Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (2) : 164-170    https://doi.org/10.1007/s11515-010-0032-7
Research articles
Progress in mechanism of salt excretion in recretohalopytes
Feng DING,Jian-Chao YANG,Fang YUAN,Bao-Shan WANG,
Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250014, China;
 Download: PDF(354 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recretohalophyte with specialized salt-secreting structures including salt glands and salt bladders can secrete salt from their bodies and easily adapt themselves to many kinds of salt habitats. Salt glands and salt bladders, arose from dermatogen cells, are excretory organs specially adapted for dealing with ionic homeostasis in the cells of recretohalophytes. The main function of salt glands or salt bladders is to secrete excess ions that invade the plant. The structures of salt glands or salt bladders differ among plant species. In addition to structural differences, salt glands also differ in their secretion abilities. In this review, we mainly focus on recent progress in the mechanism of salt excretion of salt glands and salt bladders, and in particular, emphasize the vesicle-mediated secretion systems from the vacuole to the plasmalemma and the possibly involved membrane-bound translocating proteins for salt secretion of plant gland secretory cell.
Keywords mechanism      salt excretion      recretohalopytes      salt bladders      salt glands      
Issue Date: 01 April 2010
 Cite this article:   
Feng DING,Fang YUAN,Jian-Chao YANG, et al. Progress in mechanism of salt excretion in recretohalopytes[J]. Front. Biol., 2010, 5(2): 164-170.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0032-7
https://academic.hep.com.cn/fib/EN/Y2010/V5/I2/164
Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman J C (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant ofthe common ice plant Mesembryanthemum crystallinum. J Exp Biol, 58: 1957–1967
Arisz W H, Camphuis I J, Heikens H, Vantooren A J (1955). The secretion of the salt glands of Limonium latifolium Ktze. Acta Bot Neerl, 4: 321–338
Balsamo R A, Thomson W W (1996). Isolation of mesophyll and secretory cell protoplastsof the halophyte Ceratostigma plumbaginoides (L.): a comparison of ATPase concentration and activity. Plant Cell Rep, 15: 418–422

doi: 10.1007/BF00232067
Barkla B J, Vera-Estrella R, Camacho-Emiterio J, Pantoja O (2002). Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associatedwith cellular sites of Na+ storage. Funct Plant Biol, 29: 1017–1024

doi: 10.1071/FP02045
Barkla B J, Zingarelli L, Blumwald E, Smith J A C (1995). Tonoplast Na+/H+ antiport activity and its energizationby the vacuolar H+-ATPase in the halophyticplant Mesembryanthemum crystallinum L. Plant Physiol, 109: 549–556
Batanouny K H, Hassan A H, Fahmy G M (1992). Eco-physiological studies on halophytes in arid and semi-arid zones. II. Eco-physiology of Limonium delicatulum (GIR.) KTZE. Flora, 186: 105–116
Berry W L (1970). Characteristics of salts secretedby Tamarix aphylla. Am J Bot, 57: 1226–1230

doi: 10.2307/2441362
Bhatti A S, Sarwar G (1993). Secretion and uptake of salt ions by detached Leptochloa fusca L. Kunth (Kallar grass)leaves. Environ Exp Bot, 33: 259–265

doi: 10.1016/0098-8472(93)90071-M
Boyd C, Hughes T, Pypaert M, Novick P (2004). Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p andExo70p. J Cell Biol, 167: 889–901

doi: 10.1083/jcb.200408124
Breckle S W (1995). How do halophytes overcome salinity? In: Khann M A, Ungar I A, eds. Biology of Salt Tolerant Plants. 199–213
Chong Y T, Gidda S K, Sanford C, Parkinson J, Mullen R T, Goring D R (2009). Characterization of the Arabidopsisthaliana exocyst complex gene families by phylogenetic, expressionprofiling, and subcellular localization studies. New Phytol, 185: 401–419

doi: 10.1111/j.1469-8137.2009.03070.x
Colmenero-Flores J M, Martinez G, Gamba G, Vazquenz N, Iglessias D J, Brumos J, Talon M (2007). Identification and functional characterization of cation-chloride cotransporters in plants. Plant J, 50: 278–292

doi: 10.1111/j.1365-313X.2007.03048.x
Copeland D E (1967). A study of salt secreting cells inthe brine shrimp (Artemia salina). Protoplasma, 63: 363–384

doi: 10.1007/BF01252946
Delpire E, Mount D B (2002). Human and murine phenotypes associated with defects in cation–chloridecotransport. Annu Rev Physiol, 64: 803–843

doi: 10.1146/annurev.physiol.64.081501.155847
Diamond J M, Bossert W H (1967). Standing-gradient osmotic flow: a mechanism for couplingof water and solute transport in epithelia. J Gen Physiol, 50: 2061–2083

doi: 10.1085/jgp.50.8.2061
Ding F, Chen M, Sui N, Wang B S (2010). Ca2+ significantly enhanceddevelopment and salt-secretion rate of salt glands of Limonium bicolor under NaCl treatment. S Afr J Bot, 76: 95–101

doi: 10.1016/j.sajb.2009.09.001
Ding F, Song J, Ruan Y, Wang B S (2009a). Comparison of the effects of NaCl and KCl at the rootson seedling growth, cell death and the size, frequency and secretionrate of salt glands in leaves of Limonium sinense. Acta Physiol Plant, 31: 343–350

doi: 10.1007/s11738-008-0240-9
Dschida W J, Platt-Aloia K A, Thomson W W (1992). Epidermal peels of Avicennia germinans (L.) Stearn: a useful system to study the function of salt glands. Ann Bot, 70: 501–509
Echeverría E (2000). Vesicle-mediated solute transport between the vacuole and the plasma membrane. Plant Physiol, 123: 1217–1226

doi: 10.1104/pp.123.4.1217
Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V (2003). The exocyst complex in plants. Cell Biol Int, 27: 199–201

doi: 10.1016/S1065-6995(02)00349-9
Fahn A (1979). Secretory tissues in plants. London: Academic Press
Faraday C D, Thomson W W (1986). Morphometric analysis of Limonium salt glands in relation to ion efflux. J Exp Bot, 37: 471–481

doi: 10.1093/jxb/37.4.471
Flowers T J, Colmer T D (2008). Salinity tolerance in halophytes. New Phytol, 179: 945–963

doi: 10.1111/j.1469-8137.2008.02531.x
Gamba G (2005). Molecular physiology and pathophysiologyof electroneutral cation–chloride cotransporters. Physiol Rev, 85: 423–493

doi: 10.1152/physrev.00011.2004
He B, Guo W (2009). The exocyst complex in polarized exocytosis. Curr Opin Cell Biol, 21: 537–542

doi: 10.1016/j.ceb.2009.04.007
Hebert S C, Mount D B, Gamba G (2004). Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflügers Arch Eur J Physiol, 447: 580–593

doi: 10.1007/s00424-003-1066-3
Hill A E (1967). Ion and water transport in Limonium.Ⅱ.Short-circuit analysis. Biochim Biphys Acta, 135: 461–465

doi: 10.1016/0005-2736(67)90035-1
Hill A E, Hill B S (1973). The Limonium salt gland: A biophysical and structural study. Int Rev of Cytol, 35: 299–319

doi: 10.1016/S0074-7696(08)60357-5
Hsu S C, TerBush D, Abraham M, Guo W (2004). The exocyst complex in polarizedexocytosis. Int Rev Cytol, 233: 243–265

doi: 10.1016/S0074-7696(04)33006-8
Ish-Shalom-Gordon N, Dubinsky Z (1990). Possible modes of salt secretion in Avicennia marina in the Sinai. Plant Cell Physiol, 31: 27–32
Kobayashi H, Masaoka Y, Takahashi Y, Ide Y, Sato S (2007). Ability of salt glands in Rhodes grass (Chloris gayana Kunth) to secrete Na+ and K+. Soil Sci Plant Nutr, 53: 764–771

doi: 10.1111/j.1747-0765.2007.00192.x
Levering C A, Thomson W W (1971). The ultrastructure of salt gland of Spartina foliosa. Planta, 97: 183–196

doi: 10.1007/BF00389200
Levering C A, Thomson W W (1972). Studies on the ultrastructure and mechanism of secretionof the salt gland of the grass Spartina. In: Procedings of the Electron Microscopy Society of America, 30: 222–223
Liphschitz N, Waisel Y (1974). Existence of salt glands in various genera of the Gramineae. New Phytol, 73: 507–513

doi: 10.1111/j.1469-8137.1974.tb02129.x
Lunde C, Drew D P, Jacobs A K, Tester M (2007). Exclusion of Na+ via sodiumATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress. Plant Physiol, 144: 1786–1796

doi: 10.1104/pp.106.094946
Marcum K B, Murdoch C L (1992). Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytol, 120: 281–288

doi: 10.1111/j.1469-8137.1992.tb05665.x
Munson M, Novick P (2006). The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol, 13: 577–581

doi: 10.1038/nsmb1097
Naidoo Y, Naidoo G (1999). Cytochemical localisation of adenosine triphosphataseactivity in salt glands of Sporobolus virginicus (L.) Kunth. S Afr J Bot, 65: 370–373
Pollack G, Waisel Y (1970). Salt secretion in Aeluropus litoralis (Willd.)Parl Ann Bot, 34: 879–888
Pollak G, Waisel Y (1979). Ecophysiology of salt secretion in Aeluropus litoralis (Gramineae). Physiol Plant, 47: 177–184

doi: 10.1111/j.1399-3054.1979.tb06304.x
Qiu Q S, Barkla B J, Vera-Estrella R, Zhu J K, Schumaker K S (2003). Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol, 132: 1041–1052

doi: 10.1104/pp.102.010421
Riordan J R, Forbush B, Hanrahan J W (1994). The molecular basis of chloride transport in shark rectal gland. J Exp Biol, 196: 405–418
Rozema J, Gude H, Pollak G (1981). An ecophysiological study of the salt secretion of four halophytes. New Phytol, 89: 201–217

doi: 10.1111/j.1469-8137.1981.tb07483.x
Rozema J, Riphagen I (1977). Physiology and ecologic relevance of salt secretionby salt glands of Glaux maritima L. Oecologia, 29: 349–357

doi: 10.1007/BF00345808
Russel J (2000). Sodium–potassium–chloridecotransport. Physiol Rev, 80: 211–276
Shi H, Quintero F J, Pardo J M, Zhu J K (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controlslong-distance Na+ transport in plants. Plant Cell, 14: 465–477

doi: 10.1105/tpc.010371
Somaru R, Naidoo Y, Naidoo G (2002). Morphology and ultrastructure of the leaf salt glands of Odyssea paucinervis (Stapf) (Poaceae). Flora, 197: 67–57
Storey R, Pitman M G, Stelzer R, Carter C (1983). X-ray micro-analysis of cells and cell compartments of Atriplex spongiosa leaves. J Exp Bot, 34: 778–794

doi: 10.1093/jxb/34.7.778
Thomson W W (1975). The structure and function of saltglands. In: Poljakoff-Mayber A, Gale J, eds. Plants in Saline Environments. Berlin: Springer-verlag, 118–146
Thomson W W, Berry W L, Liu L L (1969). Localization and secretion of salt by the salt glands of Tamarix aphylla. PNAS, 63: 310–317

doi: 10.1073/pnas.63.2.310
Thomson W W, Liu L L (1967). Ultrastructural features of the salt gland of Tamarix aphylla. Planta, 73: 201–220

doi: 10.1007/BF00387033
Tsuboi T, Ravier M A, Xie H, Ewart M A, Gould G W, Baldwin S A, Rutter G A (2005). Mammalian exocyst complex is required for the dockingstep of insulin vesicle exocytosis. J Biol Chem, 280: 25565–25570

doi: 10.1074/jbc.M501674200
Vassilyev A E, Stepanova A A (1990). The ultrastructure of ion-secreting and non-secretingsalt gland of Limonium platyphyllum. J Exp Bot, 41: 41–46

doi: 10.1093/jxb/41.1.41
Waisel Y (1972). Biology of halophytes. New York: Academic Press
Wieneke J, Sarwar G, Roeb M (1987). Existence of salt glands on leaves of Kallar grass (Leptochloa fusca L. Kunth). J Plant Nutr, 10: 805–820

doi: 10.1080/01904168709363611
Zhang D Y, Yin L K, Pan B R (2003). A review on the study of salt glands of Tamarix. Acta Botanica Boreali-Occidentalia Sinica, 23: 190–194
Zhang Y, Liu C M, Emons A M C, Ketelaar T (2010). The plant exocyst. J IntegrPlant Biol (In press)

doi: 10.1111/j.1744-7909.2010.00929.x
Zhao K F, Li F Z (1999). Halophytes in China. Beijing: Science Press (in Chinese)
Zhou S, Han J L, Zhao K F (2001). Advance of study on recretohalophytes. Chin J Appl Environ Biol, 7: 496–501
Ziegler H, Lüttge U (1967). Die Salzdrusen Von Limonium Vulgare. Planta, 74: 1–17

doi: 10.1007/BF00385168
[1] P. Shannon PENDERGRAST, Tom VOLPE. MicroRNA rules: Made to be broken[J]. Front Biol, 2013, 8(5): 468-474.
[2] Taiyong BI, Fang FANG. Neural plasticity in high-level visual cortex underlying object perceptual learning[J]. Front Biol, 2013, 8(4): 434-443.
[3] David S. SENCHINA, Justus E. HALLAM, David J. CHENEY. Multidisciplinary perspectives on mechanisms of activity of popular immune-enhancing herbal supplements used by athletes[J]. Front Biol, 2013, 8(1): 78-100.
[4] Wenxiong LIN, Changxun FANG, Ting CHEN, Ruiyu LIN, Jun XIONG, Haibin WANG. Rice allelopathy and its properties of molecular ecology[J]. Front Biol, 2010, 5(3): 255-262.
[5] Philip H.-S. Jen, . Adaptive mechanisms underlying the bat biosonar behavior[J]. Front. Biol., 2010, 5(2): 128-155.
[6] KONG Lingbin, YANG Zhiyin, DING Shouhua, AN Rui. Effects of special brain area regional cerebral blood flow abnormal perfusion on learning and memory function and its molecular mechanism in rats[J]. Front. Biol., 2008, 3(2): 147-153.
[7] GAN Guangming, ZHANG Yaoguang. Cortical reaction and solicitation mechanism in Hemibarbus labeo ovum[J]. Front. Biol., 2006, 1(4): 398-406.
[8] ZHANG Liquan, ZHEN Yu. An artificial neural network model of the landscape pattern in Shanghai metropolitan region, China[J]. Front. Biol., 2006, 1(4): 463-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed