Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (4) : 503-511    https://doi.org/10.1007/s11783-012-0477-9
RESEARCH ARTICLE
Adsorption property of direct fast black onto acid-thermal modified sepiolite and optimization of adsorption conditions using Box-Behnken response surface methodology
Chengyuan SU1,2, Weiguang LI1,3(), Yong WANG1
1. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; 2. School of Environment and Resources, Guangxi Normal University, Guilin 541004, China; 3. National Engineering Research Center of Urban Water Resources, Harbin 150090, China
 Download: PDF(458 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The adsorption of direct fast black onto acid-thermal modified sepiolite was investigated. Batch adsorption experiments were performed to evaluate the influences of experimental parameters such as initial dye concentration, initial solution pH and adsorbent dosage on the adsorption process. The three-factor and three-level Box-Behnken response surface methodology (RSM) was utilized for modeling and optimization of the adsorption conditions for direct fast black onto the acid-thermal modified sepiolite. The raw sepiolite was converted to acid-thermal modified sepiolite, and changes in the fourier transform infrared spectrum (FTIR) adsorption bands of the sample were noted at 3435 cm-1 and 1427 cm-1. The zeolitic water disappeared and the purity of sepiolite was improved by acid-thermal modification. The decolorization rate of direct fast black adsorbed increased from 68.2% to 98.9% on acid-thermal modified sepiolite as the initial solution pH decreased from 10 to 2. When the adsorbent dosage reached to 2.5 g·L-1, 2.0 g·L-1, 1.5 g·L-1 and 1.0 g·L-1, the decolorization rate was 90.3%, 86.7%, 61.0% and 29.8%, respectively. When initial dye concentration increased from 25 to 200 mg·L-1, the decolorization rate decreased from 91.9% to 60.0%. The RSM results showed that the interaction between adsorbent dosage and pH to be a significant factor. The optimum conditions were as follows: the adsorbent dosage 1.99 g·L-1, pH 4.22, and reaction time 5.2 h. Under these conditions, the decolorization rate was 95.1%. The three dimensional fluorescence spectra of direct fast black before and after treatment showed that the direct fast black was almost all adsorbed by the acid-thermal modified sepiolite.

Keywords direct fast black      acid-thermal modified sepiolite      adsorption      response surface methodology     
Corresponding Author(s): LI Weiguang,Email:hitlwg@126.com   
Issue Date: 01 August 2013
 Cite this article:   
Chengyuan SU,Weiguang LI,Yong WANG. Adsorption property of direct fast black onto acid-thermal modified sepiolite and optimization of adsorption conditions using Box-Behnken response surface methodology[J]. Front Envir Sci Eng, 2013, 7(4): 503-511.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0477-9
https://academic.hep.com.cn/fese/EN/Y2013/V7/I4/503
independent variablesfactorsrange levels
-101
adsorbent dosage/(g·L-1)X1123
pHX2468
reaction time/hX3246
Tab.1  Experimental range and levels of independent variables
Fig.1  FTIR spectrum of the raw sepiolite
Fig.2  FTIR spectrum of the acid-thermal modified sepiolite
Fig.3  FTIR spectrum of the acid-thermal modified sepiolite-dye composite
Fig.4  Effects of initial dye concentration on the adsorption onto acid-thermal modified sepiolite
Fig.5  Effects of initial pH on the adsorption onto acid-thermal modified sepiolite
Fig.6  Effects of adsorbent dosage on the adsorption onto acid-thermal modified sepiolite
runcoded variablesdecolorization rate (Y)/%
X1X2X3
100080.8
210-179.5
3-10-119.1
4-10126.9
51-1094.7
610194.3
700081.1
8-11019.7
901-123.5
10-1-1093.7
1111065.9
120-1-187.9
130-1195.4
1401131.1
1500080.4
Tab.2  Response surface design arrangement and experimental results
effectestimatestandard errort-ratioP-value
X121.87504.7524.6040.006
X2-28.93754.752-6.0900.002
X34.71254.7520.9920.367
X1X1-8.39586.994-1.2000.284
X1X211.30006.7201.6820.153
X1X31.75006.7200.2600.805
X2X2-3.87086.994-0.5530.604
X2X30.02506.7200.0040.997
X3X3-17.42086.994-2.4910.055
R20.9329
Tab.3  Estimated value of coefficient regression for the fitted quadratic polynomial model of direct fast black
sourcedegree of freedomsum of squaremean squareF-valueP-value
regression912548.61394.297.720.018
linear310704.83568.2719.750.003
square31320.8440.272.440.180
interaction3523.0174.340.970.478
residual5903.2180.63
lack of fit3902.9300.982440.340.000
pure error20.20.12
total1413451.8
Tab.4  Analysis of variance of regression model for direct fast black decolorization
Fig.7  Internally studentized residuals and normal % probability plot for direct fast black decolorization
Fig.8  Response surface plot and contourline showing the effect of the dosage of sepiolite and pH
Fig.9  Response surface plot and contourline showing the effect of the dosage of sepiolite and reaction time
Fig.10  Response surface plot and contourline showing the effect of the pH and reaction time
Fig.11  Three dimensional fluorescence spectra of direct fast black in (a) before and (b) after treatment
1 Tekba? M, Bekta? N, Yatmaz H C. Adsorption studies of aqueous basic dye solutions using sepiolite. Desalination , 2009, 249(1): 205–211
doi: 10.1016/j.desal.2008.10.028
2 Demirbas E, Nas M Z. Batch kinetic and equilibrium studies of adsorption of Reactive Blue 21 by fly ash and sepiolite. Desalination , 2009, 243(1-3): 8–21
doi: 10.1016/j.desal.2008.04.011
3 Eren E, Cubuk O, Ciftci H, Eren B, Caglar B. Adsorption of basic dye from aqueous solutions by modi?ed sepiolite: equilibrium, kinetics and thermodynamics study. Desalination , 2010, 252(1-3): 88–96
doi: 10.1016/j.desal.2009.10.020
4 Tabak A, Eren E, Afsin B, Caglar B. Determination of adsorptive properties of a Turkish Sepiolite for removal of Reactive Blue 15 anionic dye from aqueous solutions. Journal of Hazardous Materials , 2009, 161(2-3): 1087–1094
doi: 10.1016/j.jhazmat.2008.04.062 pmid:18534746
5 Sabah E, Majdan M. Removal of phosphorus from vegetable oil by acid-activated sepiolite. Journal of Food Engineering , 2009, 91(3): 423–427
doi: 10.1016/j.jfoodeng.2008.09.020
6 Singh K P, Gupta S, Singh A K, Sinha S. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials , 2011, 186(2-3): 1462–1473
doi: 10.1016/j.jhazmat.2010.12.032 pmid:21211903
7 Zhang Z M, Zheng H L. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. Journal of Hazardous Materials , 2009, 172(2-3): 1388–1393
doi: 10.1016/j.jhazmat.2009.07.146 pmid:19717231
8 Guo X L, Yao Y D, Yin G F, Kang Y Q, Luo Y, Zhuo L. Preparation of decolorizing ceramsites for printing and dyeing wastewater with acid and base treated clay. Applied Clay Science , 2008, 40(1-4): 20–26
doi: 10.1016/j.clay.2007.06.009
9 Santons C RS, Boaventura R A R.Adsorption modelling of textile dyes by sepiolite. Applied Clay Science , 2008, 42(1-2): 137–145
doi: 10.1016/j.clay.2008.01.002
10 Frost R L, Locos O B, Ruan H, Kloprogge J T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy , 2001, 27(1): 1–13
doi: 10.1016/S0924-2031(01)00110-2
11 Hassan H, Hameed B H. Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chemical Engineering Journal , 2011, 171(3): 912–918
doi: 10.1016/j.cej.2011.04.040
12 Mahmoodi N M, Hayati B, Arami M, Lan C. Adsorption of textile dyes on Pine Cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination , 2011, 268(1-3): 117–125
doi: 10.1016/j.desal.2010.10.007
13 Tan I A W, Hameed B H, Ahmad A L. Equilibrium and kinetic studies on basic dye adsorption by oil palm ?bre activated carbon. Chemical Engineering Journal , 2007, 127(1-3): 111–119
doi: 10.1016/j.cej.2006.09.010
14 Tan I A W, Ahmad A L, Hameed B H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials , 2008, 154(1-3): 337–346
doi: 10.1016/j.jhazmat.2007.10.031 pmid:18035483
15 Bahdod A, El Asri S, Saoiabi A, Coradin T, Laghzizil A. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties. Water Research , 2009, 43(2): 313–318
doi: 10.1016/j.watres.2008.10.023 pmid:18986672
16 Sreejalekshmi K G, Krishnan K A, Anirudhan T S. Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: kinetic and equilibrium isotherm studies. Journal of Hazardous Materials , 2009, 161(2-3): 1506–1513
doi: 10.1016/j.jhazmat.2008.05.002 pmid:18550276
17 Vasanth K K, Sivanesan S. Equilibrium data, isotherm parameters and process design for partial and complete isotherm of methylene blue onto activated carbon. Journal of Hazardous Materials , 2006, 134(1-3): 237–244
doi: 10.1016/j.jhazmat.2005.11.002 pmid:16442716
18 Tripathi P, Srivastava V C, Kumar A. Optimization of an azo dye batch adsorption parameters using Box-Behnken design. Desalination , 2009, 249(3): 1273–1279
doi: 10.1016/j.desal.2009.03.010
19 Bingol D, Tekin N, Alkan M. Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Applied Clay Science , 2010, 50(3): 315–321
doi: 10.1016/j.clay.2010.08.015
20 Ghanbarzadeh Lak M, Sabour M R, Amiri A, Rabbani O. Application of quadratic regression model for Fenton treatment of municipal landfill leachate. Waste Management (New York, N.Y.) , 2012, 32(10): 1895–1902
doi: 10.1016/j.wasman.2012.05.020 pmid:22717412
21 El-Ghenymy A, Garcia-Segura S, Rodríguez R M, Brillas E, El Begrani M S, Abdelouahid B A. Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology. Journal of Hazardous Materials , 2012, 221-222(30): 288–297
doi: 10.1016/j.jhazmat.2012.04.053 pmid:22579405
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[4] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[7] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[8] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[9] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[10] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[11] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[12] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[13] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[14] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[15] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed