Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (3) : 37    https://doi.org/10.1007/s11783-024-1797-2
RESEARCH ARTICLE
Magnetic Co-doped 1D/2D structured γ-Fe2O3/MoS2 effectively activated peroxymonosulfate for efficient abatement of bisphenol A via both radical and non-radical pathways
Junge Xu1, Dong Wang1, Die Hu2, Ziwei Zhang1, Junhong Chen1, Yingmu Wang1(), Yifeng Zhang3()
1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
2. China Nuclear Power Engineering Co., Ltd., Shenzhen 518120, China
3. Department of Environmental & Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
 Download: PDF(6595 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Magnetic Co- γ -Fe2O3/MoS2 were prepared via facile hydrothermal methods.

● Doping γ -Fe2O3 with cobalt greatly increased PMS activation for BPA abatement.

● The compounding of MoS2 significantly enhanced the stability of the catalyst.

● Hybrid radical-nonradical pathways acted for effective degradation of BPA.

● The toxicity of intermediates was lower than BPA via T.E.S.T analysis.

Iron-based catalysts have been widely used to treat refractory organic pollutants in wastewater. In this paper, magnetic Co-γ-Fe2O3 was synthesized by a facile tartaric acid-assisted hydrothermal method, and Co-γ-Fe2O3/MoS2 nanocomposite catalyst was obtained via in situ growth of MoS2 nanosheets on Co-γ-Fe2O3 nanoparticles. The nanocomposite catalysts were used to decompose bisphenol A (BPA) by activating peroxymonosulfate (PMS). It was shown that only 0.15 g/L catalyst and 0.5 mmol/L PMS degraded 10 mg/L of BPA (99.3% within 10 min) in the pH range of 3–9. PMS was activated due to redox cycling among the pairs Co(III)/Co(II), Fe(III)/Fe(II), and Mo(VI)/Mo(IV). Quenching experiments and electron paramagnetic resonance spectroscopy demonstrated that both radical and non-radical pathways were involved in BPA degradation, in which active radical sulfate radical and non-radical singlet oxygen were the main reactive oxygen species. Ten intermediates were identified by liquid chromatography-coupled mass spectrometry, and three possible BPA degradation pathways were proposed. The toxicity of several degradation intermediates was lower, and Co-γ-Fe2O3/MoS2 exhibited excellent reusability and could be magnetically recovered.

Keywords Magnetic Co-γ-Fe2O3/MoS2      Hydrothermal method      Bisphenol A      Degradation pathways      Toxicity analysis     
Corresponding Author(s): Yingmu Wang,Yifeng Zhang   
Issue Date: 11 December 2023
 Cite this article:   
Junge Xu,Dong Wang,Die Hu, et al. Magnetic Co-doped 1D/2D structured γ-Fe2O3/MoS2 effectively activated peroxymonosulfate for efficient abatement of bisphenol A via both radical and non-radical pathways[J]. Front. Environ. Sci. Eng., 2024, 18(3): 37.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1797-2
https://academic.hep.com.cn/fese/EN/Y2024/V18/I3/37
Fig.1  (a) XRD patterns of γ-Fe2O3, MoS2, Co-γ-Fe2O3 and Co-γ-Fe2O3/MoS2. SEM images of (b) Co-γ-Fe2O3 and (c) Co-γ-Fe2O3/MoS2. (d) TEM images of Co-γ-Fe2O3/MoS2, (e) SAED image of Co-γ-Fe2O3/MoS2 and (f) EDS images of Co-γ-Fe2O3/MoS2.
Fig.2  (a) XPS survey, (b) Fe 2p, (c) Co 2p, (d) Mo 3d, (e) S 2p, and (f) O 1s XPS spectra of Co-γ-Fe2O3/MoS2.
Fig.3  (a) The removal efficiency of BPA under different reaction systems; the effects of (b) PMS concentration, (c) different catalyst dosages, (d) initial pH and (e, f) common anions (2, 10 mmol/L) and HA (5, 10 mg/L) on the removal of BPA; Experimental conditions: [BPA]0 = 10 mg/L, [Catalyst]0 = 0.15 g/L, [PMS]0 = 0.5 mmol/L, pH0 = 6.30.
Fig.4  (a) Effect of quenchers on BPA degradation in Co-γ-Fe2O3/MoS2/PMS system; ESR spectra obtained using DMPO (b) and TEMP (c) as spin-trapping agent in H2O- and D2O-based. Experimental conditions: [BPA]0 = 10 mg/L, [Catalyst]0 = 0.15 g/L, [PMS]0 = 0.5 mmol/L, pH0 = 6.30.
Fig.5  (a) Fe 2p XPS spectra, (b) Co 2p XPS spectra, and (c) Mo 3d XPS spectra of the fresh and used Co-γ-Fe2O3/MoS2.
Fig.6  Possible degradation mechanism of BPA in Co-γ-Fe2O3/MoS2/PMS system.
Fig.7  Proposed degradation pathways of BPA in the Co-γ-Fe2O3/MoS2/PMS system.
Fig.8  (a) mutagenicity, (b) developmental toxicity, (c) bioaccumulation factor, and (d) acute toxicity of BPA and its degradation intermediates.
Fig.9  (a) Cycling test of Co-γ-Fe2O3 for the degradation of BPA; (b) XRD patterns of Co-γ-Fe2O3 before and after the reaction; (c) stability of Co-γ-Fe2O3/MoS2 for the degradation of BPA; (d) XRD patterns, (e) XPS survey patterns, and (f) magnetic hysteresis loops of fresh and used Co-γ-Fe2O3/MoS2.
1 A Abareshi , N Salehi . (2022). The effect of Fe3O4 nanoparticles on structural, optical, and thermal properties MoS2 nanoflakes. Journal of Materials Science Materials in Electronics, 33(33): 25153–25162
https://doi.org/10.1007/s10854-022-09220-7
2 R Bai , W Yan , Y Xiao , S Wang , X Tian , J Li , X Xiao , X Lu , F Zhao . (2020). Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine. Chemical Engineering Journal, 397: 125501
https://doi.org/10.1016/j.cej.2020.125501
3 R Barik , B K Jena , M Mohapatra . (2017). Metal doped mesoporous FeOOH nanorods for high performance supercapacitors. RSC Advances, 7(77): 49083–49090
https://doi.org/10.1039/C7RA06731C
4 C Chen , T Ma , Y Shang , B Gao , B Jin , H Dan , Q Li , Q Yue , Y Li , Y Wang . et al.. (2019a). In-situ pyrolysis of enteromorpha as carbocatalyst for catalytic removal of organic contaminants: considering the intrinsic N/Fe in enteromorpha and non-radical reaction. Applied Catalysis B: Environmental, 250: 382–395
https://doi.org/10.1016/j.apcatb.2019.03.048
5 G Chen , X Zhang , Y Gao , G Zhu , Q Cheng , X Cheng . (2019b). Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants. Separation and Purification Technology, 213: 456–464
https://doi.org/10.1016/j.seppur.2018.12.049
6 L Chen , D Ding , C Liu , H Cai , Y Qu , S Yang , Y Gao , T Cai . (2018). Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: a comparative study and mechanistic consideration. Chemical Engineering Journal, 334: 273–284
https://doi.org/10.1016/j.cej.2017.10.040
7 H Dong , J Chen , L Feng , W Zhang , X Guan , T J Strathmann . (2019). Degradation of organic contaminants through activating bisulfite by cerium(IV): a sulfate radical-predominant oxidation process. Chemical Engineering Journal, 357: 328–336
https://doi.org/10.1016/j.cej.2018.09.024
8 X Duan , C Su , J Miao , Y Zhong , Z Shao , S Wang , H Sun . (2018). Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals. Applied Catalysis B: Environmental, 220: 626–634
https://doi.org/10.1016/j.apcatb.2017.08.088
9 Y Fan , Y Ji , G Zheng , J Lu , D Kong , X Yin , Q Zhou . (2017). Degradation of atrazine in heterogeneous Co3O4 activated peroxymonosulfate oxidation process: kinetics, mechanisms, and reaction pathways. Chemical Engineering Journal, 330: 831–839
https://doi.org/10.1016/j.cej.2017.08.020
10 D Flak , Q Chen , B S Mun , Z Liu , M Rękas , A Braun . (2018). In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles. Applied Surface Science, 455: 1019–1028
https://doi.org/10.1016/j.apsusc.2018.06.002
11 J Gao , J Song , J Ye , X Duan , D D Dionysiou , J S Yadav , M N Nadagouda , L Yang , S Luo . (2021). Comparative toxicity reduction potential of UV/sodium percarbonate and UV/hydrogen peroxide treatments for bisphenol A in water: an integrated analysis using chemical, computational, biological, and metabolomic approaches. Water Research, 190: 116755
https://doi.org/10.1016/j.watres.2020.116755
12 Y Ge , C Li , G I N Waterhouse , X Jiang , Z Zhang , L Yu . (2021). Polypyrrole/γ-Fe2O3/g-C3N4 nanocomposites for high-performance electromagnetic wave absorption. Synthetic Metals, 274: 116716
https://doi.org/10.1016/j.synthmet.2021.116716
13 Y Geng , D Chen , N Li , Q Xu , H Li , J He , J Lu . (2021). Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 280: 119409
https://doi.org/10.1016/j.apcatb.2020.119409
14 S Giannakis , K A Lin , F Ghanbari . (2021). A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs). Chemical Engineering Journal, 406: 127083
https://doi.org/10.1016/j.cej.2020.127083
15 E Golestani , M Javanbakht , H Ghafarian-Zahmatkesh , H Beydaghi , M Ghaemi . (2018). Tartaric acid assisted carbonization of LiFePO4 synthesized through in situ hydrothermal process in aqueous glycerol solution. Electrochimica Acta, 259: 903–915
https://doi.org/10.1016/j.electacta.2017.10.123
16 P Guo , X Hu . (2022). Co, Fe co-doped g-C3N4 composites as peroxymonosulfate activators under visible light irradiation for levofloxacin degradation: characterization, performance and synergy mechanism. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 648: 129423
https://doi.org/10.1016/j.colsurfa.2022.129423
17 Y He , J Qian , P Wang , J Wu , B Lu , S Tang , P Gao . (2022a). Acceleration of levofloxacin degradation by combination of multiple free radicals via MoS2 anchored in manganese ferrite doped perovskite activated PMS under visible light. Chemical Engineering Journal, 431: 133933
https://doi.org/10.1016/j.cej.2021.133933
18 Y He , J Qian , B Xu , P Wang , B Lu , S Tang , P Gao . (2022b). Encapsulate SrCoO3 perovskite crystal within molybdenum disulfide layer as core-shell structure to enhance electron transfer for peroxymonosulfate activation. Separation and Purification Technology, 283: 120199
https://doi.org/10.1016/j.seppur.2021.120199
19 M Ikram , M I Khan , A Raza , M Imran , A Ul-Hamid , S Ali . (2020). Outstanding performance of silver-decorated MoS2 nanopetals used as nanocatalyst for synthetic dye degradation. Physica E, Low-Dimensional Systems and Nanostructures, 124: 114246
https://doi.org/10.1016/j.physe.2020.114246
20 J Jiang , X Wang , Y Liu , Y Ma , T Li , Y Lin , T Xie , S Dong . (2020). Photo-Fenton degradation of emerging pollutants over Fe-POM nanoparticle/porous and ultrathin g-C3N4 nanosheet with rich nitrogen defect: degradation mechanism, pathways, and products toxicity assessment. Applied Catalysis B: Environmental, 278: 119349
https://doi.org/10.1016/j.apcatb.2020.119349
21 B Kakavandi , S Alavi , F Ghanbari , M Ahmadi . (2022). Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: Performance, upgrading synergy and mechanistic pathway. Chemosphere, 287: 132024
https://doi.org/10.1016/j.chemosphere.2021.132024
22 J Li , J Li , L Chen , Y Lin , X Liu , X Gong , D Li . (2015). Characterization and magnetism of Co-modified γ-Fe2O3 core-shell nanoparticles by enhancement using NaOH. Journal of Magnetism and Magnetic Materials, 374: 157–163
https://doi.org/10.1016/j.jmmm.2014.08.033
23 M Li , Y Li , P Yu , H Zhao , L Xiang , N Feng , Q Li , K He , X Luo , Q Cai . et al.. (2022a). Exploring degradation mechanism of tetracycline via high-effective peroxymonosulfate catalysts of montmorillonite hybridized CoFe composites and safety assessment. Chemical Engineering Journal, 427: 130930
https://doi.org/10.1016/j.cej.2021.130930
24 Q Li , C Lv , X Xia , C Peng , Y Yang , F Guo , J Zhang . (2022b). Separation/degradation behavior and mechanism for cationic/anionic dyes by Ag-functionalized Fe3O4-PDA core-shell adsorbents. Frontiers of Environmental Science & Engineering, 16(11): 138
25 R Li , J Huang , M Cai , J Huang , Z Xie , Q Zhang , Y Liu , H Liu , W Lv , G Liu . (2020). Activation of peroxymonosulfate by Fe doped g-C3N4/graphene under visible light irradiation for Trimethoprim degradation. Journal of Hazardous Materials, 384: 121435
https://doi.org/10.1016/j.jhazmat.2019.121435
26 H Liu , S Luo , S Yan , Q Wang , D Hu , Y Wang , J Feng , T Yi . (2019). High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Composites. Part B, Engineering, 164: 576–582
https://doi.org/10.1016/j.compositesb.2019.01.084
27 L Liu , T Hu , K Dai , J Zhang , C Liang . (2021a). A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chinese Journal of Catalysis, 42(1): 46–55
https://doi.org/10.1016/S1872-2067(20)63560-4
28 Liu M, Zhang L, Han L, Mei C, Xu C, Yuan R, Geng C (2023). Can heat-activated peroxymonosulfate be used as a pretreatment to mitigate fouling for membrane distillation: performance of individual organics? Water, 15(6): 1148
29 T Liu , C Wang , Y Han , C Bai , H Ren , Y Liu , X Han . (2022). Oxidative polymerization of bisphenol A (BPA) via H-abstraction by Bi2.15WO6 and persulfate: importance of the surface complexes. Chemical Engineering Journal, 435: 134816
https://doi.org/10.1016/j.cej.2022.134816
30 Z Liu , J Wan , Y Ma , Y Wang . (2021b). In situ synthesis of FeOCl@MoS2 on graphite felt as novel electro-fenton cathode for efficient degradation of antibiotic ciprofloxacin at mild pH. Chemosphere, 273: 129747
https://doi.org/10.1016/j.chemosphere.2021.129747
31 X Long , J Luo , Z Zhong , Y Zhu , C Zhang , J Wan , H Zhou , B Zhang , D Xia . (2023). Performance and mechanism of carbamazepine removal by FeS-S2O82− process: experimental investigation and DFT calculations. Frontiers of Environmental Science & Engineering, 17(9): 113
32 J Lu , Y Zhou , L Ling , Y Zhou . (2022). Enhanced activation of PMS by a novel Fenton-like composite Fe3O4/S-WO3 for rapid chloroxylenol degradation. Chemical Engineering Journal, 446: 137067
https://doi.org/10.1016/j.cej.2022.137067
33 Y Lu , Z Ding , J Zhang , C Fu , X Xia , Y Fang . (2019). Degradation of atrazine by UV/PMS in phosphate buffer. Polish Journal of Environmental Studies, 28(4): 2735–2744
https://doi.org/10.15244/pjoes/94213
34 A J R Luciano , L de Sousa Soletti , M E C Ferreira , L F Cusioli , M B de Andrade , R Bergamasco , N U Yamaguchi . (2020). Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation. Journal of Environmental Chemical Engineering, 8(5): 104191
https://doi.org/10.1016/j.jece.2020.104191
35 Q Ma , X Zhang , R Guo , H Zhang , Q Cheng , M Xie , X Cheng . (2019). Persulfate activation by magnetic γ-Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants. Separation and Purification Technology, 210: 335–342
https://doi.org/10.1016/j.seppur.2018.06.060
36 J Mao , X Quan , J Wang , C Gao , S Chen , H Yu , Y Zhang . (2018). Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants. Frontiers of Environmental Science & Engineering, 12(6): 10
https://doi.org/10.1007/s11783-018-1060-9
37 B Niu , L Wang , M Li , W Yao , K Zang , L Zhou , X Hu , Y Zheng . (2022). Lattice B-doping evolved ferromagnetic perovskite-like catalyst for enhancing persulfate-based degradation of norfloxacin. Journal of Hazardous Materials, 425: 127949
https://doi.org/10.1016/j.jhazmat.2021.127949
38 L Niu , G Zhang , G Xian , Z Ren , T Wei , Q Li , Y Zhang , Z Zou . (2021). Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: performance, activation mechanism and degradation pathway. Separation and Purification Technology, 259: 118156
https://doi.org/10.1016/j.seppur.2020.118156
39 X Pan , L Yan , R Qu , Z Wang . (2018). Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. Chemosphere, 196: 95–104
https://doi.org/10.1016/j.chemosphere.2017.12.152
40 K Qi , Z Yuan , Y Hou , R Zhao , B Zhang . (2019). Facile synthesis and improved Li-storage performance of Fe-doped MoS2/reduced graphene oxide as anode materials. Applied Surface Science, 483: 688–695
https://doi.org/10.1016/j.apsusc.2019.04.021
41 W Ren , C Cheng , P Shao , X Luo , H Zhang , S Wang , X Duan . (2022). Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environmental Science & Technology, 56(1): 78–97
https://doi.org/10.1021/acs.est.1c05374
42 A S Sakthi Athithan , J Jeyasundari , Y B A Jacob . (2021). Biological synthesis, physico-chemical characterization of undoped and Co doped α-Fe2O3 nanoparticles using Tribulus terrestris leaf extract and its antidiabetic, antimicrobial applications. Advances in Natural Sciences. Nanoscience and Nanotechnology, 12(4): 045003
https://doi.org/10.1088/2043-6262/ac42c8
43 P Sarkar , S De , S Neogi . (2022a). Microwave assisted facile fabrication of dual Z-scheme g-C3N4 /ZnFe2O4/Bi2S3 photocatalyst for peroxymonosulphate mediated degradation of 2,4,6-trichlorophenol: the mechanistic insights. Applied Catalysis B: Environmental, 307: 121165
https://doi.org/10.1016/j.apcatb.2022.121165
44 P Sarkar , D Roy , B Bera , S De , S Neogi . (2022b). Efficient photocatalytic degradation of ciprofloxacin using novel dual Z-scheme gCN/CuFe2O4/MoS2 mediated peroxymonosulphate activation. Chemical Engineering Journal, 430: 132834
https://doi.org/10.1016/j.cej.2021.132834
45 B Sheng , F Yang , Y Wang , Z Wang , Q Li , Y Guo , X Lou , J Liu . (2019). Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS. Chemical Engineering Journal, 375: 121989
https://doi.org/10.1016/j.cej.2019.121989
46 M Su , H Li , Z Liu , H Peng , S Huang , Y Zhou , C Liao , G Song , D Chen . (2022). Highly-efficient and easy separation of γ-Fe2O3 selectively adsorbs U(VI) in waters. Environmental Research, 210: 112917
https://doi.org/10.1016/j.envres.2022.112917
47 Q Sun , B Xu , J Yang , T Qian , H Jiang . (2020a). Layered oxides supported Co–Fe bimetal catalyst for carbamazepine degradation via the catalytic activation of peroxymonosulfate. Chemical Engineering Journal, 400: 125899
https://doi.org/10.1016/j.cej.2020.125899
48 X Sun , D Xu , P Dai , X Liu , F Tan , Q Guo . (2020b). Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe–Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chemical Engineering Journal, 402: 125881
https://doi.org/10.1016/j.cej.2020.125881
49 Z Sun , Y Zhu , Y Deng , F Liu , W Ruan , L Xie , I Beadham . (2022). Nature of surface active centers in activation of peroxydisulfate by CuO for degradation of BPA with non-radical pathway. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 643: 128731
https://doi.org/10.1016/j.colsurfa.2022.128731
50 F Wang , Y Lai , Q Fang , Z Li , P Ou , P Wu , Y Duan , Z Chen , S Li , Y Zhang . (2020). Facile fabricate of novel Co(OH)F@MXenes catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation: the reaction kinetics and mechanism. Applied Catalysis B: Environmental, 262: 118099
https://doi.org/10.1016/j.apcatb.2019.118099
51 J Wang , Y Xie , J Hou , X Zhou , J Chen , C Yao , Y Zhang , Y Li . (2022a). Biodegradation of bisphenol A by alginate immobilized phanerochaete chrysosporium beads: continuous cyclic treatment and degradation pathway analysis. Biochemical Engineering Journal, 177: 108212
https://doi.org/10.1016/j.bej.2021.108212
52 Y Wang , L Wu , Y Zhou , Y Zhang , S Sun , W Duo Wu , X Wang , Z Wu . (2022b). Ternary FeS/γ-Fe2O3@N/S-doped carbon nanohybrids dispersed in an ordered mesoporous silica for efficient peroxymonosulfate activation. Chemical Engineering Journal, 435: 135124
https://doi.org/10.1016/j.cej.2022.135124
53 Z Wang , B Yang , X Zhao , Y Chen , D Wei , L Zhang , X Su . (2022c). Facile synthesis of ultrathin γ-Fe2O3 magnetic nanosheets rich in oxygen vacancies and their photocatalytic activity for water oxidation. Applied Surface Science, 578: 151999
https://doi.org/10.1016/j.apsusc.2021.151999
54 S Wu , H Liu , C Yang , X Li , Y Lin , K Yin , J Sun , Q Teng , C Du , Y Zhong . (2020). High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation. Chemical Engineering Journal, 392: 123683
https://doi.org/10.1016/j.cej.2019.123683
55 S Wu , Z Yang , F Wang , X Jin , F Kengara , K Xi , W Fang , W Yang , Y Zhang . (2022). Effect of γ-Fe2O3 nanoparticles on the composition of montmorillonite and its sorption capacity for pyrene. Science of the Total Environment, 813: 151893
https://doi.org/10.1016/j.scitotenv.2021.151893
56 X Xie , J Cao , Y Xiang , R Xie , Z Suo , Z Ao , X Yang , H Huang . (2022). Accelerated iron cycle inducing molecular oxygen activation for deep oxidation of aromatic VOCs in MoS2 co-catalytic Fe3+/PMS system. Applied Catalysis B: Environmental, 309: 121235
https://doi.org/10.1016/j.apcatb.2022.121235
57 B Xu , J Wang , H Yu , H Gao . (2011). Large-scale synthesis of hierarchical flowerlike boehmite architectures. Journal of Environmental Sciences (China), 23(Suppl): S49–S52
https://doi.org/10.1016/S1001-0742(11)61076-0
58 L Xu , X Wang , Y Sun , H Gong , M Guo , X Zhang , L Meng , L Gan . (2020). Mechanistic study on the combination of ultrasound and peroxymonosulfate for the decomposition of endocrine disrupting compounds. Ultrasonics Sonochemistry, 60: 104749
https://doi.org/10.1016/j.ultsonch.2019.104749
59 T Yan , Q Yang , R Feng , X Ren , Y Zhao , M Sun , L Yan , Q Wei . (2022). Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite. Frontiers of Environmental Science & Engineering, 16(10): 131
60 G Yang , Y Liang , Z Xiong , J Yang , K Wang , Z Zeng . (2021). Molten salt-assisted synthesis of Ce4O7/Bi4MoO9 heterojunction photocatalysts for photo-fenton degradation of Tetracycline: enhanced mechanism, degradation pathway and products toxicity assessment. Chemical Engineering Journal, 425: 130689
https://doi.org/10.1016/j.cej.2021.130689
61 J Yang , D Zeng , M Hassan , Z Ma , L Dong , Y Xie , Y He . (2022). Efficient degradation of bisphenol A by dielectric barrier discharge non-thermal plasma: performance, degradation pathways and mechanistic consideration. Chemosphere, 286: 131627
https://doi.org/10.1016/j.chemosphere.2021.131627
62 L Yao , X He , J Lv , G Xu , Z Bao , J Cui , D Yu , Y Wu . (2022). Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: performance and mechanism. Journal of Environmental Chemical Engineering, 10(3): 107397
https://doi.org/10.1016/j.jece.2022.107397
63 Y Yue , S Shen , W Cheng , G Han , Q Wu , J Jiang . (2022). Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/montmorillonite hybrid for antibiotic degradation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 636: 128035
https://doi.org/10.1016/j.colsurfa.2021.128035
64 E Yun , J H Lee , J Kim , H Park , J Lee . (2018). Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environmental Science & Technology, 52(12): 7032–7042
https://doi.org/10.1021/acs.est.8b00959
65 L Zeng , L Xiao , X Shi , M Wei , J Cao , Y Long . (2019a). Core-shell prussian blue analogues@ poly(m-phenylenediamine) as efficient peroxymonosulfate activators for degradation of rhodamine B with reduced metal leaching. Journal of Colloid and Interface Science, 534: 586–594
https://doi.org/10.1016/j.jcis.2018.09.074
66 Y Zeng , N Guo , Y Song , Y Zhao , H Li , X Xu , J Qiu , H Yu . (2018). Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity. Journal of Colloid and Interface Science, 514: 664–674
https://doi.org/10.1016/j.jcis.2017.12.079
67 Y Zeng , N Guo , X Xu , Y Yu , Q Wang , N Wang , X Han , H Yu . (2019b). Degradation of bisphenol A using peroxymonosulfate activated by WO3@MoS2/Ag hollow nanotubes photocatalyst. Chemosphere, 227: 589–597
https://doi.org/10.1016/j.chemosphere.2019.04.067
68 D Zhang , X Fan , A Yang , X Zong . (2018). Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. Journal of Colloid and Interface Science, 523: 217–225
https://doi.org/10.1016/j.jcis.2018.03.109
69 H Zhang , L Du , J Xing , G Wei , X Quan . (2023). Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A. Frontiers of Environmental Science & Engineering, 17(5): 59
70 J Zhang , B Sun , X Guan . (2013). Oxidative removal of bisphenol A by permanganate: kinetics, pathways and influences of co-existing chemicals. Separation and Purification Technology, 107: 48–53
https://doi.org/10.1016/j.seppur.2013.01.023
71 W Zhang , H Zhang , X Yan , M Zhang , R Luo , J Qi , X Sun , J Shen , W Han , L Wang . et al.. (2020). Controlled synthesis of bimetallic Prussian blue analogues to activate peroxymonosulfate for efficient bisphenol A degradation. Journal of Hazardous Materials, 387: 121701
https://doi.org/10.1016/j.jhazmat.2019.121701
72 S Zhao , C Chen , J Ding , S Yang , Y Zang , N Ren . (2022). One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B. Frontiers of Environmental Science & Engineering, 16(3): 36
73 K Zheng , Y Sun , S Gong , G Jiang , X Zheng , Z Yu . (2019). Degradation of sulfamethoxazole in aqueous solution by dielectric barrier discharge plasma combined with Bi2WO6-rMoS2 nanocomposite: mechanism and degradation pathway. Chemosphere, 222: 872–883
https://doi.org/10.1016/j.chemosphere.2019.02.004
74 Y Zhou , L Zhou , Y Zhou , M Xing , J Zhang . (2020). Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions. Applied Catalysis B: Environmental, 279: 119365
https://doi.org/10.1016/j.apcatb.2020.119365
75 J Zhu , J Wang , C Shan , J Zhang , L Lv , B Pan . (2019a). Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation. Chemical Engineering Journal, 375: 122009
https://doi.org/10.1016/j.cej.2019.122009
76 M Zhu , J E Yang , D Delai Sun , B Yuan , M Fu . (2022). Deciphering the simultaneous removal of carbamazepine and metronidazole by monolithic Co2AlO4@Al2O3 activated peroxymonosulfate. Chemical Engineering Journal, 436: 135201
https://doi.org/10.1016/j.cej.2022.135201
77 S Zhu , X Li , J Kang , X Duan , S Wang . (2019b). Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environmental Science & Technology, 53(1): 307–315
https://doi.org/10.1021/acs.est.8b04669
[1] FSE-23088-OF-XJG_suppl_1 Download
[1] Haiguang Zhang, Lei Du, Jiajian Xing, Gaoliang Wei, Xie Quan. Electro-conductive crosslinked polyaniline/carbon nanotube nanofiltration membrane for electro-enhanced removal of bisphenol A[J]. Front. Environ. Sci. Eng., 2023, 17(5): 59-.
[2] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[3] Yong YU, Laosheng WU. Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in fish (Morone saxatilis)[J]. Front. Environ. Sci. Eng., 2015, 9(3): 475-481.
[4] Liping LIANG,Jing ZHANG,Pian FENG,Cong LI,Yuying HUANG,Bingzhi DONG,Lina LI,Xiaohong GUAN. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies[J]. Front. Environ. Sci. Eng., 2015, 9(1): 16-38.
[5] Xue BAI, Hanchang SHI, Zhengfang YE, Qiujin SUN, Qing WANG, Zhongyou WANG. Degradation of bisphenol A by microorganisms immobilized on polyvinyl alcohol microspheres[J]. Front Envir Sci Eng, 2013, 7(6): 844-850.
[6] Liqin JI, Xue BAI, Lincheng ZHOU, Hanchang SHI, Wei CHEN, Zulin HUA. One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A[J]. Front Envir Sci Eng, 2013, 7(3): 442-450.
[7] Hongtao ZHU, Wenna LI. Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit[J]. Front Envir Sci Eng, 2013, 7(2): 294-300.
[8] XU Bin, GAO Naiyun, RUI Min, WANG Hong, WU Haihui. Degradation of endocrine disruptor bisphenol A in drinking water by ozone oxidation[J]. Front.Environ.Sci.Eng., 2007, 1(3): 350-356.
[9] ZHAN Manjun, YANG Xi, KONG Lingren, YANG Hongshen. Effect of natural aquatic humic substances on the photodegradation of bisphenol A[J]. Front.Environ.Sci.Eng., 2007, 1(3): 311-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed