Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (1) : 10-18    https://doi.org/10.1007/s11515-016-1390-6
REVIEW
Cellular functions of MLL/SET-family histone H3 lysine 4 methyltransferase components
J. K. Bailey1,2,Dzwokai Ma1,2,*()
1. Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
2. Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
 Download: PDF(772 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 lysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and lncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus.

Keywords H3K4MT      histone H3 lysine 4 methyltransferase      WDR5      RbBP5      ASH2L      DPY-30      SET      MLL      WRAD      Oct4      MYC      cell biology      protein lysine methylation     
Corresponding Author(s): Dzwokai Ma   
Just Accepted Date: 22 February 2016   Online First Date: 16 March 2016    Issue Date: 22 March 2016
 Cite this article:   
J. K. Bailey,Dzwokai Ma. Cellular functions of MLL/SET-family histone H3 lysine 4 methyltransferase components[J]. Front. Biol., 2016, 11(1): 10-18.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1390-6
https://academic.hep.com.cn/fib/EN/Y2016/V11/I1/10
Fig.1  Summary of MLL-WRAD functions and interactions within cells. Methylation of histone H3 at lysine 4 (K4) within the nucleus is the most thoroughly studied function of the MLL-WRAD complex. However, recent findings indicate that WDR5 works in concert with transcription factors including MYC, C/EBPα, and Oct4 to read/write epigenetic marks in gene-specific contexts. WDR5 also interacts with other chromatin-related factors such as KANSL1, KANSL2, the multifunctional influenza virus protein NS1, and many long noncoding RNAs (only NeST and HOTTIP are depicted). Cytoplasmic localization of MLL-WRAD proteins has also been reported at mitochondria during viral infection (with TRAF3, TRAF6, and VISA), at the Golgi and trans-Golgi network (with BIG1 and PAQR3), and at the midbody during the final stages of cell division (with PRC1, MKLP1, and CYK4). Although in many cases only a single MLL-WRAD component was investigated, other subunits may work together to facilitate downstream events. Dotted lines indicate interactions that may be direct or indirect.
1 Ali A, Veeranki S N, Tyagi S (2014). A SET-domain-independent role of WRAD complex in cell-cycle regulatory function of mixed lineage leukemia. Nucleic Acids Res, 42(12): 7611–7624
https://doi.org/10.1093/nar/gku458 pmid: 24880690
2 Allis C D, Berger S L, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007). New nomenclature for chromatin-modifying enzymes. Cell, 131(4): 633–636
https://doi.org/10.1016/j.cell.2007.10.039 pmid: 18022353
3 Ang Y S, Tsai S Y, Lee D F, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka I R (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell, 145(2): 183–197
https://doi.org/10.1016/j.cell.2011.03.003 pmid: 21477851
4 Bailey J K, Fields A T, Cheng K, Lee A, Wagenaar E, Lagrois R, Schmidt B, Xia B, Ma D (2015). WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem, 290(14): 8987–9001
https://doi.org/10.1074/jbc.M114.623611 pmid: 25666610
5 Bannister A J, Kouzarides T (2011). Regulation of chromatin by histone modifications. Cell Res, 21(3): 381–395
https://doi.org/10.1038/cr.2011.22 pmid: 21321607
6 Bernstein B E, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey D K, Huebert D J, McMahon S, Karlsson E K, Kulbokas E J 3rd, Gingeras T R, Schreiber S L, Lander E S (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120(2): 169–181
https://doi.org/10.1016/j.cell.2005.01.001 pmid: 15680324
7 Bledau A S, Schmidt K, Neumann K, Hill U, Ciotta G, Gupta A, Torres D C, Fu J, Kranz A, Stewart A F, Anastassiadis K (2014). The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development, 141(5): 1022–1035
https://doi.org/10.1242/dev.098152 pmid: 24550110
8 Cao F, Chen Y, Cierpicki T, Liu Y, Basrur V, Lei M, Dou Y (2010). An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS ONE, 5(11): e14102
https://doi.org/10.1371/journal.pone.0014102 pmid: 21124902
9 Chen X, Xie W, Gu P, Cai Q, Wang B, Xie Y, Dong W, He W, Zhong G, Lin T, Huang J (2015). Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation. Sci Rep, 5: 8293
https://doi.org/10.1038/srep08293 pmid: 25656485
10 Cheng J, Blum R, Bowman C, Hu D, Shilatifard A, Shen S, Dynlacht B D (2014). A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol Cell, 53(6): 979–992
https://doi.org/10.1016/j.molcel.2014.02.032 pmid: 24656132
11 Cheung P, Allis C D, Sassone-Corsi P (2000). Signaling to chromatin through histone modifications. Cell, 103(2): 263–271
https://doi.org/10.1016/S0092-8674(00)00118-5 pmid: 11057899
12 Clausell J, Happel N, Hale T K, Doenecke D, Beato M (2009). Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS ONE, 4(10): e0007243
https://doi.org/10.1371/journal.pone.0007243 pmid: 19794910
13 Couture J F, Skiniotis G (2013). Assembling a COMPASS. Epigenetics, 8: 349–354
14 Dai X, Guo W, Zhan C, Liu X, Bai Z, Yang Y (2015). WDR5 expression is prognostic of breast cancer outcome. PLoS ONE, 10(9): e0124964
https://doi.org/10.1371/journal.pone.0124964 pmid: 26355959
15 Dias J, Van Nguyen N, Georgiev P, Gaub A, Brettschneider J, Cusack S, Kadlec J, Akhtar A (2014). Structural analysis of the KANSL1/WDR5/KANSL2 complex reveals that WDR5 is required for efficient assembly and chromatin targeting of the NSL complex. Genes Dev, 28(9): 929–942
https://doi.org/10.1101/gad.240200.114 pmid: 24788516
16 Dou Y, Milne T A, Ruthenburg A J, Lee S, Lee J W, Verdine G L, Allis C D, Roeder R G (2006). Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol, 13(8): 713–719
https://doi.org/10.1038/nsmb1128 pmid: 16878130
17 Ernst J, Kheradpour P, Mikkelsen T S, Shoresh N, Ward L D, Epstein C B, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein B E (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345): 43–49
https://doi.org/10.1038/nature09906 pmid: 21441907
18 Ernst P, Vakoc C R (2012). WRAD: enabler of the SET1-family of H3K4 methyltransferases. Brief Funct Genomics, 11(3): 217–226
https://doi.org/10.1093/bfgp/els017 pmid: 22652693
19 Fang L, Zhang J, Zhang H, Yang X, Jin X, Zhang L, Skalnik D G, Jin Y, Zhang Y, Huang X, Li J, Wong J (2016). H3K4 methyltransferase Set1a is a key Oct4 coactivactor essential for generation of Oct4 positive inner cell mass. Stem Cells,   doi: 10.1002/stem.2250
20 Fischle W, Wang Y, Allis C D (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol, 15(2): 172–183
https://doi.org/10.1016/S0955-0674(03)00013-9 pmid: 12648673
21 Glaser S, Schaft J, Lubitz S, Vintersten K, van der Hoeven F, Tufteland K R, Aasland R, Anastassiadis K, Ang S L, Stewart A F (2006). Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development, 133(8): 1423–1432
https://doi.org/10.1242/dev.02302 pmid: 16540515
22 Gomez J A, Wapinski O L, Yang Y W, Bureau J F, Gopinath S, Monack D M, Chang H Y, Brahic M, Kirkegaard K (2013). The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-g locus. Cell, 152(4): 743–754
https://doi.org/10.1016/j.cell.2013.01.015 pmid: 23415224
23 Gori F, Friedman L G, Demay M B (2006). Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Dev Biol, 295(2): 498–506
https://doi.org/10.1016/j.ydbio.2006.02.031 pmid: 16730692
24 Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, Skucha A, Vittori S, Kuznetsova E, Smil D, Barsyte-Lovejoy D, Li F, Poda G, Schapira M, Wu H, Dong A, Senisterra G, Stukalov A, Huber K V, Schönegger A, Marcellus R, Bilban M, Bock C, Brown P J, Zuber J, Bennett K L, Al-Awar R, Delwel R, Nerlov C, Arrowsmith C H, Superti-Furga G (2015). Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat Chem Biol, 11(8): 571–578
https://doi.org/10.1038/nchembio.1859 pmid: 26167872
25 Harshman S W, Young N L, Parthun M R, Freitas M A (2013). H1 histones: current perspectives and challenges. Nucleic Acids Res, 41(21): 9593–9609
https://doi.org/10.1093/nar/gkt700 pmid: 23945933
26 He X, Chen X, Zhang X, Duan X, Pan T, Hu Q, Zhang Y, Zhong F, Liu J, Zhang H, Luo J, Wu K, Peng G, Luo H, Zhang L, Li X, Zhang H (2015). An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes. Nucleic Acids Res, 43(7): 3712–3725
https://doi.org/10.1093/nar/gkv214 pmid: 25779046
27 Herz H M, Mohan M, Garruss A S, Liang K, Takahashi Y H, Mickey K, Voets O, Verrijzer C P, Shilatifard A (2012). Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev, 26(23): 2604–2620
https://doi.org/10.1101/gad.201327.112 pmid: 23166019
28 Higa L A, Wu M, Ye T, Kobayashi R, Sun H, Zhang H (2006). CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 8(11): 1277–1283
https://doi.org/10.1038/ncb1490 pmid: 17041588
29 Hu D, Gao X, Morgan M A, Herz H M, Smith E R, Shilatifard A (2013). The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol, 33(23): 4745–4754
https://doi.org/10.1128/MCB.01181-13 pmid: 24081332
30 Hu D, Gao X, Morgan M A, Herz H M, Smith E R, Shilatifard A (2013). The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol, 33(23): 4745–4754
https://doi.org/10.1128/MCB.01181-13 pmid: 24081332
31 Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080
https://doi.org/10.1126/science.1063127 pmid: 11498575
32 Jiang D, Gu X, He Y (2009). Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell, 21(6): 1733–1746
https://doi.org/10.1105/tpc.109.067967 pmid: 19567704
33 Jiang D, Kong N C, Gu X, Li Z, He Y (2011). Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet, 7(3): e1001330
https://doi.org/10.1371/journal.pgen.1001330 pmid: 21423667
34 Jiang H, Shukla A, Wang X, Chen W Y, Bernstein B E, Roeder R G (2011). Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell, 144(4): 513–525
https://doi.org/10.1016/j.cell.2011.01.020 pmid: 21335234
35 Khare S P, Habib F, Sharma R, Gadewal N, Gupta S, Galande S (2012). HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res, 40(Database issue): D337–D342
https://doi.org/10.1093/nar/gkr1125 pmid: 22140112
36 Kornberg R D (1977). Structure of chromatin. Annu Rev Biochem, 46(1): 931–954
https://doi.org/10.1146/annurev.bi.46.070177.004435 pmid: 332067
37 Latham J A, Chosed R J, Wang S, Dent S Y (2011). Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell, 146(5): 709–719
https://doi.org/10.1016/j.cell.2011.07.025 pmid: 21884933
38 Lee J E, Wang C, Xu S, Cho Y W, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, Ge K (2013). H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife, 2: e01503
https://doi.org/10.7554/eLife.01503 pmid: 24368734
40 Lee J, Saha P K, Yang Q H, Lee S, Park J Y, Suh Y, Lee S K, Chan L, Roeder R G, Lee J W (2008). Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA, 105(49): 19229–19234
https://doi.org/10.1073/pnas.0810100105 pmid: 19047629
39 Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, Wang Y, Shuai J, Chen J, Cao L, Li D, Shi P, Tian C, Zhang J, Dou Y, Li G, Chen Y, Lei M (2016). Structural basis for activity regulation of MLL family methyltransferases. Nature, 530: 447–452
41 Liu C, Zhang Y, Hou Y, Shen L, Li Y, Guo W, Xu D, Liu G, Zhao Z, Man K, Pan Y, Wang Z, Chen Y (2015). PAQR3 modulates H3K4 trimethylation by spatial modulation of the regulatory subunits of COMPASS-like complexes in mammalian cells. Biochem J, 467(3): 415–424
https://doi.org/10.1042/BJ20141392 pmid: 25706881
42 Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260
https://doi.org/10.1038/38444 pmid: 9305837
43 Marazzi I, Ho J S Y, Kim J, Manicassamy B, Dewell S, Albrecht R A, Seibert C W, Schaefer U, Jeffrey K L, Prinjha R K, Lee K, García-Sastre A, Roeder R G, Tarakhovsky A (2012). Suppression of the antiviral response by an influenza histone mimic. Nature, 483(7390): 428–433
https://doi.org/10.1038/nature10892 pmid: 22419161
44 Martin C, Zhang Y (2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol, 6(11): 838–849
https://doi.org/10.1038/nrm1761 pmid: 16261189
45 Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger M O (2010). PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res, 38(19): 6350–6362
https://doi.org/10.1093/nar/gkq463 pmid: 20525793
46 Miller T, Krogan N J, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt J F, Shilatifard A (2001). COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA, 98(23): 12902–12907
https://doi.org/10.1073/pnas.231473398 pmid: 11687631
47 Ng H H, Robert F, Young R A, Struhl K (2003). Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell, 11(3): 709–719
https://doi.org/10.1016/S1097-2765(03)00092-3 pmid: 12667453
48 Nogales E, Ramey V H (2009). Structure-function insights into the yeast Dam1 kinetochore complex. J Cell Sci, 122(Pt 21): 3831–3836
https://doi.org/10.1242/jcs.004689 pmid: 19889968
49 Odho Z, Southall S M, Wilson J R (2010). Characterization of a novel WDR5-binding site that recruits RbBP5 through a conserved motif to enhance methylation of histone H3 lysine 4 by mixed lineage leukemia protein-1. J Biol Chem, 285(43): 32967–32976
https://doi.org/10.1074/jbc.M110.159921 pmid: 20716525
50 Okamura K, Nakai K (2008). Retrotransposition as a source of new promoters. Mol Biol Evol, 25(6): 1231–1238
https://doi.org/10.1093/molbev/msn071 pmid: 18367464
51 Pashkova N, Gakhar L, Winistorfer S C, Yu L, Ramaswamy S, Piper R C (2010). WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell, 40(3): 433–443
https://doi.org/10.1016/j.molcel.2010.10.018 pmid: 21070969
52 Patel A, Vought V E, Swatkoski S, Viggiano S, Howard B, Dharmarajan V, Monteith K E, Kupakuwana G, Namitz K E, Shinsky S A, Cotter R J, Cosgrove M S (2014). Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a “two-active site” model for multiple histone H3 lysine 4 methylation. J Biol Chem, 289(2): 868–884
https://doi.org/10.1074/jbc.M113.501064 pmid: 24235145
53 Pokholok D K, Harbison C T, Levine S, Cole M, Hannett N M, Lee T I, Bell G W, Walker K, Rolfe P A, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford D K, Young R A (2005). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell, 122(4): 517–527
https://doi.org/10.1016/j.cell.2005.06.026 pmid: 16122420
54 Qin S, Liu Y, Tempel W, Eram M S, Bian C, Liu K, Senisterra G, Crombet L, Vedadi M, Min J (2014). Structural basis for histone mimicry and hijacking of host proteins by influenza virus protein NS1. Nat Commun, 5: 3952
https://doi.org/10.1038/ncomms4952 pmid: 24853335
55 Rea S, Eisenhaber F, O’Carroll D, Strahl B D, Sun Z W, Schmid M, Opravil S, Mechtler K, Ponting C P, Allis C D, Jenuwein T (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 406(6796): 593–599
https://doi.org/10.1038/35020506 pmid: 10949293
56 Ruthenburg A J, Allis C D, Wysocka J (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell, 25(1): 15–30
https://doi.org/10.1016/j.molcel.2006.12.014 pmid: 17218268
57 Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419(6905): 407–411
https://doi.org/10.1038/nature01080 pmid: 12353038
58 Schneider R, Bannister A J, Myers F A, Thorne A W, Crane-Robinson C, Kouzarides T (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol, 6(1): 73–77
https://doi.org/10.1038/ncb1076 pmid: 14661024
59 Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath G K, Dhawan J (2009). MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc Natl Acad Sci USA, 106(12): 4719–4724
https://doi.org/10.1073/pnas.0807136106 pmid: 19264965
60 Shilatifard A (2008). Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol, 20(3): 341–348
https://doi.org/10.1016/j.ceb.2008.03.019 pmid: 18508253
61 Shinsky S A, Cosgrove M S (2015). Unique Role of the WD-40 Repeat Protein 5 (WDR5) Subunit within the Mixed Lineage Leukemia 3 (MLL3) Histone Methyltransferase Complex. J Biol Chem, 290(43): 25819–25833
https://doi.org/10.1074/jbc.M115.684142 pmid: 26324722
62 Shinsky S A, Hu M, Vought V E, Ng S B, Bamshad M J, Shendure J, Cosgrove M S (2014). A non-active-site SET domain surface crucial for the interaction of MLL1 and the RbBP5/Ash2L heterodimer within MLL family core complexes. J Mol Biol, 426(12): 2283–2299
https://doi.org/10.1016/j.jmb.2014.03.011 pmid: 24680668
64 Skarnes W C, Rosen B, West A P, Koutsourakis M, Bushell W, Iyer V, Mujica A O, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong P J, Stewart A F, Bradley A (2011). A conditional knockout resource for the genome-wide study of mouse gene function. Nature, 474(7351): 337–342
https://doi.org/10.1038/nature10163 pmid: 21677750
65 Southall S M, Wong P S, Odho Z, Roe S M, Wilson J R (2009). Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol Cell, 33(2): 181–191
https://doi.org/10.1016/j.molcel.2008.12.029 pmid: 19187761
66 Stoller J Z, Huang L, Tan C C, Huang F, Zhou D D, Yang J, Gelb B D, Epstein J A (2010). Ash2l interacts with Tbx1 and is required during early embryogenesis. Exp Biol Med (Maywood), 235(5): 569–576
https://doi.org/10.1258/ebm.2010.009318 pmid: 20463296
67 Takahashi Y H, Westfield G H, Oleskie A N, Trievel R C, Shilatifard A, Skiniotis G (2011). Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci USA, 108(51): 20526–20531
https://doi.org/10.1073/pnas.1109360108 pmid: 22158900
68 Terranova R, Agherbi H, Boned A, Meresse S, Djabali M (2006). Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc Natl Acad Sci USA, 103(17): 6629–6634
https://doi.org/10.1073/pnas.0507425103 pmid: 16618927
69 Thakur J, Sanyal K (2011). The essentiality of the fungus-specific Dam1 complex is correlated with a one-kinetochore-one-microtubule interaction present throughout the cell cycle, independent of the nature of a centromere. Eukaryot Cell, 10(10): 1295–1305
https://doi.org/10.1128/EC.05093-11 pmid: 21571923
70 Thoma F, Koller T (1977). Influence of histone H1 on chromatin structure. Cell, 12(1): 101–107
https://doi.org/10.1016/0092-8674(77)90188-X pmid: 561660
71 Thoma F, Koller T, Klug A (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol, 83(2 Pt 1): 403–427
https://doi.org/10.1083/jcb.83.2.403 pmid: 387806
72 Thomas L R, Foshage A M, Weissmiller A M, Tansey W P (2015b). The MYC-WDR5 Nexus and Cancer. Cancer Res, 75(19): 4012–4015
https://doi.org/10.1158/0008-5472.CAN-15-1216 pmid: 26383167
73 Thomas L R, Wang Q, Grieb B C, Phan J, Foshage A M, Sun Q, Olejniczak E T, Clark T, Dey S, Lorey S, Alicie B, Howard G C, Cawthon B, Ess K C, Eischen C M, Zhao Z, Fesik S W, Tansey W P (2015a). Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol Cell, 58(3): 440–452
https://doi.org/10.1016/j.molcel.2015.02.028 pmid: 25818646
74 Trievel R C, Shilatifard A (2009). WDR5, a complexed protein. Nat Struct Mol Biol, 16(7): 678–680
https://doi.org/10.1038/nsmb0709-678 pmid: 19578375
75 Usenovic M, Knight A L, Ray A, Wong V, Brown K R, Caldwell G A, Caldwell K A, Stagljar I, Krainc D (2012). Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity. Hum Mol Genet, 21(17): 3785–3794
https://doi.org/10.1093/hmg/dds206 pmid: 22645275
76 van Nuland R, Smits A H, Pallaki P, Jansen P W, Vermeulen M, Timmers H T (2013). Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol Cell Biol, 33(10): 2067–2077
https://doi.org/10.1128/MCB.01742-12 pmid: 23508102
77 Vinckenbosch N, Dupanloup I, Kaessmann H (2006). Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA, 103(9): 3220–3225
https://doi.org/10.1073/pnas.0511307103 pmid: 16492757
78 Wang K C, Yang Y W, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie B R, Protacio A, Flynn R A, Gupta R A, Wysocka J, Lei M, Dekker J, Helms J A, Chang H Y (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341): 120–124
https://doi.org/10.1038/nature09819 pmid: 21423168
79 Wang Y Y, Liu L J, Zhong B, Liu T T, Li Y, Yang Y, Ran Y, Li S, Tien P, Shu H B (2010). WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation. Proc Natl Acad Sci USA, 107(2): 815–820
https://doi.org/10.1073/pnas.0908967107 pmid: 20080758
80 Wang Y, Wysocka J, Sayegh J, Lee Y H, Perlin J R, Leonelli L, Sonbuchner L S, McDonald C H, Cook R G, Dou Y, Roeder R G, Clarke S, Stallcup M R, Allis C D, Coonrod S A (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 306(5694): 279–283
https://doi.org/10.1126/science.1101400 pmid: 15345777
81 Wu M, Wang P F, Lee J S, Martin-Brown S, Florens L, Washburn M, Shilatifard A (2008). Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol, 28(24): 7337–7344
https://doi.org/10.1128/MCB.00976-08 pmid: 18838538
82 Xia B, Joubert A, Groves B, Vo K, Ashraf D, Djavaherian D, Awe J, Xiong Y, Cherfils J, Ma D (2010). Modulation of cell adhesion and migration by the histone methyltransferase subunit mDpy-30 and its interacting proteins. PLoS ONE, 5(7): e11771
https://doi.org/10.1371/journal.pone.0011771 pmid: 20668708
83 Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D (2009). A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. J Cell Biol, 186(3): 343–353
https://doi.org/10.1083/jcb.200902146 pmid: 19651892
84 Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T (1998). Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood, 92(1): 108–117
pmid: 9639506
85 Yang Y W, Flynn R A, Chen Y, Qu K, Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife, 3: e02046
https://doi.org/10.7554/eLife.02046 pmid: 24521543
86 Yu B D, Hess J L, Horning S E, Brown G A, Korsmeyer S J (1995). Altered Hox expression and segmental identity in Mll-mutant mice. Nature, 378(6556): 505–508
https://doi.org/10.1038/378505a0 pmid: 7477409
87 Zhang K, Lin W, Latham J A, Riefler G M, Schumacher J M, Chan C, Tatchell K, Hawke D H, Kobayashi R, Dent S Y (2005). The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell, 122(5): 723–734
https://doi.org/10.1016/j.cell.2005.06.021 pmid: 16143104
88 Zhang P, Bergamin E, Couture J F (2013). The many facets of MLL1 regulation. Biopolymers, 99(2): 136–145
https://doi.org/10.1002/bip.22126 pmid: 23175388
89 Zhang P, Lee H, Brunzelle J S, Couture J F (2012). The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases. Nucleic Acids Res, 40(9): 4237–4246
https://doi.org/10.1093/nar/gkr1235 pmid: 22266653
90 Zhou P, Wang Z, Yuan X, Zhou C, Liu L, Wan X, Zhang F, Ding X, Wang C, Xiong S, Wang Z, Yuan J, Li Q, Zhang Y (2013). Mixed lineage leukemia 5 (MLL5) protein regulates cell cycle progression and E2F1-responsive gene expression via association with host cell factor-1 (HCF-1). J Biol Chem, 288(24): 17532–17543
https://doi.org/10.1074/jbc.M112.439729 pmid: 23629655
91 Zhu E D, Demay M B, Gori F (2008). Wdr5 is essential for osteoblast differentiation. J Biol Chem, 283(12): 7361–7367
https://doi.org/10.1074/jbc.M703304200 pmid: 18201971
[1] Arshid Yousefi-Avarvand, Mohsen Tafaghodi, Saman Soleimanpour, Farzad Khademi. HspX protein as a candidate vaccine against Mycobacterium tuberculosis: an overview[J]. Front. Biol., 2018, 13(4): 293-296.
[2] Dhamodharan Duraikannu, Subathra Devi Chandrasekaran. Optimization and modeling studies on the production of a new fibrinolytic protease using Streptomyces radiopugnans_VITSD8[J]. Front. Biol., 2018, 13(1): 70-77.
[3] S. Pooja, T. Aditi, S. Jemimah Naine, C. Subathra Devi. Bioactive compounds from marine Streptomycessp. VITPSA as therapeutics[J]. Front. Biol., 2017, 12(4): 280-289.
[4] H. C. Yashavantha Rao,Devaraju Rakshith,Sreedharamurthy Satish. Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India[J]. Front. Biol., 2015, 10(6): 528-536.
[5] Dong Yang,Ying Kong. The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis[J]. Front. Biol., 2015, 10(3): 252-261.
[6] Zahoor Ahmad ITOO,Zafar A. RESHI. Influence of ectomycorrhizal inoculation on Pinus wallichiana and Cedrus deodara seedlings under nursery conditions[J]. Front. Biol., 2014, 9(1): 82-88.
[7] Jiani CAO, Zhifeng XIAO, Bing CHEN, Yuan GAO, Chunying SHI, Jinhuan WANG, Jianwu DAI. Differential effects of recombinant fusion proteins TAT-OCT4 and TAT-NANOG on adult human fibroblasts[J]. Front Biol, 2010, 5(5): 424-430.
[8] Hon-Hing HO. The genus Pythium in Taiwan, China (1) – a synoptic review[J]. Front Biol Chin, 2009, 4(1): 15-28.
[9] TIAN Shen, ZANG Jinxin, PAN Yaping, LIU Jikai, YANG Xiushan, YUAN Zhenhong, YAN Yongjie. Construction of a recombinant yeast strain converting xylose and glucose to ethanol[J]. Front. Biol., 2008, 3(2): 165-169.
[10] XIAO Yian, HE Ping, ZENG Jianjun, LI Xiaohong, HU Wenhai. Pollen and resource limitations to lifetime seed production in a wild population of the endangered plant Disanthus cercidifolius var. longipes H. T. Chang (Hamamelidaceae)[J]. Front. Biol., 2007, 2(4): 437-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed