|
|
Cellular functions of MLL/SET-family histone H3 lysine 4 methyltransferase components |
J. K. Bailey1,2,Dzwokai Ma1,2,*( ) |
1. Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA 2. Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA |
|
|
Abstract The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 lysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and lncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus.
|
Keywords
H3K4MT
histone H3 lysine 4 methyltransferase
WDR5
RbBP5
ASH2L
DPY-30
SET
MLL
WRAD
Oct4
MYC
cell biology
protein lysine methylation
|
Corresponding Author(s):
Dzwokai Ma
|
Just Accepted Date: 22 February 2016
Online First Date: 16 March 2016
Issue Date: 22 March 2016
|
|
1 |
Ali A, Veeranki S N, Tyagi S (2014). A SET-domain-independent role of WRAD complex in cell-cycle regulatory function of mixed lineage leukemia. Nucleic Acids Res, 42(12): 7611–7624
https://doi.org/10.1093/nar/gku458
pmid: 24880690
|
2 |
Allis C D, Berger S L, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007). New nomenclature for chromatin-modifying enzymes. Cell, 131(4): 633–636
https://doi.org/10.1016/j.cell.2007.10.039
pmid: 18022353
|
3 |
Ang Y S, Tsai S Y, Lee D F, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka I R (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell, 145(2): 183–197
https://doi.org/10.1016/j.cell.2011.03.003
pmid: 21477851
|
4 |
Bailey J K, Fields A T, Cheng K, Lee A, Wagenaar E, Lagrois R, Schmidt B, Xia B, Ma D (2015). WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem, 290(14): 8987–9001
https://doi.org/10.1074/jbc.M114.623611
pmid: 25666610
|
5 |
Bannister A J, Kouzarides T (2011). Regulation of chromatin by histone modifications. Cell Res, 21(3): 381–395
https://doi.org/10.1038/cr.2011.22
pmid: 21321607
|
6 |
Bernstein B E, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey D K, Huebert D J, McMahon S, Karlsson E K, Kulbokas E J 3rd, Gingeras T R, Schreiber S L, Lander E S (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120(2): 169–181
https://doi.org/10.1016/j.cell.2005.01.001
pmid: 15680324
|
7 |
Bledau A S, Schmidt K, Neumann K, Hill U, Ciotta G, Gupta A, Torres D C, Fu J, Kranz A, Stewart A F, Anastassiadis K (2014). The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development, 141(5): 1022–1035
https://doi.org/10.1242/dev.098152
pmid: 24550110
|
8 |
Cao F, Chen Y, Cierpicki T, Liu Y, Basrur V, Lei M, Dou Y (2010). An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS ONE, 5(11): e14102
https://doi.org/10.1371/journal.pone.0014102
pmid: 21124902
|
9 |
Chen X, Xie W, Gu P, Cai Q, Wang B, Xie Y, Dong W, He W, Zhong G, Lin T, Huang J (2015). Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation. Sci Rep, 5: 8293
https://doi.org/10.1038/srep08293
pmid: 25656485
|
10 |
Cheng J, Blum R, Bowman C, Hu D, Shilatifard A, Shen S, Dynlacht B D (2014). A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol Cell, 53(6): 979–992
https://doi.org/10.1016/j.molcel.2014.02.032
pmid: 24656132
|
11 |
Cheung P, Allis C D, Sassone-Corsi P (2000). Signaling to chromatin through histone modifications. Cell, 103(2): 263–271
https://doi.org/10.1016/S0092-8674(00)00118-5
pmid: 11057899
|
12 |
Clausell J, Happel N, Hale T K, Doenecke D, Beato M (2009). Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS ONE, 4(10): e0007243
https://doi.org/10.1371/journal.pone.0007243
pmid: 19794910
|
13 |
Couture J F, Skiniotis G (2013). Assembling a COMPASS. Epigenetics, 8: 349–354
|
14 |
Dai X, Guo W, Zhan C, Liu X, Bai Z, Yang Y (2015). WDR5 expression is prognostic of breast cancer outcome. PLoS ONE, 10(9): e0124964
https://doi.org/10.1371/journal.pone.0124964
pmid: 26355959
|
15 |
Dias J, Van Nguyen N, Georgiev P, Gaub A, Brettschneider J, Cusack S, Kadlec J, Akhtar A (2014). Structural analysis of the KANSL1/WDR5/KANSL2 complex reveals that WDR5 is required for efficient assembly and chromatin targeting of the NSL complex. Genes Dev, 28(9): 929–942
https://doi.org/10.1101/gad.240200.114
pmid: 24788516
|
16 |
Dou Y, Milne T A, Ruthenburg A J, Lee S, Lee J W, Verdine G L, Allis C D, Roeder R G (2006). Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol, 13(8): 713–719
https://doi.org/10.1038/nsmb1128
pmid: 16878130
|
17 |
Ernst J, Kheradpour P, Mikkelsen T S, Shoresh N, Ward L D, Epstein C B, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein B E (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345): 43–49
https://doi.org/10.1038/nature09906
pmid: 21441907
|
18 |
Ernst P, Vakoc C R (2012). WRAD: enabler of the SET1-family of H3K4 methyltransferases. Brief Funct Genomics, 11(3): 217–226
https://doi.org/10.1093/bfgp/els017
pmid: 22652693
|
19 |
Fang L, Zhang J, Zhang H, Yang X, Jin X, Zhang L, Skalnik D G, Jin Y, Zhang Y, Huang X, Li J, Wong J (2016). H3K4 methyltransferase Set1a is a key Oct4 coactivactor essential for generation of Oct4 positive inner cell mass. Stem Cells, doi: 10.1002/stem.2250
|
20 |
Fischle W, Wang Y, Allis C D (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol, 15(2): 172–183
https://doi.org/10.1016/S0955-0674(03)00013-9
pmid: 12648673
|
21 |
Glaser S, Schaft J, Lubitz S, Vintersten K, van der Hoeven F, Tufteland K R, Aasland R, Anastassiadis K, Ang S L, Stewart A F (2006). Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development, 133(8): 1423–1432
https://doi.org/10.1242/dev.02302
pmid: 16540515
|
22 |
Gomez J A, Wapinski O L, Yang Y W, Bureau J F, Gopinath S, Monack D M, Chang H Y, Brahic M, Kirkegaard K (2013). The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-g locus. Cell, 152(4): 743–754
https://doi.org/10.1016/j.cell.2013.01.015
pmid: 23415224
|
23 |
Gori F, Friedman L G, Demay M B (2006). Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Dev Biol, 295(2): 498–506
https://doi.org/10.1016/j.ydbio.2006.02.031
pmid: 16730692
|
24 |
Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, Skucha A, Vittori S, Kuznetsova E, Smil D, Barsyte-Lovejoy D, Li F, Poda G, Schapira M, Wu H, Dong A, Senisterra G, Stukalov A, Huber K V, Schönegger A, Marcellus R, Bilban M, Bock C, Brown P J, Zuber J, Bennett K L, Al-Awar R, Delwel R, Nerlov C, Arrowsmith C H, Superti-Furga G (2015). Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat Chem Biol, 11(8): 571–578
https://doi.org/10.1038/nchembio.1859
pmid: 26167872
|
25 |
Harshman S W, Young N L, Parthun M R, Freitas M A (2013). H1 histones: current perspectives and challenges. Nucleic Acids Res, 41(21): 9593–9609
https://doi.org/10.1093/nar/gkt700
pmid: 23945933
|
26 |
He X, Chen X, Zhang X, Duan X, Pan T, Hu Q, Zhang Y, Zhong F, Liu J, Zhang H, Luo J, Wu K, Peng G, Luo H, Zhang L, Li X, Zhang H (2015). An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes. Nucleic Acids Res, 43(7): 3712–3725
https://doi.org/10.1093/nar/gkv214
pmid: 25779046
|
27 |
Herz H M, Mohan M, Garruss A S, Liang K, Takahashi Y H, Mickey K, Voets O, Verrijzer C P, Shilatifard A (2012). Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev, 26(23): 2604–2620
https://doi.org/10.1101/gad.201327.112
pmid: 23166019
|
28 |
Higa L A, Wu M, Ye T, Kobayashi R, Sun H, Zhang H (2006). CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 8(11): 1277–1283
https://doi.org/10.1038/ncb1490
pmid: 17041588
|
29 |
Hu D, Gao X, Morgan M A, Herz H M, Smith E R, Shilatifard A (2013). The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol, 33(23): 4745–4754
https://doi.org/10.1128/MCB.01181-13
pmid: 24081332
|
30 |
Hu D, Gao X, Morgan M A, Herz H M, Smith E R, Shilatifard A (2013). The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol, 33(23): 4745–4754
https://doi.org/10.1128/MCB.01181-13
pmid: 24081332
|
31 |
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080
https://doi.org/10.1126/science.1063127
pmid: 11498575
|
32 |
Jiang D, Gu X, He Y (2009). Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell, 21(6): 1733–1746
https://doi.org/10.1105/tpc.109.067967
pmid: 19567704
|
33 |
Jiang D, Kong N C, Gu X, Li Z, He Y (2011). Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet, 7(3): e1001330
https://doi.org/10.1371/journal.pgen.1001330
pmid: 21423667
|
34 |
Jiang H, Shukla A, Wang X, Chen W Y, Bernstein B E, Roeder R G (2011). Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell, 144(4): 513–525
https://doi.org/10.1016/j.cell.2011.01.020
pmid: 21335234
|
35 |
Khare S P, Habib F, Sharma R, Gadewal N, Gupta S, Galande S (2012). HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res, 40(Database issue): D337–D342
https://doi.org/10.1093/nar/gkr1125
pmid: 22140112
|
36 |
Kornberg R D (1977). Structure of chromatin. Annu Rev Biochem, 46(1): 931–954
https://doi.org/10.1146/annurev.bi.46.070177.004435
pmid: 332067
|
37 |
Latham J A, Chosed R J, Wang S, Dent S Y (2011). Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell, 146(5): 709–719
https://doi.org/10.1016/j.cell.2011.07.025
pmid: 21884933
|
38 |
Lee J E, Wang C, Xu S, Cho Y W, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, Ge K (2013). H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife, 2: e01503
https://doi.org/10.7554/eLife.01503
pmid: 24368734
|
40 |
Lee J, Saha P K, Yang Q H, Lee S, Park J Y, Suh Y, Lee S K, Chan L, Roeder R G, Lee J W (2008). Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA, 105(49): 19229–19234
https://doi.org/10.1073/pnas.0810100105
pmid: 19047629
|
39 |
Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, Wang Y, Shuai J, Chen J, Cao L, Li D, Shi P, Tian C, Zhang J, Dou Y, Li G, Chen Y, Lei M (2016). Structural basis for activity regulation of MLL family methyltransferases. Nature, 530: 447–452
|
41 |
Liu C, Zhang Y, Hou Y, Shen L, Li Y, Guo W, Xu D, Liu G, Zhao Z, Man K, Pan Y, Wang Z, Chen Y (2015). PAQR3 modulates H3K4 trimethylation by spatial modulation of the regulatory subunits of COMPASS-like complexes in mammalian cells. Biochem J, 467(3): 415–424
https://doi.org/10.1042/BJ20141392
pmid: 25706881
|
42 |
Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260
https://doi.org/10.1038/38444
pmid: 9305837
|
43 |
Marazzi I, Ho J S Y, Kim J, Manicassamy B, Dewell S, Albrecht R A, Seibert C W, Schaefer U, Jeffrey K L, Prinjha R K, Lee K, García-Sastre A, Roeder R G, Tarakhovsky A (2012). Suppression of the antiviral response by an influenza histone mimic. Nature, 483(7390): 428–433
https://doi.org/10.1038/nature10892
pmid: 22419161
|
44 |
Martin C, Zhang Y (2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol, 6(11): 838–849
https://doi.org/10.1038/nrm1761
pmid: 16261189
|
45 |
Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger M O (2010). PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res, 38(19): 6350–6362
https://doi.org/10.1093/nar/gkq463
pmid: 20525793
|
46 |
Miller T, Krogan N J, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt J F, Shilatifard A (2001). COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA, 98(23): 12902–12907
https://doi.org/10.1073/pnas.231473398
pmid: 11687631
|
47 |
Ng H H, Robert F, Young R A, Struhl K (2003). Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell, 11(3): 709–719
https://doi.org/10.1016/S1097-2765(03)00092-3
pmid: 12667453
|
48 |
Nogales E, Ramey V H (2009). Structure-function insights into the yeast Dam1 kinetochore complex. J Cell Sci, 122(Pt 21): 3831–3836
https://doi.org/10.1242/jcs.004689
pmid: 19889968
|
49 |
Odho Z, Southall S M, Wilson J R (2010). Characterization of a novel WDR5-binding site that recruits RbBP5 through a conserved motif to enhance methylation of histone H3 lysine 4 by mixed lineage leukemia protein-1. J Biol Chem, 285(43): 32967–32976
https://doi.org/10.1074/jbc.M110.159921
pmid: 20716525
|
50 |
Okamura K, Nakai K (2008). Retrotransposition as a source of new promoters. Mol Biol Evol, 25(6): 1231–1238
https://doi.org/10.1093/molbev/msn071
pmid: 18367464
|
51 |
Pashkova N, Gakhar L, Winistorfer S C, Yu L, Ramaswamy S, Piper R C (2010). WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell, 40(3): 433–443
https://doi.org/10.1016/j.molcel.2010.10.018
pmid: 21070969
|
52 |
Patel A, Vought V E, Swatkoski S, Viggiano S, Howard B, Dharmarajan V, Monteith K E, Kupakuwana G, Namitz K E, Shinsky S A, Cotter R J, Cosgrove M S (2014). Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a “two-active site” model for multiple histone H3 lysine 4 methylation. J Biol Chem, 289(2): 868–884
https://doi.org/10.1074/jbc.M113.501064
pmid: 24235145
|
53 |
Pokholok D K, Harbison C T, Levine S, Cole M, Hannett N M, Lee T I, Bell G W, Walker K, Rolfe P A, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford D K, Young R A (2005). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell, 122(4): 517–527
https://doi.org/10.1016/j.cell.2005.06.026
pmid: 16122420
|
54 |
Qin S, Liu Y, Tempel W, Eram M S, Bian C, Liu K, Senisterra G, Crombet L, Vedadi M, Min J (2014). Structural basis for histone mimicry and hijacking of host proteins by influenza virus protein NS1. Nat Commun, 5: 3952
https://doi.org/10.1038/ncomms4952
pmid: 24853335
|
55 |
Rea S, Eisenhaber F, O’Carroll D, Strahl B D, Sun Z W, Schmid M, Opravil S, Mechtler K, Ponting C P, Allis C D, Jenuwein T (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406(6796): 593–599
https://doi.org/10.1038/35020506
pmid: 10949293
|
56 |
Ruthenburg A J, Allis C D, Wysocka J (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell, 25(1): 15–30
https://doi.org/10.1016/j.molcel.2006.12.014
pmid: 17218268
|
57 |
Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419(6905): 407–411
https://doi.org/10.1038/nature01080
pmid: 12353038
|
58 |
Schneider R, Bannister A J, Myers F A, Thorne A W, Crane-Robinson C, Kouzarides T (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol, 6(1): 73–77
https://doi.org/10.1038/ncb1076
pmid: 14661024
|
59 |
Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath G K, Dhawan J (2009). MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc Natl Acad Sci USA, 106(12): 4719–4724
https://doi.org/10.1073/pnas.0807136106
pmid: 19264965
|
60 |
Shilatifard A (2008). Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol, 20(3): 341–348
https://doi.org/10.1016/j.ceb.2008.03.019
pmid: 18508253
|
61 |
Shinsky S A, Cosgrove M S (2015). Unique Role of the WD-40 Repeat Protein 5 (WDR5) Subunit within the Mixed Lineage Leukemia 3 (MLL3) Histone Methyltransferase Complex. J Biol Chem, 290(43): 25819–25833
https://doi.org/10.1074/jbc.M115.684142
pmid: 26324722
|
62 |
Shinsky S A, Hu M, Vought V E, Ng S B, Bamshad M J, Shendure J, Cosgrove M S (2014). A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. J Mol Biol, 426(12): 2283–2299
https://doi.org/10.1016/j.jmb.2014.03.011
pmid: 24680668
|
64 |
Skarnes W C, Rosen B, West A P, Koutsourakis M, Bushell W, Iyer V, Mujica A O, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong P J, Stewart A F, Bradley A (2011). A conditional knockout resource for the genome-wide study of mouse gene function. Nature, 474(7351): 337–342
https://doi.org/10.1038/nature10163
pmid: 21677750
|
65 |
Southall S M, Wong P S, Odho Z, Roe S M, Wilson J R (2009). Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol Cell, 33(2): 181–191
https://doi.org/10.1016/j.molcel.2008.12.029
pmid: 19187761
|
66 |
Stoller J Z, Huang L, Tan C C, Huang F, Zhou D D, Yang J, Gelb B D, Epstein J A (2010). Ash2l interacts with Tbx1 and is required during early embryogenesis. Exp Biol Med (Maywood), 235(5): 569–576
https://doi.org/10.1258/ebm.2010.009318
pmid: 20463296
|
67 |
Takahashi Y H, Westfield G H, Oleskie A N, Trievel R C, Shilatifard A, Skiniotis G (2011). Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA, 108(51): 20526–20531
https://doi.org/10.1073/pnas.1109360108
pmid: 22158900
|
68 |
Terranova R, Agherbi H, Boned A, Meresse S, Djabali M (2006). Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc Natl Acad Sci USA, 103(17): 6629–6634
https://doi.org/10.1073/pnas.0507425103
pmid: 16618927
|
69 |
Thakur J, Sanyal K (2011). The essentiality of the fungus-specific Dam1 complex is correlated with a one-kinetochore-one-microtubule interaction present throughout the cell cycle, independent of the nature of a centromere. Eukaryot Cell, 10(10): 1295–1305
https://doi.org/10.1128/EC.05093-11
pmid: 21571923
|
70 |
Thoma F, Koller T (1977). Influence of histone H1 on chromatin structure. Cell, 12(1): 101–107
https://doi.org/10.1016/0092-8674(77)90188-X
pmid: 561660
|
71 |
Thoma F, Koller T, Klug A (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol, 83(2 Pt 1): 403–427
https://doi.org/10.1083/jcb.83.2.403
pmid: 387806
|
72 |
Thomas L R, Foshage A M, Weissmiller A M, Tansey W P (2015b). The MYC-WDR5 Nexus and Cancer. Cancer Res, 75(19): 4012–4015
https://doi.org/10.1158/0008-5472.CAN-15-1216
pmid: 26383167
|
73 |
Thomas L R, Wang Q, Grieb B C, Phan J, Foshage A M, Sun Q, Olejniczak E T, Clark T, Dey S, Lorey S, Alicie B, Howard G C, Cawthon B, Ess K C, Eischen C M, Zhao Z, Fesik S W, Tansey W P (2015a). Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol Cell, 58(3): 440–452
https://doi.org/10.1016/j.molcel.2015.02.028
pmid: 25818646
|
74 |
Trievel R C, Shilatifard A (2009). WDR5, a complexed protein. Nat Struct Mol Biol, 16(7): 678–680
https://doi.org/10.1038/nsmb0709-678
pmid: 19578375
|
75 |
Usenovic M, Knight A L, Ray A, Wong V, Brown K R, Caldwell G A, Caldwell K A, Stagljar I, Krainc D (2012). Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity. Hum Mol Genet, 21(17): 3785–3794
https://doi.org/10.1093/hmg/dds206
pmid: 22645275
|
76 |
van Nuland R, Smits A H, Pallaki P, Jansen P W, Vermeulen M, Timmers H T (2013). Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol Cell Biol, 33(10): 2067–2077
https://doi.org/10.1128/MCB.01742-12
pmid: 23508102
|
77 |
Vinckenbosch N, Dupanloup I, Kaessmann H (2006). Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA, 103(9): 3220–3225
https://doi.org/10.1073/pnas.0511307103
pmid: 16492757
|
78 |
Wang K C, Yang Y W, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie B R, Protacio A, Flynn R A, Gupta R A, Wysocka J, Lei M, Dekker J, Helms J A, Chang H Y (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341): 120–124
https://doi.org/10.1038/nature09819
pmid: 21423168
|
79 |
Wang Y Y, Liu L J, Zhong B, Liu T T, Li Y, Yang Y, Ran Y, Li S, Tien P, Shu H B (2010). WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation. Proc Natl Acad Sci USA, 107(2): 815–820
https://doi.org/10.1073/pnas.0908967107
pmid: 20080758
|
80 |
Wang Y, Wysocka J, Sayegh J, Lee Y H, Perlin J R, Leonelli L, Sonbuchner L S, McDonald C H, Cook R G, Dou Y, Roeder R G, Clarke S, Stallcup M R, Allis C D, Coonrod S A (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 306(5694): 279–283
https://doi.org/10.1126/science.1101400
pmid: 15345777
|
81 |
Wu M, Wang P F, Lee J S, Martin-Brown S, Florens L, Washburn M, Shilatifard A (2008). Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol, 28(24): 7337–7344
https://doi.org/10.1128/MCB.00976-08
pmid: 18838538
|
82 |
Xia B, Joubert A, Groves B, Vo K, Ashraf D, Djavaherian D, Awe J, Xiong Y, Cherfils J, Ma D (2010). Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins. PLoS ONE, 5(7): e11771
https://doi.org/10.1371/journal.pone.0011771
pmid: 20668708
|
83 |
Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D (2009). A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. J Cell Biol, 186(3): 343–353
https://doi.org/10.1083/jcb.200902146
pmid: 19651892
|
84 |
Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T (1998). Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood, 92(1): 108–117
pmid: 9639506
|
85 |
Yang Y W, Flynn R A, Chen Y, Qu K, Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife, 3: e02046
https://doi.org/10.7554/eLife.02046
pmid: 24521543
|
86 |
Yu B D, Hess J L, Horning S E, Brown G A, Korsmeyer S J (1995). Altered Hox expression and segmental identity in Mll-mutant mice. Nature, 378(6556): 505–508
https://doi.org/10.1038/378505a0
pmid: 7477409
|
87 |
Zhang K, Lin W, Latham J A, Riefler G M, Schumacher J M, Chan C, Tatchell K, Hawke D H, Kobayashi R, Dent S Y (2005). The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell, 122(5): 723–734
https://doi.org/10.1016/j.cell.2005.06.021
pmid: 16143104
|
88 |
Zhang P, Bergamin E, Couture J F (2013). The many facets of MLL1 regulation. Biopolymers, 99(2): 136–145
https://doi.org/10.1002/bip.22126
pmid: 23175388
|
89 |
Zhang P, Lee H, Brunzelle J S, Couture J F (2012). The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases. Nucleic Acids Res, 40(9): 4237–4246
https://doi.org/10.1093/nar/gkr1235
pmid: 22266653
|
90 |
Zhou P, Wang Z, Yuan X, Zhou C, Liu L, Wan X, Zhang F, Ding X, Wang C, Xiong S, Wang Z, Yuan J, Li Q, Zhang Y (2013). Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J Biol Chem, 288(24): 17532–17543
https://doi.org/10.1074/jbc.M112.439729
pmid: 23629655
|
91 |
Zhu E D, Demay M B, Gori F (2008). Wdr5 is essential for osteoblast differentiation. J Biol Chem, 283(12): 7361–7367
https://doi.org/10.1074/jbc.M703304200
pmid: 18201971
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|