Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (7) : 80    https://doi.org/10.1007/s11783-024-1840-3
Research progress and prospect of low-carbon biological technology for nitrate removal in wastewater treatment
Ru Zheng1,2, Kuo Zhang3, Lingrui Kong1,2, Sitong Liu1,2()
1. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
2. Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
3. Eco-Environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
 Download: PDF(2840 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● n-DAMO achieves simultaneous nitrogen removal and methane emission reduction.

● Photosynthetic microorganisms achieve negative carbon emission by absorbing CO2.

● PEDeN is an emerging low-carbon denitrification technology using photoelectrons.

● Solar-driven low-carbon nitrogen removal system is the future trend.

Wastewater treatment plants are the major energy consumers and significant sources of greenhouse gas emissions, among which biological nitrogen removal of wastewater is an important contributor to carbon emissions. However, traditional heterotrophic denitrification still has the problems of excessive residual sludge and the requirement of external carbon sources. Consequently, the development of innovative low-carbon nitrate removal technologies is necessary. This review outlines the key roles of sulfur autotrophic denitrification and hydrogen autotrophic denitrification in low-carbon wastewater treatment. The discovered nitrate/nitrite dependent anaerobic methane oxidation enables sustainable methane emission reduction and nitrogen removal by utilizing available methane in situ. Photosynthetic microorganisms exhibited a promising potential to achieve carbon-negative nitrate removal. Specifically, the algal-bacterial symbiosis system and photogranules offer effective and prospective low-carbon options for nitrogen removal. Then, the emerging nitrate removal technology of photoelectrotrophic denitrification and the underlying photoelectron transfer mechanisms are discussed. Finally, we summarize and prospect these technologies, highlighting that solar-driven biological nitrogen removal technology is a promising area for future sustainable wastewater treatment. This review has important guiding significance for the design of low-carbon wastewater treatment systems.

Keywords Carbon emissions      Low-carbon      Biological nitrogen removal      Denitrification     
Corresponding Author(s): Sitong Liu   
Issue Date: 27 March 2024
 Cite this article:   
Ru Zheng,Kuo Zhang,Lingrui Kong, et al. Research progress and prospect of low-carbon biological technology for nitrate removal in wastewater treatment[J]. Front. Environ. Sci. Eng., 2024, 18(7): 80.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1840-3
https://academic.hep.com.cn/fese/EN/Y2024/V18/I7/80
Fig.1  (a) The SAD process is coupled after partial-nitrification/anammox; (b) the partial-nitrification/anammox are coupled with the SAD process in a single reactor; (c) partial-nitrification and SAD process; (d) inter-conversions between different forms of N and S mediated by SOB.
Process Reduced sulfur compounds Reactor Seeding sludge Performance Ref.
Two-stage SAD-ANAMMOX S2O32− UASB Activated sludgeAnammox sludge NRE: 82.5% Deng et al. (2019)
Simultaneous SAD-ANAMMOX EGSB SAD sludge NRE: > 95% Zhou et al. (2021)
Simultaneous SAD-ANAMMOX S0 Upflow biofilm reactor PN/A sludge NRE: 98% Zhang et al. (2020)
PN-SAD S0 Upflow-vibration biofilm reactor Sludge obtained from a long-stable PN reactor NRE: 97.1%NAR: 95% Deng et al. (2020)
Sulfammox-anammox-SAD S0 Upflow anaerobic bioreactor Activated sludge ARE: 70% Zhan et al. (2023)
Tab.1  The nitrogen removal performance of different SAD-based coupling processes
Process Apply of H2 Seeding sludge Performance Ref.
MEC-MBfR Anodic oxidation and gas diffusion membrane Activated sludge NRE: > 90% Liang et al. (2021)
MEC-MBfR Applied negative pressure to MEC, changed to positive pressure to supply gas to MBfR Anaerobic sludge R NO3: 97.8% Han et al. (2023b)
MFC-MEC MFC as a power source; Anodic oxidation Activated sludge R NO3: 80.6% Wang et al. (2021a)
MEC-PRB Applied negative pressure to MEC, changed to positive pressure to supply gas to PRB Anaerobic sludge R NO3: 85.0% ± 0.8% Han et al. (2023a)
Tab.2  The nitrogen removal performance of various HAD-based coupling processes
Reactor Operational conditions Biomass Nitrogen removal rate (kg N/(m3·d)) Ref.
MBfR T: 30 ± 1 °CC N H4 +N: 470 mg/L CNO2 N: 560 mg/L biofilm 1 Liu et al. (2020b)
one-stage MBfR T: 30 ± 1 °CC N H4 +N: 1030 mg/L biofilm 1.5 Liu et al. (2019)
UASB T: 30 ± 0.5 °CC N H4 +N: 500 mg/LCNO2N: 550 mg/L granule 1 Liu et al. (2021a)
MBfR T: /CNH4+ N: 22 mg/LCNO2N: 29.5 mg/L biofilm 0.28 Xie et al. (2018)
MGSR T: 10–20 °CC N H4 +N: 23 mg/LCNO2N: 47 mg/L granule 0.94 (20 °C)0.55 (10 °C) Fan et al. (2021)
Tab.3  The operational conditions and performance of different PN-n-DAMO-anammox processes
Fig.2  Uptake and transport mechanism of inorganic nitrogen in algae and their fate.
Fig.3  (a) Confocal laser scanning (CLSM) microscopy image of a photogranule cross section; (b) Model of metabolite exchange in photogranules between Filamentous cyanobacteria and symbiotic bacteria.
Process Lightconditions Microorganisms Nitrogen removal rate (mg N/(L·d)) Ref.
Microalgae-based system White LED100 mW/cm2 Chlorella sp.Phormidium sp. 13.5 Kong et al. (2022)
PSB-based system > 790 nmFiltered sunlight Rhodopseudomonas sp.Blastochloris sp. 10.5 Hülsen et al. (2022)
PSB-based system 810–850 nm12h dark/12h light50 mW/cm2 Rhodopseudomonas sp. 5.8 Sepúlveda-Muñoz et al. (2020)
ABS system White LED100 mW/cm2 Chlorella vulgaris.Activates sludge 7.5 Huang et al. (2023)
Photogranule-based systems White LED200 mW/cm2 Chlorella sp.Activates sludge 99.4 Ji et al. (2020)
Photogranule-based systems White LED100 mW/cm2 Ca. Brocadia sp.Chlorella sp.Activates sludge 294 Kong et al. (2023b)
Tab.4  The operational conditions and performance of different photosynthetic microorganisms-based processes
Photosensitizer Light conditions Microorganisms Nitrogen removal performance Ref.
TiO2 380 ± 20 nm30/45/60mW/cm2 Activatedsludge Under 60 mW/cm2 irradiation, the denitrification rate constant reaches 0.15 ± 0.02 h−1, which is 36.36% higher under 30 mW/cm2 irradiation, and the nitrate is almost converted to N2. Cheng et al. (2017)
CdS 395 ± 5 nm3.07 ± 0.14 mW/cm2 Thiobacillus denitrificans The denitrification rate constant is 0.081 ± 0.011 h−1, the percentage of N2O–N is > 96.4% ± 0.4% Chen et al. (2019b)
CdS@Mn3O4 395 ± 5 nm3.07 ± 0.14 mW/cm2 Thiobacillus denitrificans The percentage of N2–N exceeds 80% Chen et al. (2020b)
DOM 395 ± 5 nm1–10 mW/cm2 Thiobacillus denitrificans The denitrification rate constant is 0.06 ± 0.003 h−1, percentage of N2–N is 94.3% ± 5.5% Huang et al. (2022)
AQS 400 ± 5 nm0.62 mW/cm2 Thiobacillus denitrificans The percentage of N2O–N is almost 100% Chen et al. (2022)
Tab.5  The operational conditions and nitrogen removal performance of different photoelectrotrophic denitrification systems
Fig.4  The photoelectron transfer mechanism involved in photoelectrotrophic denitrification.
Process Advantages Disadvantages Challenges
SAD Low cost of sulfur compounds; high bioavailability Excess SO42− and H2S emission No identified optimal options to reduce the production of SO42−
HAD Clean and no by-products Low bioavailability, high cost, poor safety of H2 Finding the methods of H2 production with lower cost and solving the safety issues of H2 transportation
n-DAMO Simultaneous Methaneemission reductionand nitrogen removal Low growth rate ofn-damo microorganisms Difficulty of recovering the dissolved methane, relatively low nitrogen removal rate
Photosynthetic microorganisms-based system Negative carbon emissions; resource recycling Prone to contamination, unstable, poor sedimentation Solving issues such as light homogeneity, water turbidity, toxic contaminants, and invasive microorganisms
PEDeN Sustainable and efficient Unstable photosensitizer and requirement of additional semiconductor materials Need to apply with a wider spectrum response range
Tab.6  The advantages, disadvantages, and challenges of various denitrification technologies
1 A S Abouhend, A Mcnair, W C Kuo-Dahab, C Watt, C S Butler, K Milferstedt, J Hamelin, J Seo, G J Gikonyo, K M El-Moselhy. et al.. (2018). The oxygenic photogranule process for aeration-free wastewater treatment. Environmental Science & Technology, 52(6): 3503–3511
https://doi.org/10.1021/acs.est.8b00403
2 A S Abouhend, K Milferstedt, J Hamelin, A A Ansari, C Butler, B I Carbajal-Gonzalez, C Park. (2020). Growth progression of oxygenic photogranules and its impact on bioactivity for aeration-free wastewater treatment. Environmental Science & Technology, 54(1): 486–496
https://doi.org/10.1021/acs.est.9b04745
3 A K Ahangar, P Yaqoubnejad, K Divsalar, S Mousavi, M Taghavijeloudar. (2023). Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution. Bioresource Technology, 387: 129577
https://doi.org/10.1016/j.biortech.2023.129577
4 K Baalsrud, K S Baalsrud. (1954). Studies on Thiobacillus denitrificans. Archives of Microbiology, 20: 34–62
https://doi.org/10.1007/BF00412265
5 E Bankston, Q Wang, B T Higgins. (2020). Algae support populations of heterotrophic, nitrifying, and phosphate-accumulating bacteria in the treatment of poultry litter anaerobic digestate. Chemical Engineering Journal, 398: 125550
https://doi.org/10.1016/j.cej.2020.125550
6 B Batchelor, A W Lawrence. (1978). Autotrophic denitrification using elemental sulfur. Journal of Water Pollution Control Federation, 50(8): 1986–2001
7 H R Beller, P Zhou, T C Legler, A Chakicherla, S Kane, T E A Letain, P O’Day. (2013). Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the Chemolithoautotrophic bacterium Thiobacillus denitrificans. Frontiers in Microbiology, 4: 249
https://doi.org/10.3389/fmicb.2013.00249
8 M Benz, A Brune, B Schink. (1998). Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Archives of Microbiology, 169(2): 159–165
https://doi.org/10.1007/s002030050555
9 E Bijay-Singh. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4): 518
https://doi.org/10.1007/s42452-021-04521-8
10 R E Blankenship. (2010). Early evolution of photosynthesis. Plant Physiology, 154(2): 434–438
https://doi.org/10.1104/pp.110.161687
11 N C Boelee, H Temmink, M Janssen, C J N Buisman, R H Wijffels. (2014). Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater. Ecological Engineering, 64: 213–221
https://doi.org/10.1016/j.ecoleng.2013.12.035
12 I Brettar, G Rheinheimer. (1991). Denitrification in the Central Baltic: evidence for H2S-oxidation as motor of denitrification at the oxic-anoxic interface. Marine Ecology Progress Series, 77(2–3): 157–169
https://doi.org/10.3354/meps077157
13 D Brockmann, Y Gérand, C Park, K Milferstedt, A Hélias, J Hamelin. (2021). Wastewater treatment using oxygenic photogranule-based process has lower environmental impact than conventional activated sludge process. Bioresource Technology, 319: 124204
https://doi.org/10.1016/j.biortech.2020.124204
14 T Burgdorf, O Lenz, T Buhrke, E Van Der Linden, A K Jones, S P J Albracht, B Friedrich. (2006). [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. Journal of Molecular Microbiology and Biotechnology, 10(2–4): 181–196
https://doi.org/10.1159/000091564
15 C Cai, S Hu, J Guo, Y Shi, G J Xie, Z Yuan. (2015). Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate. Water Research, 87: 211–217
https://doi.org/10.1016/j.watres.2015.09.026
16 K Cao, R Zhi, G Zhang. (2020). Photosynthetic bacteria wastewater treatment with the production of value-added products: a review. Bioresource Technology, 299: 122648
https://doi.org/10.1016/j.biortech.2019.122648
17 H K Carlson, L M Lui, M N Price, A E Kazakov, A V Carr, J V Kuehl, T K Owens, T Nielsen, A P Arkin, A M Deutschbauer. (2020). Selective carbon sources influence the end products of microbial nitrate respiration. ISME Journal, 14(8): 2034–2045
https://doi.org/10.1038/s41396-020-0666-7
18 A A Carmona-Martínez, E Trably, K Milferstedt, R Lacroix, L Etcheverry, N Bernet. (2015). Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater. Water Research, 81: 149–156
https://doi.org/10.1016/j.watres.2015.05.041
19 D Chen, X Gu, W Zhu, S He, J Huang, W Zhou. (2019a). Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios. Bioresource Technology, 285: 121313
https://doi.org/10.1016/j.biortech.2019.121313
20 J Chen, M Strous. (2013). Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochimica et Biophysica Acta, 1827(2): 136–144
https://doi.org/10.1016/j.bbabio.2012.10.002
21 M Chen, Q Cai, X Chen, S Huang, Q Feng, T Majima, R J Zeng, S Zhou. (2022). Anthraquinone-2-sulfonate as a microbial photosensitizer and capacitor drives solar-to-N2O production with a quantum efficiency of almost unity. Environmental Science & Technology, 56(8): 5161–5169
https://doi.org/10.1021/acs.est.1c08710
22 M Chen, X Zhou, X Chen, Q Cai, R J Zeng, S Zhou. (2020a). Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Water Research, 172: 115501
https://doi.org/10.1016/j.watres.2020.115501
23 M Chen, X F Zhou, Y Q Yu, X Liu, R J X Zeng, S G Zhou, Z He. (2019b). Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Environment International, 127: 353–360
https://doi.org/10.1016/j.envint.2019.03.045
24 X Chen, Q Feng, Q Cai, S Huang, Y Yu, R J Zeng, M Chen, S Zhou. (2020b). Mn3O4 nanozyme coating accelerates nitrate reduction and decreases N2O emission during photoelectrotrophic denitrification by Thiobacillus denitrificans-CdS. Environmental Science & Technology, 54(17): 10820–10830
https://doi.org/10.1021/acs.est.0c02709
25 H Y Cheng, X D Tian, C H Li, S S Wang, S G Su, H C Wang, B Zhang, H M A Sharif, A J Wang. (2017). Microbial photoelectrotrophic denitrification as a sustainable and efficient way for reducing nitrate to nitrogen. Environmental Science & Technology, 51(21): 12948–12955
https://doi.org/10.1021/acs.est.7b02557
26 L Cheng, Q Xiang, Y Liao, H Zhang. (2018). CdS-based photocatalysts. Energy & Environmental Science, 11(6): 1362–1391
https://doi.org/10.1039/C7EE03640J
27 Y X Cui, B K Biswal, M C M Van Loosdrecht, G H Chen, D Wu. (2019). Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. Water Research, 166: 115038
https://doi.org/10.1016/j.watres.2019.115038
28 F Dawood, M Anda, G M Shafiullah. (2020). Hydrogen production for energy: an overview. International Journal of Hydrogen Energy, 45(7): 3847–3869
https://doi.org/10.1016/j.ijhydene.2019.12.059
29 S Deng, Y Peng, L Zhang, L Wu. (2020). Advanced nitrogen removal from municipal wastewater via two-stage partial nitrification-simultaneous anammox and denitrification (PN-SAD) process. Bioresource Technology, 304: 122955
https://doi.org/10.1016/j.biortech.2020.122955
30 Y F Deng, G A Ekama, Y X Cui, C J Tang, M C M Van Loosdrecht, G H Chen, D Wu. (2019). Coupling of sulfur(thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater. Water Research, 163: 114854
https://doi.org/10.1016/j.watres.2019.114854
31 Y F Deng, W T Tang, H Huang, J Qian, D Wu, G H Chen. (2021). Development of a kinetic model to evaluate thiosulfate-driven denitrification and anammox (TDDA) process. Water Research, 198: 117155
https://doi.org/10.1016/j.watres.2021.117155
32 Y F Deng, F X Zan, H Huang, D Wu, W T Tang, G H Chen. (2022). Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review. Water Research, 224: 119051
https://doi.org/10.1016/j.watres.2022.119051
33 J F Devlin, R Eedy, B J Butler. (2000). The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer. Journal of Contaminant Hydrology, 46(1–2): 81–97
https://doi.org/10.1016/S0169-7722(00)00126-1
34 F Di Capua, F Pirozzi, P N L Lens, G Esposito. (2019). Electron donors for autotrophic denitrification. Chemical Engineering Journal, 362: 922–937
https://doi.org/10.1016/j.cej.2019.01.069
35 L Dijkhuizen, W Harder. (1984). Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria. Antonie van Leeuwenhoek, 50: 473–487
https://doi.org/10.1007/BF02386221
36 J Ding, R J Zeng. (2021). Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. Science of the Total Environment, 757: 143928
https://doi.org/10.1016/j.scitotenv.2020.143928
37 S Dong, J Feng, M Fan, Y Pi, L Hu, X Han, M Liu, J Sun, J Sun. (2015). Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Advances, 5(19): 14610–14630
https://doi.org/10.1039/C4RA13734E
38 W J Du, J Y Lu, Y R Hu, J Xiao, C Yang, J Wu, B Huang, S Cui, Y Wang, W W Li. (2023). Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nature Water, 1(2): 166–175
https://doi.org/10.1038/s44221-022-00021-0
39 R Epsztein, M Beliavski, S Tarre, M Green. (2016). High-rate hydrogenotrophic denitrification in a pressurized reactor. Chemical Engineering Journal, 286: 578–584
https://doi.org/10.1016/j.cej.2015.11.004
40 S J Ergas, A F Reuss. (2001). Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. Journal of Water Supply: Research & Technology–Aqua, 50(3): 161–171
https://doi.org/10.2166/aqua.2001.0015
41 A Fallahi, F Rezvani, H Asgharnejad, E Khorshidi Nazloo, N Hajinajaf, B Higgins. (2021). Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review. Chemosphere, 272: 129878
https://doi.org/10.1016/j.chemosphere.2021.129878
42 S Q Fan, W R Wen, G J Xie, Y Lu, W B Nie, B F Liu, D F Xing, J Ma, N Q Ren. (2023). Revisiting the engineering roadmap of nitrate/nitrite-dependent anaerobic methane oxidation. Environmental Science & Technology, 57(50): 20975–20991
https://doi.org/10.1021/acs.est.3c02806
43 S Q Fan, G J Xie, Y Lu, Z C Zhao, B F Liu, D F Xing, J Ding, H J Han, N Q Ren. (2021). Mainstream nitrogen and dissolved methane removal through coupling n-DAMO with anammox in granular sludge at low temperature. Environmental Science & Technology, 55(24): 16586–16596
https://doi.org/10.1021/acs.est.1c01952
44 L Fewtrell. (2004). Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environmental Health Perspectives, 112(14): 1371–1374
https://doi.org/10.1289/ehp.7216
45 X Fu, R Hou, P Yang, S Qian, Z Feng, Z Chen, F Wang, R Yuan, H Chen, B Zhou. (2022). Application of external carbon source in heterotrophic denitrification of domestic sewage: a review. Science of the Total Environment, 817: 153061
https://doi.org/10.1016/j.scitotenv.2022.153061
46 M Gomelsky, W D Hoff. (2011). Light helps bacteria make important lifestyle decisions. Trends in Microbiology, 19(9): 441–448
https://doi.org/10.1016/j.tim.2011.05.002
47 D Grubba, Z Yin, J Majtacz, H E Al-Hazmi, J Mąkinia. (2022). Incorporation of the sulfur cycle in sustainable nitrogen removal systems - a review. Journal of Cleaner Production, 372: 133495
https://doi.org/10.1016/j.jclepro.2022.133495
48 Q Guo, C Zhou, Z Ma, X Yang. (2019). Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials, 31(50): 1901997
https://doi.org/10.1002/adma.201901997
49 X Guo, C Y Lai, E M Hartmann, H P Zhao. (2023). Heterotrophic denitrification: an overlooked factor that contributes to nitrogen removal in n-DAMO mixed culture. Environmental Research, 216: 114802
https://doi.org/10.1016/j.envres.2022.114802
50 Y Guo, Z Luo, J Shen, Y Li. (2022). The main anammox-based processes, the involved microbes and the novel process concept from the application perspective. Frontiers of Environmental Science & Engineering, 16(7): 84
https://doi.org/10.1007/s11783-021-1487-1
51 D Gupta, S K Singh. (2012). Greenhouse gas emissions from wastewater treatment plants: a case study of Noida. Journal of Water Sustainability, 2(2): 131–139
52 F Han, W Zhou. (2022). Nitrogen recovery from wastewater by microbial assimilation: a review. Bioresource Technology, 363: 127933
https://doi.org/10.1016/j.biortech.2022.127933
53 Y Han, Y Feng, N Wang, P Yang, G Ding, J An, J Liu, N Li, W He. (2023a). Liquid-gas phase transition enables microbial electrolysis cell to treat organic pollution and synchronously remediate nitrate-contaminated groundwater via hydrogenotrophic denitrification. Journal of Cleaner Production, 414: 137627
https://doi.org/10.1016/j.jclepro.2023.137627
54 Y Han, P Yang, Y Feng, N Wang, X Yuan, J An, J Liu, N Li, W He. (2023b). Liquid-gas phase transition enables microbial electrolysis and H2-based membrane biofilm hybrid system to degrade organic pollution and achieve effective hydrogenotrophic denitrification of groundwater. Chemosphere, 331: 138819
https://doi.org/10.1016/j.chemosphere.2023.138819
55 J Hao, F Gao, X Fang, X Nong, Y Zhang, F Hong. (2022). Multi-factor decomposition and multi-scenario prediction decoupling analysis of China’s carbon emission under dual carbon goal. Science of the Total Environment, 841: 156788
https://doi.org/10.1016/j.scitotenv.2022.156788
56 Z He, Y Feng, S Zhang, X Wang, S Wu, X Pan. (2018). Oxygenic denitrification for nitrogen removal with less greenhouse gas emissions: microbiology and potential applications. Science of the Total Environment, 621: 453–464
https://doi.org/10.1016/j.scitotenv.2017.11.280
57 Y Hu, G Wu, R Li, L Xiao, X Zhan. (2020). Iron sulphides mediated autotrophic denitrification: an emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. Water Research, 179: 115914
https://doi.org/10.1016/j.watres.2020.115914
58 J Huang, S Cheng, Y Zhang, J Teng, M Zhang, H Lin. (2023). Optimizing aeration intensity to enhance self-flocculation in algal-bacterial symbiosis systems. Chemosphere, 341: 140064
https://doi.org/10.1016/j.chemosphere.2023.140064
59 M Huang, C Liu, P Cui, T Wu, X Feng, H Huang, J Zhou, Y Wang. (2021). Facet-dependent photoinduced transformation of cadmium sulfide (CdS) nanoparticles. Environmental Science & Technology, 55(19): 13132–13141
https://doi.org/10.1021/acs.est.1c04026
60 S Huang, M Chen, Y Diao, Q Feng, R J Zeng, S Zhou. (2022). Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification. Environmental Science & Technology, 56(7): 4632–4641
https://doi.org/10.1021/acs.est.1c07556
61 S Huang, J Tang, X Liu, G Dong, S Zhou. (2019). Fast light-driven biodecolorization by a Geobacter sulfurreducens–CdS biohybrid. ACS Sustainable Chemistry & Engineering, 7(18): 15427–15433
https://doi.org/10.1021/acssuschemeng.9b02870
62 T Hülsen, K Hsieh, S Tait, E M Barry, D Puyol, D J Batstone. (2018). White and infrared light continuous photobioreactors for resource recovery from poultry processing wastewater: a comparison. Water Research, 144: 665–676
https://doi.org/10.1016/j.watres.2018.07.040
63 T Hülsen, S Stegman, D J Batstone, G Capson-Tojo. (2022). Naturally illuminated photobioreactors for resource recovery from piggery and chicken-processing wastewaters utilising purple phototrophic bacteria. Water Research, 214: 118194
https://doi.org/10.1016/j.watres.2022.118194
64 B Ji, Y Liu. (2021). Assessment of microalgal-bacterial granular sludge process for environmentally sustainable municipal wastewater treatment. ACS ES&T Water, 1(12): 2459–2469
https://doi.org/10.1021/acsestwater.1c00303
65 B Ji, M Zhang, J Gu, Y Ma, Y Liu. (2020). A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Research, 179: 115884
https://doi.org/10.1016/j.watres.2020.115884
66 M Jiang, J Zheng, P Perez-Calleja, C Picioreanu, H Lin, X Zhang, Y Zhang, H Li, R Nerenberg. (2020). New insight into CO2-mediated denitrification process in H2-based membrane biofilm reactor: an experimental and modeling study. Water Research, 184: 116177
https://doi.org/10.1016/j.watres.2020.116177
67 S Jin, Y Jeon, M S Jeon, J Shin, Y Song, S Kang, J Bae, S Cho, J K Lee, D R Kim. et al.. (2021). Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences of the United States of America, 118(9): e2020552118
https://doi.org/10.1073/pnas.2020552118
68 L Kamps, K Sakurai, Y Saito, H Nagata. (2019). Comprehensive data reduction for N2O/HDPE hybrid rocket motor performance evaluation. Aerospace, 6(4): 45
https://doi.org/10.3390/aerospace6040045
69 D Kang, X Zhao, N Wang, Y Suo, J Yuan, Y Peng. (2023). Redirecting carbon to recover VFA to facilitate biological short-cut nitrogen removal in wastewater treatment: a critical review. Water Research, 238: 120015
https://doi.org/10.1016/j.watres.2023.120015
70 E Katz, M Zayats, I Willner, F Lisdat. (2006). Controlling the direction of photocurrents by means of CdS nanoparticles and cytochrome c-mediated biocatalytic cascades. Chemical Communications, 13: 1395–1397
https://doi.org/10.1039/b517332a
71 L Kong, Y Feng, W Du, R Zheng, J Sun, K Rong, W Sun, S Liu. (2023a). Cross-feeding between Filamentous cyanobacteria and symbiotic bacteria favors rapid photogranulation. Environmental Science & Technology, 57(44): 16953–16963
https://doi.org/10.1021/acs.est.3c04867
72 L Kong, Y Feng, J Sun, K Rong, J Zhou, R Zheng, S Ni, S Liu. (2022). Cross-feeding among microalgae facilitates nitrogen recovery at low C/N. Environmental Research, 211: 113052
https://doi.org/10.1016/j.envres.2022.113052
73 L Kong, R Zheng, Y Feng, W Du, C Xie, Y Gu, S Liu. (2023b). Anammox bacteria adapt to long-term light irradiation in photogranules. Water Research, 241: 120144
https://doi.org/10.1016/j.watres.2023.120144
74 N Kornienko, K K Sakimoto, D M Herlihy, S C Nguyen, A P Alivisatos, C B Harris, A Schwartzberg, P Yang. (2016). Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proceedings of the National Academy of Sciences of the United States of America, 113(42): 11750–11755
https://doi.org/10.1073/pnas.1610554113
75 A Kumar, S Bera. (2020). Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Bioresource Technology Reports, 12: 100584
https://doi.org/10.1016/j.biteb.2020.100584
76 P K Kumar, S Vijaya Krishna, K Verma, K Pooja, D Bhagawan, V Himabindu. (2018). Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South African Journal of Chemical Engineering, 25: 133–146
https://doi.org/10.1016/j.sajce.2018.04.006
77 D Kyung, M Kim, J Chang, W Lee. (2015). Estimation of greenhouse gas emissions from a hybrid wastewater treatment plant. Journal of Cleaner Production, 95: 117–123
https://doi.org/10.1016/j.jclepro.2015.02.032
78 S Lackner, E M Gilbert, S E Vlaeminck, A Joss, H Horn, M C M Van Loosdrecht. (2014). Full-scale partial nitritation/anammox experiences: an application survey. Water Research, 55: 292–303
https://doi.org/10.1016/j.watres.2014.02.032
79 J W Lee, K H Lee, K Y Park, S K Maeng. (2010). Hydrogenotrophic denitrification in a packed bed reactor: effects of hydrogen-to-water flow rate ratio. Bioresource Technology, 101(11): 3940–3946
https://doi.org/10.1016/j.biortech.2010.01.022
80 Y Y Lee, H Choi, K S Cho. (2019). Effects of carbon source, C/N ratio, nitrate, temperature, and pH on N2O emission and functional denitrifying genes during heterotrophic denitrification. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 54(1): 16–29
https://doi.org/10.1080/10934529.2018.1503903
81 T M Lenton, J Rockström, O Gaffney, S Rahmstorf, K Richardson, W Steffen, H J Schellnhuber. (2019). Climate tipping points—too risky to bet against. Nature, 575(7784): 592–595
https://doi.org/10.1038/d41586-019-03595-0
82 N S Lewis, D G Nocera. (2006). Powering the planet: chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 103(43): 15729–15735
https://doi.org/10.1073/pnas.0603395103
83 J Li, H Chen, C A Triana, G R Patzke. (2021). Hematite photoanodes for water oxidation: electronic transitions, carrier dynamics, and surface energetics. Angewandte Chemie, 133(34): 18528–18544
https://doi.org/10.1002/ange.202101783
84 J Li, T Liu, S J Mcilroy, G W Tyson, J Guo. (2023a). Phylogenetic and metabolic diversity of microbial communities performing anaerobic ammonium and methane oxidations under different nitrogen loadings. ISME Communications, 3(1): 39
https://doi.org/10.1038/s43705-023-00246-4
85 S N Li, C Zhang, F Li, N Q Ren, S H Ho. (2023b). Recent advances of algae-bacteria consortia in aquatic remediation. Critical Reviews in Environmental Science and Technology, 53(3): 315–339
https://doi.org/10.1080/10643389.2022.2052704
86 X Li, M Shi, M Zhang, W Li, P L Xu, Y Wang, Y Yuan, Y Huang. (2022). Progresses and challenges in sulfur autotrophic denitrification-enhanced anammox for low carbon and efficient nitrogen removal. Critical Reviews in Environmental Science and Technology, 52(24): 4379–4394
https://doi.org/10.1080/10643389.2022.2037967
87 B Liang, F Kang, Y Wang, K Zhang, Y Wang, S Yao, Z Lyu, T Zhu. (2022a). Denitrification performance of sulfur-based autotrophic denitrification and biomass-sulfur-based mixotrophic denitrification in solid-phase denitrifying reactors using novel composite filters. Science of the Total Environment, 823: 153826
https://doi.org/10.1016/j.scitotenv.2022.153826
88 B Liang, F Kang, S Yao, K Zhang, Y Wang, M Chang, Z Lyu, T Zhu. (2022b). Exploration and verification of the feasibility of the sulfur-based autotrophic denitrification integrated biomass-based heterotrophic denitrification systems for wastewater treatment: from feasibility to application. Chemosphere, 287: 131998
https://doi.org/10.1016/j.chemosphere.2021.131998
89 D Liang, W He, C Li, F Wang, J C Crittenden, Y Feng. (2021). Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell. Water Research, 188: 116498
https://doi.org/10.1016/j.watres.2020.116498
90 Z K Lim, T Liu, M Zheng, Z Yuan, J Guo, S Hu. (2021). Versatility of nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO): first demonstration with real wastewater. Water Research, 194: 116912
https://doi.org/10.1016/j.watres.2021.116912
91 C Liu, T Liu, X Zheng, J Meng, H Chen, Z Yuan, S Hu, J Guo. (2021a). Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen. Water Research, 194: 116963
https://doi.org/10.1016/j.watres.2021.116963
92 L Y Liu, G J Xie, D F Xing, B F Liu, J Ding, G L Cao, N Q Ren. (2021b). Sulfate dependent ammonium oxidation: a microbial process linked nitrogen with sulfur cycle and potential application. Environmental Research, 192: 110282
https://doi.org/10.1016/j.envres.2020.110282
93 S Liu, H Li, G T Daigger, J Huang, G Song. (2022). Material biosynthesis, mechanism regulation and resource recycling of biomass and high-value substances from wastewater treatment by photosynthetic bacteria: a review. Science of the Total Environment, 820: 153200
https://doi.org/10.1016/j.scitotenv.2022.153200
94 T Liu, S Hu, Z Yuan, J Guo. (2019). High-level nitrogen removal by simultaneous partial nitritation, anammox and nitrite/nitrate-dependent anaerobic methane oxidation. Water Research, 166: 115057
https://doi.org/10.1016/j.watres.2019.115057
95 T Liu, S Hu, Z Yuan, J Guo. (2023). Microbial stratification affects conversions of nitrogen and methane in biofilms coupling Anammox and n-DAMO processes. Environmental Science & Technology, 57(11): 4608–4618
https://doi.org/10.1021/acs.est.2c07294
96 T Liu, J Li, Z Khai Lim, H Chen, S Hu, Z Yuan, J Guo. (2020a). Simultaneous removal of dissolved methane and nitrogen from synthetic mainstream anaerobic effluent. Environmental Science & Technology, 54(12): 7629–7638
https://doi.org/10.1021/acs.est.0c00912
97 T Liu, Z K Lim, H Chen, Z Wang, S Hu, Z Yuan, J Guo. (2020b). Biogas-driven complete nitrogen removal from wastewater generated in side-stream partial nitritation. Science of the Total Environment, 745: 141153
https://doi.org/10.1016/j.scitotenv.2020.141153
98 A Lu, Y Li, S Jin, X Wang, X L Wu, C Zeng, Y Li, H Ding, R Hao, M Lv. et al.. (2012). Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications, 3(1): 768
https://doi.org/10.1038/ncomms1768
99 L Lu, J S Guest, C A Peters, X Zhu, G H Rau, Z J Ren. (2018). Wastewater treatment for carbon capture and utilization. Nature Sustainability, 1(12): 750–758
https://doi.org/10.1038/s41893-018-0187-9
100 W Lyu, L Huang, G Xiao, Y Chen. (2017). Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands. Bioresource Technology, 245: 171–181
https://doi.org/10.1016/j.biortech.2017.08.056
101 B Ma, Y Liang, Y Zhang, Y Wei. (2023). Achieving advanced nitrogen removal from low-carbon municipal wastewater using partial-nitrification/anammox and endogenous partial-denitrification/anammox. Bioresource Technology, 383: 129227
https://doi.org/10.1016/j.biortech.2023.129227
102 Y Ma, X Zheng, Y Fang, K Xu, S He, M Zhao. (2020). Autotrophic denitrification in constructed wetlands: achievements and challenges. Bioresource Technology, 318: 123778
https://doi.org/10.1016/j.biortech.2020.123778
103 V Matějů, S Čižinská, J Krejčí, T Janoch. (1992). Biological water denitrification: a review. Enzyme and Microbial Technology, 14(3): 170–183
https://doi.org/10.1016/0141-0229(92)90062-S
104 W B Nie, G J Xie, J Ding, L Peng, Y Lu, X Tan, H Yue, B F Liu, D F Xing, J Meng. et al.. (2020). Operation strategies of n-DAMO and anammox process based on microbial interactions for high rate nitrogen removal from landfill leachate. Environment International, 139: 105596
https://doi.org/10.1016/j.envint.2020.105596
105 A Pallikkara, K Ramakrishnan. (2021). Efficient charge collection of photoanodes and light absorption of photosensitizers: a review. International Journal of Energy Research, 45(2): 1425–1448
https://doi.org/10.1002/er.5941
106 Y Pan, L Ye, Z Yuan. (2013). Effect of H2S on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Environmental Science & Technology, 47(15): 8408–8415
https://doi.org/10.1021/es401632r
107 Y Pang, J Wang. (2021). Various electron donors for biological nitrate removal: a review. Science of the Total Environment, 794: 148699
https://doi.org/10.1016/j.scitotenv.2021.148699
108 L Peng, H H Ngo, W S Guo, Y Liu, D Wang, S Song, W Wei, L D Nghiem, B J Ni. (2018). A novel mechanistic model for nitrogen removal in algal-bacterial photo sequencing batch reactors. Bioresource Technology, 267: 502–509
https://doi.org/10.1016/j.biortech.2018.07.093
109 S Pi, W Yang, W Feng, R Yang, W Chao, W Cheng, L Cui, Z Li, Y Lin, N Ren. et al.. (2023). Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids. Nature Sustainability, 6: 1673–1684
https://doi.org/10.1038/s41893-023-01233-2
110 D Pokorna, J Zabranska. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6): 1246–1259
https://doi.org/10.1016/j.biotechadv.2015.02.007
111 S Rahimi, O Modin, I Mijakovic. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 43: 107570
https://doi.org/10.1016/j.biotechadv.2020.107570
112 A R Ravishankara, J S Daniel, R W Portmann. (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949): 123–125
https://doi.org/10.1126/science.1176985
113 B N Ross, B V Lancellotti, E Q Brannon, G W Loomis, J A Amador. (2020). Greenhouse gas emissions from advanced nitrogen-removal onsite wastewater treatment systems. Science of the Total Environment, 737: 140399
https://doi.org/10.1016/j.scitotenv.2020.140399
114 F Roth, E Broman, X Sun, S Bonaglia, F Nascimento, J Prytherch, V Brüchert, Zara M Lundevall, M Brunberg, M C Geibel. et al.. (2023). Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems. Nature Communications, 14(1): 42
https://doi.org/10.1038/s41467-022-35673-9
115 E Ruiz-Romero, R Alcántara-Hernández, C Cruz-Mondragon, R Marsch, M L Luna-Guido, L Dendooven. (2009). Denitrification in extreme alkaline saline soils of the former lake Texcoco. Plant and Soil, 319: 247–257
https://doi.org/10.1007/s11104-008-9867-y
116 A S Safitri, J Hamelin, R Kommedal, K Milferstedt. (2021). Engineered methanotrophic syntrophy in photogranule communities removes dissolved methane. Water Research X, 12: 100106
https://doi.org/10.1016/j.wroa.2021.100106
117 K K Sakimoto, A B Wong, P Yang. (2016). Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 351(6268): 74–77
https://doi.org/10.1126/science.aad3317
118 K Sathishkumar, Y Li, E Sanganyado. (2020). Electrochemical behavior of biochar and its effects on microbial nitrate reduction: role of extracellular polymeric substances in extracellular electron transfer. Chemical Engineering Journal, 395: 125077
https://doi.org/10.1016/j.cej.2020.125077
119 C A Sepúlveda-Muñoz, Godos I De, D Puyol, R Muñoz. (2020). A systematic optimization of piggery wastewater treatment with purple phototrophic bacteria. Chemosphere, 253: 126621
https://doi.org/10.1016/j.chemosphere.2020.126621
120 H Shi, D Chen, X Jiang, Y Li, W Fan, C Hou, L Zhang, Y Wang, Y Mu, J Shen. (2022). Simultaneous high-concentration pyridine removal and denitrification in an electricity assisted bio-photodegradation system. Chemical Engineering Journal, 430: 132598
https://doi.org/10.1016/j.cej.2021.132598
121 L Shi, H Dong, G Reguera, H Beyenal, A Lu, J Liu, H Q Yu, J K Fredrickson. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 14(10): 651–662
https://doi.org/10.1038/nrmicro.2016.93
122 P R ShuklaJ SkeaBuendia E CalvoV Masson-DelmotteH O PörtnerD RobertsP ZhaiR Slade S ConnorsDiemen R (2019) Van. IPCC, 2019: Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge: Cambridge University Press
123 S L Speir, J L Tank, J M Taylor, A L Grose. (2023). Temperature and carbon availability interact to enhance nitrous oxide production via denitrification in alluvial plain river sediments. Biogeochemistry, 165(2): 191–203
https://doi.org/10.1007/s10533-023-01074-3
124 M Stomp, J Huisman, L J Stal, H C P Matthijs. (2007). Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME Journal, 1(4): 271–282
https://doi.org/10.1038/ismej.2007.59
125 T Tian, H Q Yu. (2020). Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresource Technology, 299: 122686
https://doi.org/10.1016/j.biortech.2019.122686
126 L M Trebuch, O M Bourceau, S M F Vaessen, T R Neu, M Janssen, D De Beer, L E M Vet, R H Wijffels, T V Fernandes. (2023a). High resolution functional analysis and community structure of photogranules. ISME Journal, 17(6): 870–879
https://doi.org/10.1038/s41396-023-01394-0
127 L M Trebuch, K Schoofs, S M F Vaessen, T R Neu, M Janssen, R H Wijffels, L E M Vet, T V Fernandes. (2023b). N2-fixation can sustain wastewater treatment performance of photogranules under nitrogen-limiting conditions. Biotechnology and Bioengineering, 120(5): 1303–1315
https://doi.org/10.1002/bit.28349
128 L M Trebuch, J Sohier, S Altenburg, B O Oyserman, M Pronk, M Janssen, L E Vet, R H Wijffels, T V Fernandes. (2023c). Enhancing phosphorus removal of photogranules by incorporating polyphosphate accumulating organisms. Water Research, 235: 119748
https://doi.org/10.1016/j.watres.2023.119748
129 E M Valdovinos-García, J Barajas-Fernández, M D L Á Olán-Acosta, M A Petriz-Prieto, A Guzmán-López, M G Bravo-Sánchez. (2020). Techno-economic study of CO2 capture of a thermoelectric plant using microalgae (Chlorella vulgaris) for production of feedstock for bioenergy. Energies, 13(2): 413
https://doi.org/10.3390/en13020413
130 I A Vasiliadou, S Pavlou, D V Vayenas. (2006). A kinetic study of hydrogenotrophic denitrification. Process Biochemistry (Barking, London, England), 41(6): 1401–1408
https://doi.org/10.1016/j.procbio.2006.02.002
131 C Wang, Y Wu, W Hu, Y Li. (2021a). Autotrophic denitrification for nitrate removal from groundwater with an integrated microbial fuel cells (MFCs)-microbial electrolysis cell (MEC) system. International Journal of Electrochemical Science, 16(1): 150973
https://doi.org/10.20964/2021.01.10
132 H Wang, P Wu, D Zheng, L Deng, W Wang. (2022a). N-Acyl-Homoserine Lactone (AHL)-mediated microalgal-bacterial communication driving Chlorella-activated sludge bacterial biofloc formation. Environmental Science & Technology, 56(17): 12645–12655
https://doi.org/10.1021/acs.est.2c00905
133 J Wang, M Hua, Y Li, F Ma, P Zheng, B Hu. (2019). Achieving high nitrogen removal efficiency by optimizing nitrite-dependent anaerobic methane oxidation process with growth factors. Water Research, 161: 35–42
https://doi.org/10.1016/j.watres.2019.05.101
134 J J Wang, B C Huang, J Li, R C Jin. (2020). Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. Chinese Chemical Letters, 31(10): 2567–2574
https://doi.org/10.1016/j.cclet.2020.07.036
135 L Wang, S Qiu, J Guo, S Ge. (2021b). Light irradiation enables rapid start-up of nitritation through suppressing nxrB gene expression and stimulating ammonia-oxidizing bacteria. Environmental Science & Technology, 55(19): 13297–13305
https://doi.org/10.1021/acs.est.1c04174
136 Q Wang, G Jiang, L Ye, M Pijuan, Z Yuan. (2014). Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor. Water Research, 62: 202–210
https://doi.org/10.1016/j.watres.2014.06.003
137 Q Wang, J Xu, Y Ge, Y Zhang, H Feng, Y Cong. (2016). Efficient nitrogen removal by simultaneous photoelectrocatalytic oxidation and electrochemically active biofilm denitrification. Electrochimica Acta, 198: 165–173
https://doi.org/10.1016/j.electacta.2016.03.011
138 S Wang, Y Wang, P Li, L Wang, Q Su, J Zuo. (2022b). Development and characterizations of hydrogenotrophic denitrification granular process: nitrogen removal capacity and adaptability. Bioresource Technology, 363: 127973
https://doi.org/10.1016/j.biortech.2022.127973
139 S S Wang, H Y Cheng, H Zhang, S G Su, Y L Sun, H C Wang, J L Han, A J Wang, A Guadie. (2021c). Sulfur autotrophic denitrification filter and heterotrophic denitrification filter: comparison on denitrification performance, hydrodynamic characteristics and operating cost. Environmental Research, 197: 111029
https://doi.org/10.1016/j.envres.2021.111029
140 T Wang, X Li, H Wang, G Xue, M Zhou, X Ran, Y Wang. (2023a). Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: a review. Water Research, 245: 120569
https://doi.org/10.1016/j.watres.2023.120569
141 W Wang, Y Zhang, T M Yin, L Zhao, X J Xu, D F Xing, R C Zhang, D J Lee, N Q Ren, C Chen. (2023b). Prospect of denitrifying anaerobic methane oxidation (DAMO) application on wastewater treatment and biogas recycling utilization. Science of the Total Environment, 905: 167142
https://doi.org/10.1016/j.scitotenv.2023.167142
142 Y Wang, X Zheng, G Wu, Y Guan. (2023c). Removal of ammonium and nitrate through anammox and FeS-driven autotrophic denitrification. Frontiers of Environmental Science & Engineering, 17(6): 74
143 Z Wang, W Chen, J Wang, M Gao, D Zhang, S Zhang, Y Hao, H Song. (2023d). Exploring the mechanism and negentropy of photogranules for efficient carbon, nitrogen and phosphorus recovery from wastewater. Chemical Engineering Journal, 476: 146510
https://doi.org/10.1016/j.cej.2023.146510
144 J Wenk, S N Eustis, K Mcneill, S Canonica. (2013). Quenching of excited triplet states by dissolved natural organic matter. Environmental Science & Technology, 47(22): 12802–12810
https://doi.org/10.1021/es402668h
145 M K H Winkler, L Straka. (2019). New directions in biological nitrogen removal and recovery from wastewater. Current Opinion in Biotechnology, 57: 50–55
https://doi.org/10.1016/j.copbio.2018.12.007
146 C Wu, Y Qin, L Yang, Z Liu, B Chen, L Chen. (2020). Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and anammox coupling system. Bioresource Technology, 316: 123969
https://doi.org/10.1016/j.biortech.2020.123969
147 J Wu, Y Yin, J Wang. (2018). Hydrogen-based membrane biofilm reactors for nitrate removal from water and wastewater. International Journal of Hydrogen Energy, 43(1): 1–15
https://doi.org/10.1016/j.ijhydene.2017.10.178
148 X Wu, L Kong, J Pan, Y Feng, S Liu. (2022). Metagenomic approaches to explore the quorum sensing-mediated interactions between algae and bacteria in sequence membrane photo-bioreactors. Frontiers in Bioengineering and Biotechnology, 10: 851376
https://doi.org/10.3389/fbioe.2022.851376
149 G J Xie, T Liu, C Cai, S Hu, Z Yuan. (2018). Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor. Water Research, 131: 196–204
https://doi.org/10.1016/j.watres.2017.12.037
150 J Xu, J Xie, Y Wang, L Xu, Y Zong, W Pang, L Xie. (2022). Effect of anthraquinone-2, 6-disulfonate (AQDS) on anaerobic digestion under ammonia stress: triggering mediated interspecies electron transfer (MIET). Science of the Total Environment, 828: 154158
https://doi.org/10.1016/j.scitotenv.2022.154158
151 M Xue, Y Nie, X Cao, X Zhou. (2022). Deciphering the influence of S/N ratio in a sulfite-driven autotrophic denitrification reactor. Science of the Total Environment, 836: 155612
https://doi.org/10.1016/j.scitotenv.2022.155612
152 W Yang, Q Zhao, H Lu, Z Ding, L Meng, G H Chen. (2016). Sulfide-driven autotrophic denitrification significantly reduces N2O emissions. Water Research, 90: 176–184
https://doi.org/10.1016/j.watres.2015.12.032
153 X Yao, J Wang, M He, Z Liu, Y Zhao, Y Li, T Chi, L Zhu, P Zheng, M S M Jetten. et al.. (2024). Methane-dependent complete denitrification by a single Methylomirabilis bacterium. Nature Microbiology, 9: 464–476
https://doi.org/10.1038/s41564-023-01578-6
154 L Yu, Y Yuan, S Chen, L Zhuang, S Zhou. (2015). Direct uptake of electrode electrons for autotrophic denitrification by Thiobacillus denitrificans. Electrochemistry Communications, 60: 126–130
https://doi.org/10.1016/j.elecom.2015.08.025
155 Z Yuan, Y Chen, M Zhang, Y Qin, M Zhang, P Mao, Y Yan. (2022). Efficient nitrite accumulation and elemental sulfur recovery in partial sulfide autotrophic denitrification system: insights of seeding sludge, S/N ratio and flocculation strategy. Chemosphere, 288: 132388
https://doi.org/10.1016/j.chemosphere.2021.132388
156 Y Zeng, Q Fu, D D Dionysiou, M Zhang, M Li, B Ye, N Chen, J Gao, Y Wang, D Zhou. et al.. (2023). Triplet chromophoric dissolved organic matter regulating the phototransformation and toxicity of imidacloprid in paddy water. Chemical Engineering Journal, 474: 145636
https://doi.org/10.1016/j.cej.2023.145636
157 M Zhan, W Zeng, H Liu, J Li, Q Meng, Y Peng. (2023). Simultaneous nitrogen and sulfur removal through synergy of sulfammox, anammox and sulfur-driven autotrophic denitrification in a modified bioreactor enhanced by activated carbon. Environmental Research, 232: 116341
https://doi.org/10.1016/j.envres.2023.116341
158 K Zhang, T Kang, S Yao, B Liang, M Chang, Y Wang, Y Ma, L Hao, T Zhu. (2020). A novel coupling process with partial nitritation-anammox and short-cut sulfur autotrophic denitrification in a single reactor for the treatment of high ammonium-containing wastewater. Water Research, 180: 115813
https://doi.org/10.1016/j.watres.2020.115813
159 Q Zhang, X Xu, R Zhang, B Shao, K Fan, L Zhao, X Ji, N Ren, D J Lee, C Chen. (2022a). The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: from treatment process to microbial mechanism. Water Research, 226: 119269
https://doi.org/10.1016/j.watres.2022.119269
160 Q Zhang, X Xu, X Zhou, C Chen. (2022b). Recent advances in autotrophic biological nitrogen removal for low carbon wastewater: a review. Water, 14(7): 1101
https://doi.org/10.3390/w14071101
161 S Zhang, C Li, C Ke, S Liu, Q Yao, W Huang, Z Dang, C Guo. (2023a). Extracellular polymeric substances sustain photoreduction of Cr(VI) by Shewanella oneidensis-CdS biohybrid system. Water Research, 243: 120339
https://doi.org/10.1016/j.watres.2023.120339
162 X ZhangL AnJ TianB JiJ Lu Y Liu (2023b). Microalgal capture of carbon dioxide: a carbon sink or source? Bioresource Technology, 390: 129824
163 X N Zhang, L Zhu, Z R Li, Y L Sun, Z M Qian, S Y Li, H Y Cheng, A J Wang. (2022c). Thiosulfate as external electron donor accelerating denitrification at low temperature condition in S0–based autotrophic denitrification biofilter. Environmental Research, 210: 113009
https://doi.org/10.1016/j.envres.2022.113009
164 R Zheng, Y Feng, L Kong, X Wu, J Zhou, L Zhang, S Liu. (2024). Blue-light irradiation induced partial nitrification. Water Research, 254: 121381
https://doi.org/10.1016/j.watres.2024.121381
165 S Zhou, Z Zhang, Z Sun, Z Song, Y Bai, J Hu. (2021). Responses of simultaneous anammox and denitrification (SAD) process to nitrogen loading variation: start-up, performance, sludge morphology and microbial community dynamics. Science of the Total Environment, 795: 148911
https://doi.org/10.1016/j.scitotenv.2021.148911
166 X Zhou, S Huang, X Chen, R Jianxiong Zeng, S Zhou, M Chen. (2023). Mechanisms of extracellular photoelectron uptake by a Thiobacillus denitrificans-cadmium sulfide biosemiconductor system. Chemical Engineering Journal, 468: 143667
https://doi.org/10.1016/j.cej.2023.143667
167 Y Zhou, Y Zhou, S Chen, N Guo, P Xiang, S Lin, Y Bai, X Hu, Z Zhang. (2022). Evaluating the role of algae in algal-bacterial granular sludge: nutrient removal, microbial community and granular characteristics. Bioresource Technology, 365: 128165
https://doi.org/10.1016/j.biortech.2022.128165
168 T Zhu, W Cai, B Wang, W Liu, K Feng, Y Deng, A Wang. (2019). Enhanced nitrate removal in an Fe0-driven autotrophic denitrification system using hydrogen-rich water. Environmental Science. Water Research & Technology, 5(8): 1380–1388
https://doi.org/10.1039/C9EW00423H
[1] Yanfei Wang, Xiaona Zheng, Guangxue Wu, Yuntao Guan. Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification[J]. Front. Environ. Sci. Eng., 2023, 17(6): 74-.
[2] Shaswati Saha, Rohan Gupta, Shradhanjali Sethi, Rima Biswas. Enhancing the efficiency of nitrogen removing bacterial population to a wide range of C:N ratio (1.5:1 to 14:1) for simultaneous C & N removal[J]. Front. Environ. Sci. Eng., 2022, 16(8): 101-.
[3] Quanli Man, Peilian Zhang, Weiqi Huang, Qing Zhu, Xiaoling He, Dongsheng Wei. A heterotrophic nitrification-aerobic denitrification bacterium Halomonas venusta TJPU05 suitable for nitrogen removal from high-salinity wastewater[J]. Front. Environ. Sci. Eng., 2022, 16(6): 69-.
[4] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[5] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[6] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[7] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[8] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[9] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
[10] Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn. Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio[J]. Front. Environ. Sci. Eng., 2020, 14(1): 4-.
[11] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[12] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[13] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[14] Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities[J]. Front. Environ. Sci. Eng., 2017, 11(3): 10-.
[15] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed