Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (4) : 286-303    https://doi.org/10.1007/s11515-010-0660-y
Research articles
Flavivirus RNA cap methyltransferase: structure, function, and inhibition
Lihui LIU1,Hui CHEN1,Jing ZHANG1,Hua LING1,Zhong LI1,Hongping DONG2,Pei-Yong SHI2,Hongmin LI3,
1.Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA; 2.Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA;Current address Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670; 3.Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA;Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York 12201-0509, USA;
 Download: PDF(720 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2’-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA→m7GpppA→m7GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2’-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2’-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2’-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.
Keywords Flavivirus NS5      RNA cap methylation      methyltransferase      structure and function      inhibitor      
Issue Date: 01 August 2010
 Cite this article:   
Zhong LI,Lihui LIU,Jing ZHANG, et al. Flavivirus RNA cap methyltransferase: structure, function, and inhibition[J]. Front. Biol., 2010, 5(4): 286-303.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0660-y
https://academic.hep.com.cn/fib/EN/Y2010/V5/I4/286
Abraham G, Rhodes D P, Banerjee A K (1975). The 5' terminal structure of the methylated mRNA synthesized in vitro byvesicular stomatitis virus. Cell, 5(1): 51–58

doi: 10.1016/0092-8674(75)90091-4
Ackermann M, Padmanabhan R (2001). De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperaturedependence at the initiation but not elongation phase. J Biol Chem, 276(43): 39926–39937

doi: 10.1074/jbc.M104248200
Ahola T, K??ri?inen L (1995). Reaction in alphavirus mRNA capping: formation of acovalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci U S A, 92(2): 507–511

doi: 10.1073/pnas.92.2.507
Arias C F, Preugschat F, Strauss J H (1993). Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 withinthe helicase domain. Virology, 193(2): 888–899

doi: 10.1006/viro.1993.1198
Asnis D S, Conetta R, Teixeira A A, Waldman G, Sampson B A (2000). The West Nile Virus outbreak of 1999 in New York: theFlushing Hospital experience. Clin Infect Dis, 30(3): 413–418

doi: 10.1086/313737
Asnis D S, Conetta R, Waldman G, Teixeira A A (2001). The West Nile virus encephalitis outbreak in the United States (1999―2000): from Flushing, NewYork, to beyond its borders. Ann N Y Acad Sci, 951: 161–171

doi: 10.1111/j.1749-6632.2001.tb02694.x
Assenberg R, Ren J, Verma A, Walter T S, Alderton D, Hurrelbrink R J, Fuller S D, Bressanelli S, Owens R J, Stuart D I, Grimes J M (2007). Crystal structure of the Murray Valley encephalitis virus NS5 methyltransferasedomain in complex with cap analogues. J Gen Virol, 88(Pt 8): 2228–2236

doi: 10.1099/vir.0.82757-0
Barbas C F 3rd, Heine A, Zhong G, Hoffmann T, Gramatikova S, Bj?rnestedt R, List B, Anderson J, Stura E A, Wilson I A, Lerner R A (1997). Immune versus natural selection: antibody aldolases with enzymic rates butbroader scope. Science, 278(5346): 2085–2092

doi: 10.1126/science.278.5346.2085
Barbosa E, Moss B (1978). mRNA(nucleoside-2'-)-methyltransferase from vaccinia virus. Characteristicsand substrate specificity. J Biol Chem, 253(21): 7698–7702
Benarroch D, Egloff M P, Mulard L, Guerreiro C, Romette J L, Canard B (2004). A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferasedomain by ribavirin 5'-triphosphate. J Biol Chem, 279(34): 35638–35643

doi: 10.1074/jbc.M400460200
Bernard K A, Kramer L D (2001). West Nile virus activity in the United States, 2001. Viral Immunol, 14(4): 319–338

doi: 10.1089/08828240152716574
Bernard K A, Maffei J G, Jones S A, Kauffman E B, Ebel G, Dupuis A P 2nd, Ngo K A, Nicholas D C, Young D M, Shi P Y, Kulasekera V L, Eidson M, White D J, Stone W B, Kramer L D, and the NY State West Nile VirusSurveillance Team (2001). West Nile virus infection in birds and mosquitoes, New York State, 2000. Emerg Infect Dis, 7(4): 679–685

doi: 10.3201/eid0704.010415
Bhattacharya D, Hoover S, Falk S P, Weisblum B, Vestling M, Striker R (2008). Phosphorylation of yellow fever virus NS5 alters methyltransferase activity. Virology, 380(2): 276–284

doi: 10.1016/j.virol.2008.07.013
Bisaillon M, Lemay G (1997). Viral and cellular enzymes involved in synthesis of mRNA cap structure. Virology, 236(1): 1–7

doi: 10.1006/viro.1997.8698
Bollati M, Milani M, Mastrangelo E, de Lamballerie X, Canard B, Bolognesi M (2009b). Crystal structure of a methyltransferase from a no-known-vector Flavivirus. Biochem Biophys Res Commun, 382(1): 200–204

doi: 10.1016/j.bbrc.2009.03.008
Bollati M, Milani M, Mastrangelo E, Ricagno S, Tedeschi G, Nonnis S, Decroly E, Selisko B, de Lamballerie X, Coutard B, Canard B, Bolognesi M (2009c). Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain:implications for RNA-capping mechanisms in Flavivirus. J Mol Biol, 385(1): 140–152

doi: 10.1016/j.jmb.2008.10.028
Brinton M A (1981). Isolation of a replication-efficientmutant of West Nile virus from a persistently infected geneticallyresistant mouse cell culture. J Virol, 39(2): 413–421
Brinton M A (2002). The molecular biology of West NileVirus: a new invader of the western hemisphere. Annu Rev Microbiol, 56: 371–402

doi: 10.1146/annurev.micro.56.012302.160654
Brinton M A, Dispoto J H (1988). Sequence and secondary structure analysis of the 5'-terminalregion of flavivirus genome RNA. Virology, 162(2): 290–299

doi: 10.1016/0042-6822(88)90468-0
Burke D S, Monath T P (2001). Flaviviruses. Philadelphia, PA: Lippincott William & Wilkins
Centers for Disease Controland Prevention (CDC) (2000). Guidelines for surveillance, prevention, and control of West Nilevirus infection—United States. MMWR Morb Mortal Wkly Rep, 49(2): 25–28
Chambers T J, Hahn C S, Galler R, Rice C M (1990). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol, 44: 649–688

doi: 10.1146/annurev.mi.44.100190.003245
Chambers T J, Grakoui A, Rice C M (1991). Processing of the yellow fever virus nonstructural polyprotein: a catalyticallyactive NS3 proteinase domain and NS2B are required for cleavages atdibasic sites. J Virol, 65(11): 6042–6050
Chambers T J, Nestorowicz A, Amberg S M, Rice C M (1993). Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complexformation, and viral replication. J Virol, 67(11): 6797–6807
Chung K Y, Dong H, Chao A T, Shi P Y, Lescar J, Lim S P (2010). Higher catalytic efficiency of N-7-methylationis responsible for processive N-7 and 2'-O methyltransferase activityin dengue virus. Virology, 402(1): 52–60

doi: 10.1016/j.virol.2010.03.011
Cleaves G R, Dubin D T (1979). Methylation status of intracellular dengue type 2 40?S RNA. Virology, 96(1): 159–165

doi: 10.1016/0042-6822(79)90181-8
Cong P, Shuman S (1992). Methyltransferase and subunit association domains ofvaccinia virus mRNA capping enzyme. J Biol Chem, 267(23): 16424–16429
Davidson A D (2009). Chapter 2. New insights into flavivirusnonstructural protein 5. Adv Virus Res, 74: 41–101

doi: 10.1016/S0065-3527(09)74002-3
De la Pe?a M, Kyrieleis O J, Cusack S (2007). Structural insights into the mechanism and evolution of the vaccinia virus mRNAcap N7 methyl-transferase. EMBO J, 26(23): 4913–4925
Diamond M S, Edgil D, Roberts T G, Lu B, Harris E (2000). Infection of human cells by dengue virus is modulated by different cell typesand viral strains. J Virol, 74(17): 7814–7823

doi: 10.1128/JVI.74.17.7814-7823.2000
Dong H, Ray D, Ren S, Zhang B, Puig-Basagoiti F, Takagi Y, Ho C K, Li H, Shi P Y (2007). Distinct RNA elements confer specificity to flavivirus RNA cap methylationevents. J Virol, 81(9): 4412–4421

doi: 10.1128/JVI.02455-06
Dong H, Ren S, Li H, Shi P Y (2008a). Separate molecules of West Nile virus methyltransferase can independentlycatalyze the N7 and 2'-O methylations of viral RNA cap. Virology, 377(1): 1–6

doi: 10.1016/j.virol.2008.04.026
Dong H, Ren S, Zhang B, Zhou Y, Puig-Basagoiti F, Li H, Shi P Y (2008b). West Nile virus methyltransferase catalyzes two methylations of theviral RNA cap through a substrate-repositioning mechanism. J Virol, 82(9): 4295–4307

doi: 10.1128/JVI.02202-07
Dong H, Zhang B, Shi P Y (2008c). Flavivirus methyltransferase: a novel antiviral target. Antiviral Res, 80(1): 1–10

doi: 10.1016/j.antiviral.2008.05.003
Egloff M P, Benarroch D, Selisko B, Romette J L, Canard B (2002). An RNA cap (nucleoside-2'-O-)-methyltransferase in theflavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J, 21(11): 2757–2768

doi: 10.1093/emboj/21.11.2757
Egloff M P, Decroly E, Malet H, Selisko B, Benarroch D, Ferron F, Canard B (2007). Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAsby the methyltransferase domain of dengue virus NS5. J Mol Biol, 372(3): 723–736

doi: 10.1016/j.jmb.2007.07.005
Fabrega C, Hausmann S, Shen V, Shuman S, Lima C D (2004). Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell, 13(1): 77–89

doi: 10.1016/S1097-2765(03)00522-7
Falgout B, Miller R H, Lai C J (1993). Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identificationof a domain required for NS2B-NS3 protease activity. J Virol, 67(4): 2034–2042
Fauman E B, Blumenthal R M, Cheng X D (1999) Structure and evolution of AdoMet-dependent methyltransferases. World Scientific Publishing Co., Singapore.
Fredericksen B L, Gale M Jr (2006). West Nile virus evades activation of interferon regulatoryfactor 3 through RIG-I-dependent and-independent pathways withoutantagonizing host defense signaling. J Virol, 80(6): 2913–2923

doi: 10.1128/JVI.80.6.2913-2923.2006
Frey P A, Kokesh F C, Westheimer F H (1971). A reporter group at the active site of acetoacetate decarboxylase. I. Ionizationconstant of the nitrophenol. J Am Chem Soc, 93(26): 7266–7269

doi: 10.1021/ja00755a024
Furuichi Y, Shatkin A J (2000). Viral and cellular mRNA capping: past and prospects. Adv Virus Res, 55: 135–184

doi: 10.1016/S0065-3527(00)55003-9
Geiss B J, Thompson A A, Andrews A J, Sons R L, Gari H H, Keenan S M, Peersen O B (2009). Analysis of flavivirus NS5 methyltransferase cap binding. J Mol Biol, 385(5): 1643–1654

doi: 10.1016/j.jmb.2008.11.058
Gong W, O’Gara M, Blumenthal R M, Cheng X (1997). Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and proteinfold assignment. Nucleic Acids Res, 25(14): 2702–2715

doi: 10.1093/nar/25.14.2702
Gu M, Lima C D (2005). Processing the message: structural insights into capping and decappingmRNA. Curr Opin Struct Biol, 15(1): 99–106

doi: 10.1016/j.sbi.2005.01.009
Guyatt K J, Westaway E G, Khromykh A A (2001). Expression and purification of enzymatically active recombinant RNA-dependentRNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods, 92(1): 37–44

doi: 10.1016/S0166-0934(00)00270-6
Hager J, Staker B L, Bugl H, Jakob U (2002). Active site in RrmJ, a heat shock-inducedmethyltransferase. J Biol Chem, 277(44): 41978–41986

doi: 10.1074/jbc.M205423200
Highbarger L A, Gerlt J A, Kenyon G L (1996). Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine116 in determining the pKa of active-site lysine 115. Biochemistry, 35(1): 41–46

doi: 10.1021/bi9518306
Hodel A E, Gershon P D, Shi X, Quiocho F A (1996). The 1.85 A structure of vacciniaprotein VP39: a bifunctional enzyme that participates in the modificationof both mRNA ends. Cell, 85(2): 247–256

doi: 10.1016/S0092-8674(00)81101-0
Hodel A E, Gershon P D, Quiocho F A (1998). Structural basis for sequence-nonspecific recognition of 5'-capped mRNA by acap-modifying enzyme. Mol Cell, 1(3): 443–447

doi: 10.1016/S1097-2765(00)80044-1
Hodel A E, Quiocho F A, Gershon P D (1999). VP39-an mRNA cap-specific 2'-o-methyltransferase.In: X.D. Chengand R.M. Blementhal, eds. S-Adenosylmethionine-dependent methyltransferase: structures andfunctions. 255–282
Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K K, Schlee M, Endres S, Hartmann G (2006). 5'-Triphosphate RNA is the ligand for RIG-I. Science, 314(5801): 994–997

doi: 10.1126/science.1132505
Horton J R, Sawada K, Nishibori M, Zhang X, Cheng X (2001). Two polymorphic forms of human histamine methyltransferase: structural,thermal, and kinetic comparisons. Structure, 9(9): 837–849

doi: 10.1016/S0969-2126(01)00643-8
Issur M, Geiss B J, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey S E, Bisaillon M (2009). The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-stepreaction to form the RNA cap structure. RNA, 15(12): 2340–2350

doi: 10.1261/rna.1609709
Jansson A M, Jakobsson E, Johansson P, Lantez V, Coutard B, de Lamballerie X, Unge T, Jones T A (2009). Structure of the methyltransferase domain from the Modoc virus, aflavivirus with no known vector. Acta Crystallogr D Biol Crystallogr, 65(Pt 8): 796–803

doi: 10.1107/S0907444909017260
Kamer G, Argos P (1984). Primary structural comparison of RNA-dependent polymerases from plant,animal and bacterial viruses. Nucleic Acids Res, 12(18): 7269–7282

doi: 10.1093/nar/12.18.7269
Khromykh A A, Kenney M T, Westaway E G (1998). Trans-complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressingBHK cells. J Virol, 72(9): 7270–7279
Kokesh F C, Westheimer F H (1971). A reporter group at the active site of acetoacetatedecarboxylase. II. Ionization constant of the amino group. J Am Chem Soc, 93(26): 7270–7274

doi: 10.1021/ja00755a025
Komoto J, Huang Y, Takata Y, Yamada T, Konishi K, Ogawa H, Gomi T, Fujioka M, Takusagawa F (2002). Crystal structure of guanidinoacetate methyltransferasefrom rat liver: a model structure of protein arginine methyltransferase. J Mol Biol, 320(2): 223–235

doi: 10.1016/S0022-2836(02)00448-5
Koonin E V (1991). The phylogeny of RNA-dependent RNApolymerases of positive-strand RNA viruses. J Gen Virol, 72(Pt 9): 2197–2206

doi: 10.1099/0022-1317-72-9-2197
Koonin E V (1993). Computer-assisted identificationof a putative methyltransferase domain in NS5 protein of flavivirusesand lambda 2 protein of reovirus. J Gen Virol, 74(Pt 4): 733–740

doi: 10.1099/0022-1317-74-4-733
Kramer L D, Bernard K A (2001). West Nile virus infection in birds and mammals. Ann N Y Acad Sci, 951: 84–93

doi: 10.1111/j.1749-6632.2001.tb02687.x
Kramer L D, Li J, Shi P Y (2007). West Nile virus. Lancet Neurol, 6(2): 171–181

doi: 10.1016/S1474-4422(07)70030-3
Kroschewski H, Lim S P, Butcher R E, Yap T L, Lescar J, Wright P J, Vasudevan S G, Davidson A D (2008). Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. J Biol Chem, 283(28): 19410–19421

doi: 10.1074/jbc.M800613200
Kümmerer B M, Rice C M (2002). Mutations in the yellow fever virus nonstructural proteinNS2A selectively block production of infectious particles. J Virol, 76(10): 4773–4784

doi: 10.1128/JVI.76.10.4773-4784.2002
Kwon T, Chang J H, Kwak E, Lee C W, Joachimiak A, Kim Y C, Lee J, Cho Y (2003). Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J, 22(2): 292–303

doi: 10.1093/emboj/cdg025
Li H, Clum S, You S, Ebner K E, Padmanabhan R (1999). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicasefunctional domains of dengue virus type 2 NS3 converge within a regionof 20 amino acids. J Virol, 73(4): 3108–3116
Li J, Wang J T, Whelan S P (2006). A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci U S A, 103(22): 8493–8498

doi: 10.1073/pnas.0509821103
Li L, Lok S M, Yu I M, Zhang Y, Kuhn R J, Chen J, Rossmann M G (2008). The flavivirus precursor membrane-envelope protein complex:structure and maturation. Science, 319(5871): 1830–1834

doi: 10.1126/science.1153263
Lim S P, Wen D, Yap T L, Yan C K, Lescar J, Vasudevan S G (2008). A scintillation proximity assay for dengue virus NS5 2'-O-methyltransferase-kinetic and inhibition analyses. Antiviral Res, 80(3): 360–369

doi: 10.1016/j.antiviral.2008.08.005
Lindenbach B D, Rice C M (1997). trans-Complementation of yellow fever virus NS1 reveals a role inearly RNA replication. J Virol, 71(12): 9608–9617
Lindenbach B D, Rice C M (1999). Genetic interaction of flavivirus nonstructural proteins NS1 andNS4A as a determinant of replicase function. J Virol, 73(6): 4611–4621
Luzhkov V B, Selisko B, Nordqvist A, Peyrane F, Decroly E, Alvarez K, Karlen A, Canard B, Qvist J (2007). Virtual screening and bioassay study of novel inhibitors for dengue virusmRNA cap (nucleoside-2’O)-methyltransferase. Bioorg Med Chem, 15(24): 7795–7802

doi: 10.1016/j.bmc.2007.08.049
Malone T, Blumenthal R M, Cheng X (1995). Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases,and suggests a catalytic mechanism for these enzymes. J Mol Biol, 253(4): 618–632

doi: 10.1006/jmbi.1995.0577
Martin J L, McMillan F M (2002). SAM (dependent) I AM: the S-adenosylmethionine-dependentmethyltransferase fold. Curr Opin StructBiol, 12(6): 783–793

doi: 10.1016/S0959-440X(02)00391-3
Mastrangelo E, Bollati M, Milani M, Selisko B, Peyrane F, Canard B, Grard G, de Lamballerie X, Bolognesi M (2007). Structural bases for substrate recognition and activity in Meaban virus nucleoside-2'-O-methyltransferase. Protein Sci, 16(6): 1133–1145

doi: 10.1110/ps.072758107
Milani M, Mastrangelo E, Bollati M, Selisko B, Decroly E, Bouvet M, Canard B, Bolognesi M (2009). Flaviviral methyltransferase/RNA interaction: structuralbasis for enzyme inhibition. Antiviral Res, 83(1): 28–34

doi: 10.1016/j.antiviral.2009.03.001
Moure C M, Bowman B R, Gershon P D, Quiocho F A (2006). Crystal structures of the vaccinia virus polyadenylate polymerase heterodimer: insights into ATP selectivityand processivity. Mol Cell, 22(3): 339–349

doi: 10.1016/j.molcel.2006.03.015
Muylaert I R, Chambers T J, Galler R, Rice C M (1996). Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replicationand mouse neurovirulence. Virology, 222(1): 159–168

doi: 10.1006/viro.1996.0406
Muylaert I R, Galler R, Rice C M (1997). Genetic analysis of the yellow fever virus NS1 protein: identification ofa temperature-sensitive mutation which blocks RNA accumulation. J Virol, 71(1): 291–298
Nicholls A, Sharp K A, Honig B (1991). Protein folding and association: insights from the interfacial and thermodynamic propertiesof hydrocarbons. Proteins, 11(4): 281–296

doi: 10.1002/prot.340110407
Ogino T, Banerjee A K (2007). Unconventional mechanism of mRNA capping by the RNA-dependentRNA polymerase of vesicular stomatitis virus. Mol Cell, 25(1): 85–97

doi: 10.1016/j.molcel.2006.11.013
Perera R, Kuhn R J (2008). Structural proteomics of dengue virus. Curr Opin Microbiol, 11(4): 369–377

doi: 10.1016/j.mib.2008.06.004
Petersen L R, Roehrig J T (2001). West Nile virus: a reemerging global pathogen. Emerg Infect Dis, 7(4): 611–614

doi: 10.3201/eid0704.010401
Peyrane F, Selisko B, Decroly E, Vasseur J J, Benarroch D, Canard B, Alvarez K (2007). High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactionsat the guanine-N7 and adenosine-2’O positions. Nucleic Acids Res, 35(4): e26

doi: 10.1093/nar/gkl1119
Podvinec M, Lim S P, Schmidt T, Scarsi M, Wen D, Sonntag L S, Sanschagrin P, Shenkin P S, Schwede T (2010). Novel inhibitors of dengue virus methyltransferase: discovery by in vitro-driven virtual screeningon a desktop computer grid. J Med Chem, 53(4): 1483–1495

doi: 10.1021/jm900776m
Puig-Basagoiti F, Qing M, Dong H, Zhang B, Zou G, Yuan Z, Shi P Y (2009). Identification and characterization of inhibitors ofWest Nile virus. Antiviral Res, 83(1): 71–79

doi: 10.1016/j.antiviral.2009.03.005
Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, Dong H, Deas T S, Zhou Y, Li H, Shi P Y (2006). West Nile virus 5'-cap structure is formed by sequential guanine N-7 andribose 2'-O methylations by nonstructural protein 5. J Virol, 80(17): 8362–8370

doi: 10.1128/JVI.00814-06
Reinisch K M, Nibert M L, Harrison S C (2000). Structure of the reovirus core at 3.6 A resolution. Nature, 404(6781): 960–967

doi: 10.1038/35010041
Rice C M, Lenches E M, Eddy S R, Shin S J, Sheets R L, Strauss J H (1985). Nucleotide sequence of yellow fever virus: implications for flavivirus gene expressionand evolution. Science, 229(4715): 726–733

doi: 10.1126/science.4023707
Sampath A, Padmanabhan R (2009). Molecular targets for flavivirus drug discovery. Antiviral Res, 81(1): 6–15

doi: 10.1016/j.antiviral.2008.08.004
Schnierle B S, Gershon P D, Moss B (1994). Mutationalanalysis of a multifunctional protein, with mRNA 5' cap-specific (nucleoside-2'-O-)-methyltransferaseand 3'-adenylyltransferase stimulatory activities, encoded by vacciniavirus. J Biol Chem, 269(32): 20700–20706
Selisko B, Peyrane F F, Canard B, Alvarez K, Decroly E (2010). Biochemical characterization of the (nucleoside-2’O)-methyltransferaseactivity of dengue virus protein NS5 using purified capped RNA oligonucleotides(7Me)GpppAC(n) and GpppAC(n). J Gen Virol, 91(Pt 1): 112–121

doi: 10.1099/vir.0.015511-0
Shi P Y, Kauffman E B, Ren P, Felton A, Tai J H, Dupuis A P 2nd, Jones S A, Ngo K A, Nicholas D C, Maffei J, Ebel G D, Bernard K A, Kramer L D (2001). High-throughput detection of West Nile virus RNA. J Clin Microbiol, 39(4): 1264–1271

doi: 10.1128/JCM.39.4.1264-1271.2001
Shi P Y, Tilgner M, Lo M K (2002a). Construction and characterization of subgenomic replicons of New York strain ofWest Nile virus. Virology, 296(2): 219–233

doi: 10.1006/viro.2002.1453
Shi P Y, Tilgner M, Lo M K, Kent K A, Bernard K A (2002b). Infectious cDNA clone of the epidemic west nile virusfrom New York City. J Virol, 76(12): 5847–5856

doi: 10.1128/JVI.76.12.5847-5856.2002
Shiryaev S A, Ratnikov B I, Chekanov A V, Sikora S, Rozanov D V, Godzik A, Wang J, Smith J W, Huang Z, Lindberg I, Samuel M A, Diamond M S, Strongin A Y (2006). Cleavage targets and the D-arginine-based inhibitorsof the West Nile virus NS3 processing proteinase. Biochem J, 393(Pt 2): 503–511

doi: 10.1042/BJ20051374
Shuman S (2001). Structure, mechanism, and evolutionof the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol, 66: 1–40

doi: 10.1016/S0079-6603(00)66025-7
Smithburn B C, Hughes T P, Burke A W, Paul J H (1940). A neurotropic virus isolated from the blood of a native Uganda. Am J Trop Med Hyg, 20: 471–492
Sutton G, Grimes J M, Stuart D I, Roy P (2007). Bluetongue virus VP4 is an RNA-cappingassembly line. Nat Struct Mol Biol, 14(5): 449–451

doi: 10.1038/nsmb1225
Tan B H, Fu J, Sugrue R J, Yap E H, Chan Y C, Tan Y H (1996). Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymeraseactivity. Virology, 216(2): 317–325

doi: 10.1006/viro.1996.0067
Warrener P, Tamura J K, Collett M S (1993). RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressedin bacteria. J Virol, 67(2): 989–996
Wengler G, Wengler G (1981). Terminal sequences of the genome and replicative-fromRNA of the flavivirus West Nile virus: absence of poly(A) and possiblerole in RNA replication. Virology, 113(2): 544–555

doi: 10.1016/0042-6822(81)90182-3
Wengler G, Wengler G (1991). The carboxy-terminal part of the NS 3 protein of theWest Nile flavivirus can be isolated as a soluble protein after proteolyticcleavage and represents an RNA-stimulated NTPase. Virology, 184(2): 707–715

doi: 10.1016/0042-6822(91)90440-M
Westaway E G, Brinton M A, Gaidamovich S Y, Horzinek M C, Igarashi A, Kaariainen L, Lvov D K, Porterfield J S, Russell P K, Trent D W (1985). Flaviviridae Intervirol, 24: 183–192

doi: 10.1159/000149642
WHO (2009a). Dengue factsheet. www.who.int/mediacentre/factsheets/fs117/en/
www.who.int/nuvi/je/en/
(2009c). Yellow fever factsheet. www.who.int/mediacentre/factsheets/fs100/en/
Yu I M, Zhang W, Holdaway H A, Li L, Kostyuchenko V A, Chipman P R, Kuhn R J, Rossmann M G, Chen J (2008). Structureof the immature dengue virus at low pH primes proteolytic maturation. Science, 319(5871): 1834–1837

doi: 10.1126/science.1153264
Zhang X, Zhou L, Cheng X (2000). Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J, 19(14): 3509–3519

doi: 10.1093/emboj/19.14.3509
Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard K A, Shi P Y, Li H (2007). Structureand function of flavivirus NS5 methyltransferase. J Virol, 81(8): 3891–3903

doi: 10.1128/JVI.02704-06
Zubieta C, He X Z, Dixon R A, Noel J P (2001). Structures of two natural product methyltransferasesreveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol, 8(3): 271–279

doi: 10.1038/85029
Zuker M (2003). Mfold web server for nucleic acidfolding and hybridization prediction. Nucleic Acids Res, 31(13): 3406–3415

doi: 10.1093/nar/gkg595
[1] Hansa Jain. Inhibition and attenuation of pathogenicity of Porphyromonas gingivalis by leupeptin: A review[J]. Front. Biol., 2017, 12(3): 192-198.
[2] Christopher M. Olsen,Qing-Song Liu. Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities[J]. Front. Biol., 2016, 11(5): 376-386.
[3] Rini Jacob,Anbalagan Moorthy. Targeting secret handshakes of biological processes for novel drug development[J]. Front. Biol., 2016, 11(2): 132-140.
[4] J. K. Bailey,Dzwokai Ma. Cellular functions of MLL/SET-family histone H3 lysine 4 methyltransferase components[J]. Front. Biol., 2016, 11(1): 10-18.
[5] Deanna H. Morris,Calvin K. Yip,Yi Shi,Brian T. Chait,Qing Jun Wang. Beclin 1-Vps34 complex architecture: Understanding the nuts and bolts of therapeutic targets[J]. Front. Biol., 2015, 10(5): 398-426.
[6] Yiping WEN, Chen WANG, Sui HUANG. The perinucleolar compartment associates with malignancy[J]. Front Biol, 2013, 8(4): 369-376.
[7] Yasemin G. ISGOR, Belgin S. ISGOR. Kinases and glutathione transferases: selective and sensitive targeting[J]. Front Biol, 2011, 6(2): 156-169.
[8] Xiangpeng DAI, Xiaoyang ZHAO, Hai TANG, Jie HAO, Jean-Paul RENARD, Qi ZHOU, Alice JOUNEAU, Liu WANG. Cloning efficiency following ES cell nuclear transfer is influenced by the methylation state of the donor nucleus altered by mutation of DNA methyltransferase 3a and 3b[J]. Front Biol, 2010, 5(5): 439-444.
[9] YAN Xunyou, ZHAO Hongliang, XUE Chong, LIU Zhimin, ZHANG Weiguang. Cloning and expressing a recombinant human tissue inhibitor of metalloproteinase-2 (TIMP-2) in methylotrophic yeast Pichia pastoris and its characterizations[J]. Front. Biol., 2007, 2(2): 170-175.
[10] Wu Yu, Wang Jihong, Cui Xiuyun, Zhao Peng, Xu Yuefei, Zhao Baochang. Anti-oxidative effect of ribonuclease inhibitor by site-directed mutagenesis and expression in Pichia pastoris[J]. Front. Biol., 2006, 1(2): 99-103.
[11] Huang Wei, Yang Yuzhen, Wang Zhen, Hang Ling. Screening of Peptide Inhibitors of TACE from a Phage Display Random 15-Peptide Library by Recombinant TACE Ectodomain[J]. Front. Biol., 2006, 1(1): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed