Wang, Y Chen, B Yuan, X Li, Y Ren. (2014b). Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor. Bioresource Technology, 161: 340–347
https://doi.org/10.1016/j.biortech.2014.03.058
128 X Wang, M Zhou, X Meng, L Wang, D Huang. (2016). Effect of protein on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory analysis. Frontiers of Environmental Science & Engineering, 10(4): 12
https://doi.org/10.1007/s11783-016-0855-9
129 Y N Wang, C Y Tang. (2011). Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes—the role of hydrodynamic conditions, solution chemistry, and membrane properties. Journal of Membrane Science, 376(1–2): 275–282
https://doi.org/10.1016/j.memsci.2011.04.036
130 Z Wang, J Ma, C Y Tang, K Kimura, Q Wang, X Han. (2014c). Membrane cleaning in membrane bioreactors: a review. Journal of Membrane Science, 468: 276–307
https://doi.org/10.1016/j.memsci.2014.05.060
131 M Wu, Y Chen, H Lin, L Zhao, L Shen, R Li, Y Xu, H Hong, Y He. (2020). Membrane fouling caused by biological foams in a submerged membrane bioreactor: mechanism insights. Water Research, 181: 115932
https://doi.org/10.1016/j.watres.2020.115932
132 M Wu, M Zhang, L Shen, X Wang, D Ying, H Lin, R Li, Y Xu, H Hong. (2023). High propensity of membrane fouling and the underlying mechanisms in a membrane bioreactor during occurrence of sludge bulking. Water Research, 229: 119456
https://doi.org/10.1016/j.watres.2022.119456
133 K Xiao, Y Shen, X Huang. (2013). An analytical model for membrane fouling evolution associated with gel layer growth during constant pressure stirred dead-end filtration. Journal of Membrane Science, 427: 139–149
https://doi.org/10.1016/j.memsci.2012.09.049
134 Xiao K, Wang X, Huang X, Waite T D, Wen X (2011). Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration. Journal of Membrane Science, 373(1−2): 140−151
135 N Yang, X Wen, T D Waite, X Wang, X Huang. (2011). Natural organic matter fouling of microfiltration membranes: prediction of constant flux behavior from constant pressure materials properties determination. Journal of Membrane Science, 366(1–2): 192–202
https://doi.org/10.1016/j.memsci.2010.10.003
136 X Yang, D Li, Z Yu, Y Meng, X Zheng, S Zhao, F Meng. (2021). Biochemical characteristics and membrane fouling behaviors of soluble microbial products during the lifecycle of Escherichia coli. Water Research, 192: 116835
https://doi.org/10.1016/j.watres.2021.116835
137 Z Yang, X F Peng, M Y Chen, D J Lee, J Y Lai. (2007). Intra-layer flow in fouling layer on membranes. Journal of Membrane Science, 287(2): 280–286
https://doi.org/10.1016/j.memsci.2006.10.051
138 S Yarnpakdee, S Benjakul, P Kingwascharapong. (2015). Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocolloids, 51: 217–226
https://doi.org/10.1016/j.foodhyd.2015.05.004
139 Z Yin, Y Ma, B Tanis-Kanbur, J W Chew. (2020). Fouling behavior of colloidal particles in organic solvent ultrafiltration. Journal of Membrane Science, 599: 117836
https://doi.org/10.1016/j.memsci.2020.117836
140 X You, J Teng, Y Chen, Y Long, G Yu, L Shen, H Lin. (2020). New insights into membrane fouling by alginate: impacts of ionic strength in presence of calcium ions. Chemosphere, 246: 125801
https://doi.org/10.1016/j.chemosphere.2019.125801
141 X You, J Zhang, L Shen, R Li, Y Xu, M Zhang, H Hong, L Yang, Y Ma, H Lin. (2021). Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulation-ultrafiltration (UF) process in presence of different ionic strength and iron(III) ion concentration. Journal of Membrane Science, 635: 119532
https://doi.org/10.1016/j.memsci.2021.119532
142 Z Y Yuan, Y F Li, T Y Li, J L Yao, J F Zhang, X M Wang. (2022). Identifying key residual aluminum species responsible for aggravation of nanofiltration membrane fouling in drinking water treatment. Journal of Membrane Science, 659: 120833
https://doi.org/10.1016/j.memsci.2022.120833
143 B Zeng, Z Pan, L Shen, D Zhao, J Teng, H Hong, H Lin. (2022). Effects of polysaccharides’ molecular structure on membrane fouling and the related mechanisms. Science of the Total Environment, 836: 155579
https://doi.org/10.1016/j.scitotenv.2022.155579
144 B Zhang, X Mao, X Tang, H Tang, B Zhang, Y Shen, W Shi. (2022a). Effect of modified microbial flocculant on membrane fouling alleviation in a hybrid aerobic granular sludge membrane system for wastewater reuse. Separation and Purification Technology, 290: 120819
https://doi.org/10.1016/j.seppur.2022.120819
145 C Zhang, Q Bao, Q Chen, H Wu, M Shao, N Wang, Q Xu. (2022b). Membrane fouling behaviors and evolution during food waste digestate treatment. Journal of Membrane Science, 660: 120883
https://doi.org/10.1016/j.memsci.2022.120883
146 E Zhang, Z Cheng, T Lv, Y Qian, Y Liu. (2015a). Anti-corrosive hierarchical structured copper mesh film with superhydrophilicity and underwater low adhesive superoleophobicity for highly efficient oil–water separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(25): 13411–13417
https://doi.org/10.1039/C5TA02053K
147 H Zhang, X Fan. (2016). Research progress in membrane fouling in membrane bioreactor based on XDLVO approach. Chemistry (Weinheim an der Bergstrasse, Germany), 79(7): 604–609
148 J ZhangH C ChuaJ ZhouA G (2006) Fane. Factors affecting the membrane performance in submerged membrane bioreactors. Journal of Membrane Science, 284(1–2): 54–66
149 M Zhang, J Chen, Y Ma, L Shen, Y He, H Lin. (2016). Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor. Bioresource Technology, 216: 817–823
https://doi.org/10.1016/j.biortech.2016.06.034
150 M Zhang, H Hong, H Lin, L Shen, H Yu, G Ma, J Chen, B Q Liao. (2018). Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Research, 129: 337–346
https://doi.org/10.1016/j.watres.2017.11.034
151 M Zhang, H Hong, H Lin, G Yu, F Wang, B Q Liao. (2017a). Quantitative assessment of interfacial forces between two rough surfaces and its implications for anti-adhesion membrane fabrication. Separation and Purification Technology, 189: 238–245
https://doi.org/10.1016/j.seppur.2017.08.020
152 M Zhang, B Q Liao, X Zhou, Y He, H Hong, H Lin, J Chen. (2015b). Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresource Technology, 175: 59–67
https://doi.org/10.1016/j.biortech.2014.10.058
153 M Zhang, H Lin, L Shen, B Q Liao, X Wu, R Li. (2017b). Effect of calcium ions on fouling properties of alginate solution and its mechanisms. Journal of Membrane Science, 525: 320–329
https://doi.org/10.1016/j.memsci.2016.12.006
154 M Zhang, W Peng, J Chen, Y He, L Ding, A Wang, H Lin, H Hong, Y Zhang, H Yu. (2013). A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration. Water Research, 47(8): 2777–2786
https://doi.org/10.1016/j.watres.2013.02.041
155 T Zhang, J Zhang, Q Wang, H Zhang, Z Wang, Z Wu. (2022c). Evaluating of the performance of natural mineral vermiculite modified PVDF membrane for oil/water separation by membrane fouling model and XDLVO theory. Journal of Membrane Science, 641: 119886
https://doi.org/10.1016/j.memsci.2021.119886
156 Y Zhang, M Zhang, F Wang, H Hong, A Wang, J Wang, X Weng, H Lin. (2014). Membrane fouling in a submerged membrane bioreactor: effect of pH and its implications. Bioresource Technology, 152: 7–14
https://doi.org/10.1016/j.biortech.2013.10.096
157 L Zhao, X Qu, H Lin, G Yu, B Q Liao. (2018). Simulation of foulant bioparticle topography based on Gaussian process and its implications for interface behavior research. Applied Surface Science, 434: 975–981
https://doi.org/10.1016/j.apsusc.2017.11.031
158 L Zhao, L Shen, Y He, H Hong, H Lin. (2015). Influence of membrane surface roughness on interfacial interactions with sludge flocs in a submerged membrane bioreactor. Journal of Colloid and Interface Science, 446(0): 84–90
https://doi.org/10.1016/j.jcis.2015.01.009
159 X Zhao, Y Wu, X Zhang, X Tong, Y Tong, Y Wang, N Ikuno, K Ishii, H Hu. (2019). Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion. Frontiers of Environmental Science & Engineering, 13(4): 55
https://doi.org/10.1007/s11783-019-1139-y
160 Z Zhong, D Li, B Zhang, W Xing. (2012). Membrane surface roughness characterization and its influence on ultrafine particle adhesion. Separation and Purification Technology, 90: 140–146
https://doi.org/10.1016/j.seppur.2011.09.016
161 Z Zhou, Y Tan, Y Xiao, D C Stuckey. (2016). Characterization and significance of sub-visible particles and colloids in a submerged anaerobic membrane bioreactor (SAnMBR). Environmental Science & Technology, 50(23): 12750–12758
https://doi.org/10.1021/acs.est.6b03581
162 L Zhu, J Qiu, E Sakai. (2017). A high modulus hydrogel obtained from hydrogen bond reconstruction and its application in vibration damper. RSC Advances, 7(69): 43755–43763
https://doi.org/10.1039/C7RA08272J
163 X Zhu, L W Lee, G Song, X Zhang, Y Gao, G Yang, S Luo, X Huang. (2022). Deciphering mono/multivalent draw solute-induced microbial ecology and membrane fouling in anaerobic osmotic membrane bioreactor. Water Research, 209: 117869
https://doi.org/10.1016/j.watres.2021.117869
164 H Zou, S Chen, M Zhang, H Lin, J Teng, H Zhang, L Shen, H Hong. (2022). Molecular-level insights into the mitigation of magnesium-natural organic matter induced ultrafiltration membrane fouling by high-dose calcium based on DFT calculation. Chemosphere, 309: 136734
https://doi.org/10.1016/j.chemosphere.2022.136734
[1] FSE-23027-OF-TJH_suppl_1 Download
[1] Huijuan Xie, Haiguang Zhang, Xu Wang, Gaoliang Wei, Shuo Chen, Xie Quan. Conductive and stable polyphenylene/CNT composite membrane for electrically enhanced membrane fouling mitigation[J]. Front. Environ. Sci. Eng., 2024, 18(1): 3-.
[2] Shuang Zhang, Shuai Liang, Yifan Gao, Yang Wu, Xia Huang. Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment[J]. Front. Environ. Sci. Eng., 2023, 17(3): 30-.
[3] Xiaoman Liu, Chang Tian, Yanxia Zhao, Weiying Xu, Dehua Dong, Kaimin Shih, Tao Yan, Wen Song. Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control[J]. Front. Environ. Sci. Eng., 2022, 16(8): 110-.
[4] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[5] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[6] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[7] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[8] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[9] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[10] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[11] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
[12] Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Front. Environ. Sci. Eng., 2019, 13(1): 1-.
[13] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[14] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[15] Qingbin Guo, Sheng Chang. Tetra-detector size exclusion chromatography characterization of molecular and solution properties of soluble microbial polysaccharides from an anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed